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Abstract—There is a growing interest in network traffic
classification without accessing the packets payload. A main
concern for network management is peer-to-peer (P2P) traffic
identification. This can be performed at several levels, including
packet level, flow level and node level. Most current traffic
identification approaches rely on flow level identification, being
highly demanding and time consuming procedures. This paper
introduces a similarity-based method to pair flows up, which is
aimed at reducing the cost of identifying P2P/non-P2P traffic
flows. For that, different similarity measures for flows pairing
are proposed and analyzed.
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I. INTRODUCTION

The increasing popularity and expansion of peer-to-peer
(P2P) networks and applications has raised some engineering
issues related to traffic and security. On the one hand,
Internet service providers need to handle the large volume
of traffic yielded by P2P activities to assure the minimal
impact to other network services. Moreover, the exchange of
any kind of information between the so-called peers, most
of them anonymous, is a security risk. This risk affects users
in particular, since the information exchanged might contain
viruses, worms and malware. It also affects the network
infrastructure, since P2P applications can be used to support
other harmful activities such as coordinated DoS attacks,
botnets, etc.

In this context, there is a clear interest in P2P traffic
identification. This paper introduces a new method aimed at
reducing the cost of identifying P2P/non-P2P traffic flows.
The rest of the article is organized as follows: Section
IT reviews the state of the art of traffic classification and
P2P traffic identification. Section III introduces the data-
sets used in the experimentation. Section IV motivates the
use of macro-flows built upon pairs of flows. In Section V
some strategies for flows pairing are presented. Section VI
is devoted to compare the results obtained by these different
strategies, and finally, the conclusions are drawn in Section
VIIL
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II. STATE OF THE ART

The recognition of P2P traffic is part of a more general
problem, namely the identification of network traffic [1].
Three main problems arise in the identification of the traffic
on a network:

1) Characterization: There are many features that have
been proposed in the literature to represent and classify
network traffic. The information used includes a wide
variety of parameters, from statistical data of connec-
tions from SNMP routers reports [2] (low granularity)
to information obtained from TCP headers, including
the signaling bits and the first bytes of payloads (high
granularity) [3].

2) Identification level: Once the traffic has been param-
eterized, three levels are considered to perform the
identification [1], [4]: node level, packet level and flow
level. In the first case, the objective is to identify nodes
that generate a certain type of traffic [5]. The aim of
packet-based identification is to classify each packet
individually. In the flow-based identification, the goal
is to determine the application protocol that generates
each traffic flow.

3) Identification process: A wide variety of recognition
systems are used to perform the identification, ranging
from heuristic or signature-based [1], [6], [7] to data
mining or pattern recognition algorithms [4], [8].

P2P flow recognition has been attempted by using a num-
ber of techniques. Among them, the k-Nearest Neighbors
(ENN) technique is remarkable because of its simplicity and
high recognition rate reported. Jun et al. [9] performed a
comparison between a number of techniques including Naive
Bayes, decision trees, kNN and other methods to classify
flows from 12 different application protocols, where some
of them are P2P (BitTorrent and Gnutella) and the rest non-
P2P (HTTP, DNS, POP3, etc.). The results show that kNN is
the best technique in terms of precision rate. Lim et al. [10]
proposed a discretization of standard parameters of traffic
flows (ports, package sizes, number of packets, duration
of flow, etc..) and assessed four classification techniques:
support vector machines (SVMs), kNNs, Naive Bayes and
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decision trees. The results indicate that the performance of
kNN is similar to SVMs, which yielded the best perfor-
mance. Salcedo-Campos et al. [11] proposed a kNN-based
technique called MVC (Multiple Vector Classification) for
P2P traffic identification. This method combines three KNNs
applied over different sets of parameters obtained from the
flows.

Most current traffic classification approaches rely on flow
level techniques. Despite the good classification performance
usually obtained by them, the general process is highly time
consuming. In order to overcome such limitation, this paper
introduces several similarity measures for flows pairing in
order to identify groups of flows likely to be generated
by the same protocol/service. This way, once a flow is
identified with a well-known procedure (e.g., DPI tools),
all the flows which are similar to it according to the flows
pairing will also be (quickly) identified. The proposed pair-
wise approach for flows classification takes advantage of the
good performance exhibited by kNN classifiers.

III. NETWORK TRAFFIC DATA FOR THE
EXPERIMENTATION

In order to evaluate the approach and methods described
in this work, an experimental setup with two steps has been
considered. The first one includes the capture of a great
amount of real network traffic, in this case, acquired in an
academic institution network. The second one consists of the
automatic classification of all the captured traffic packets and
flows by means of a deep packet inspection (DPI) tool. In
this scenario, the ground truth data-set is constituted taking
into account the analysis and identification of each traffic
flow and its associated traffic packets with a DPI tool, in
this case openDPI [12], with a negligible percentage of
classification errors.

The database used in this work contains the data captured
during three days of network inspection in an academic
institution. The acquisition was performed in the access
router in order to control the incoming and outgoing traffic
of the inner nodes of the network. The traffic flows and their
packets are captured in both communication ways.

The original data-set has been divided into a calibration
subset of 100,000 flows and a test subset with 100,000
flows. It should be remarked that the flows are sequentially
organized so that the period corresponding to the calibration
subset is previous to the one of the test subset, with no time
period overlapping. Table I shows the amount of P2P traffic
in both calibration and test subsets. OpenDPI tool found 35
and 41 different protocols in the calibration and test subsets,
respectively.

The openDPI classification shows that HTTP is the pro-
tocol with the highest number of flows, while the portion
of P2P protocols is close to 9%. Although this P2P frac-
tion could be considered reduced, the P2P traffic volume
associated is high, due to the size of each P2P flow. A
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Table I
BASIC TRAFFIC DESCRIPTION OF THE CALIBRATION AND TEST SUBSET.

Flows
Subset Total P2P flows  non-P2P flows
Calibration 100,000 8,897 91,103
Test 100,000 8,916 91,084
Total 200,000 17,813 182,187

more detailed analysis shows that only a reduced number of
network nodes generate or receive P2P traffic, being more
relevant videostreaming related protocols, which contribute
to the HTTP traffic (i.e., YouTube traffic). The rest of non-
P2P flows include mainly habitual protocols, such as DNS,
SSL or email protocols. The majority of the P2P flows
are related to BitTorrent, meanwhile Gnutella and others
are found in a lower proportion. This proportion may be
considered a consequence of the particular features of the
protocols. The relation between the P2P traffic and the non-
P2P traffic is similar in both calibration and test data-sets.
Please, refer to [11] for a more detailed description of the
protocols in the data set.

The feature vector representing each flow is composed
of 61 variables, as Table II depicts. The feature vectors
contain all the information needed for posterior analysis,
including the flow identification label in the database, the
protocol detected by openDPI and some traffic information
concerning the flow. The IP addresses of each flow have been
sorted by number. The term UP (ascending) points out that
the packet is going towards the machine with the highest IP,
and the term DOWN (descending) indicates that the packet
is going towards the machine with the lowest IP.

In the rest of the text, the terms observation and feature
vectors are used interchangeably. Two levels of classification
are established: the first one considering all the protocols
in the subsets and the second one considering only two
classes indicating if the flows are related to P2P or non-P2P
protocols.

IV. MOTIVATION

In kNN classification, an object is assigned to the most
common class amongst its k nearest neighbors. In this
section, the kNN technique in its simplest form (k=1) will
be applied to the calibration data-set in order to motivate the
approach adopted in this paper. From here onwards, let us
call this the NN technique. The NN classifies an observation
(feature vector or flow) within the same class of the nearest
observation in the calibration data. To establish the nearest
observation to a given one, a closeness functional needs to be
defined, typically based on well-known distances. An often
used distance is the normalized Euclidean distance, where
all variables have been normalized in variance:

dix,y)=+(x—y) S - (x—y) (1)
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Table II
VARIABLES OF THE FEATURE VECTOR FOR EACH FLOW.

Value Description

Flow identification
ID_FLOW Flow ID
IP_LOW Lower IP of the session tuple
IP_UPPER Highest IP of the session tuple
PORT1 Port related to the lowest IP (IP_LOW)
PORT2 Port related to the highest IP (IP_UPPER)
PROT_UDP Transport protocol UDP
PROT_TCP Transport protocol TCP
PROT_UNK ICMP
DIR Direction of the first observed packet (UP or DOWN)
FIRST_TIME Timestamp of the first packet (us)
LAST_TIME Timestamp of the last packet (u4s)

Related to transfer
NPACKETS Number of packets in flow

NPACKETS_UP
NPACKETS_DOWN
PACKETS_SIZE
PACKETS_SIZE_UP
PACKETS_SIZE_DOWN
PAYLOAD_SIZE
PAYLOAD_SIZE_UP
PAYLOAD_SIZE_DOWN
MEAN_PACK_SIZE
MEAN_PACK_SIZE_UP
MEAN_PACK_SIZE_DOWN
SHORT_PACKETS
SHORT_PACKETS_UP
SHORT_PACKETS_DOWN
LONG_PACKETS
LONG_PACKETS_UP
LONG_PACKETS_DOWN
MAXLEN

MAXLEN_UP
MAXLEN_DOWN
MINLEN

MINLEN_UP
MINLEN_DOWN

Idem way UP

Idem way DOWN
Complete size of all the packets in the flow
Idem way UP

Idem way DOWN
Complete size of payloads
Idem way UP

Idem way DOWN

Mean packet size

Idem way UP

Idem way DOWN
Number of short packets
Idem way UP

Idem way DOWN
Number of large packets
Idem way UP

Idem way DOWN
Maximum packet size
Idem way UP

Idem way DOWN
Minimum packet size
Idem way UP

Idem way DOWN

Related to time

DURATION
MEAN_INTERAR
MEAN_INTERAR_UP
MEAN_INTERAR_DOWN
MAX_INTERAR
MAX_INTERAR_UP
MAX_INTERAR_DOWN
MIN_INTERAR

Flow duration (ps)

Mean time between consecutive packets
Idem only UP

Idem only DOWN

Maximum time between consecutive packets
Idem only UP

Idem only DOWN

Minimum time between consecutive packets

MIN_INTERAR_UP Idem only UP
MIN_INTERAR_DOWN Idem only DOWN
Signaling

N_SIGNALING
N_SIGNALING_UP
N_SIGNALING_DOWN
NACKS

NFIN

NSYN

NRST

NPUSH

NURG

NECE

NCWD

NACK_UP
NACK_DOWN
NFIN_UP
NFIN_DOWN
NRST_UP
NRST_DOWN

Number of packets containing flags
Idem way UP

Idem way DOWN

Number of packets with ACK flag active
Idem FIN

Idem SYN

Idem RST

Idem PSH

Idem URG

Idem ECE

Idem CWD

Number of packets UP with ACK flag active
Idem way DOWN

Idem FIN & UP

Idem FIN & DOWN

Idem RST & UP

Idem RST & DOWN

where S is a diagonal matrix containing the sampling

variances of the variables.

In Figure 1, the performance of the NN technique for
traffic classification (Figure 1(a)) and P2P traffic identifi-
cation (Figure 1(b)) is assessed with the calibration data
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following two different approaches. The first approach con-
siders the traffic corresponding to the first hour as the
calibration data for NN. Then, traffic classification and P2P
identification are performed over the rest of the flows up
to the 20th hour. Notice that the first 20 hours correspond
to the calibration subset introduced in the previous section.
The test subset is only employed in the experiments of
Section V. The second approach considers a sliding window
of one hour as the calibration data for NN. Thus, to classify
an observation the nearest neighbor is obtained from the
immediate preceding observations within one hour interval.
Both methods are compared to a 95% confidence level for
statistical significance, computed using permutation tests,
a.k.a. randomization tests [13], [14]. The confidence level
is useful to assess the expected performance of a random
classifier in a given data-set, in order to test whether the
performance of the present classifier is beyond what it is
expected just by chance. Thus, in Figure 1(b), the expected
accuracy of a random classifier is high (between 50% and
95%) due to the low percentage of P2P flows in the data in
comparison with non-P2P flows. The random performance
also changes over time due to changes in the percentage of
P2P traffic. The good performance of NN is evidenced in the
figures since both approaches are far above the confidence
level. Also, the sliding window approach outperforms the
static window in the first hour.

Another interesting question is how the similarity between
flows is affected by the coincidence of IP addresses. An
experiment to check this is shown in Figure 2. The 20th hour
interval of traffic from a specific IP (the most common one)
was classified using the NN technique from two different
data-sets obtained from the previous 19 hours: traffic from
the same IP and traffic from the rest. For a fair comparison,
both data-sets had the same number of flows and non
statistical differences on time stamp. According to the figure,
most of the correct traffic classification and P2P traffic
identification is obtained for traffic with the same IP.

V. STRATEGIES FOR FLOWS PAIRING

The results in the previous sections show that the good
performance of NN is almost restricted to traffic with the
same IP. This represents a severe limitation for the general
application of NN to on-line traffic classification, since
it cannot be applied to traffic coming from new IPs not
previously considered. Furthermore, the performance of NN
is expected to degrade with the time separation between
calibration flows and test flows. Finally, taking into account
that calibration flows need an additional classification me-
chanism to perform NN, for instance payload-based classi-
fication, the direct application of NN in traffic classification
is not recommended.

Nevertheless, flows identification methods based on
pairing can take advantage of this good performance of
NN. From the previous results, a convenient approach for
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Figure 1. Percentage of accuracy for the calibration data-set in (a) traffic
classification and (b) P2P traffic identification. The confidence level is
computed using randomization tests.
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Figure 2. Percentage of accuracy in traffic classification and P2P traffic
identification for the 20th hour traffic from a given IP. The performance of
NN using past traffic from the same IP is compared to that of NN using
past traffic from different IPs.

flows pairing is to use a time sliding window, where only
those flows which share at least one IP with the current flow
are considered as potential candidates for pairing. This ap-
proach has been combined with payload-based classification
methods by the authors in some preliminary experiments,
yielding less than 5% of payloads inspection to identify cor-
rectly close to 100% of flows. This low payload inspection
level and the fact that only a time window of traffic data is
stored for classification, makes this approach specially suited
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for on-line traffic classification in network monitoring.

A main decision within this approach is the similarity
or closeness functional considered in NN for flows pairing.
Here, two types of functional are compared: those based on
traditional distances and a parametric functional, referred
to as similarity rule. The similarity rule has been designed
from first principles by the authors, taking into account the
general behavior of network protocols.

A. Distance-based approaches

Two distances have been considered: the normalized Eu-
clidean distance in Eq. (1) and the Mahalanobis distance

[3]:

dy(x,y) = (x—y)- I (x ~y) 2)

where 3 stands for the covariance matrix. The difference
between normalized Euclidean and Mahalanobis distances
is that in the latter the weight of the eigenvalues of the
covariance matrix in the resulting distance are normalized.
This may be convenient when eigenvectors of low variance
(low eigenvalue associated) contain relevant information for
classification.

B. Similarity rules

The most similar flow to a given one can be found as the
one which maximizes a similarity functional. The proposed
parametric definition of the similarity functional for a pair
of flows is the following:

1 1 1
+ +
dpr + k1 dpp+ k1 di+ ko

F:|N1P*1|+ 3)
where N;p is the number of coincident IPs between the
two flows, which is at least 1 (Recall that at least one
coincident IP is assumed for flows pairing), d,1 and dp
are the 1-norm distances between ports (ordered according
to the coincident IP), measured in tens of ports, d; is the
1-norm distance between time stamps at the beginning of
the flow (first packet), measured in seconds, and k1 and ko
are the functional parameters.

The definition of the functional in Eq. (3) answers to
the behavior of typical network protocols. Thus, servers
typically use one or a reduced number of ports to accept
service requests. Also, the Operating Systems in the clients
typically use consecutive dynamic port numbers for the con-
secutive connections established. For example, this would be
the behavior of a web client when connecting to a number
of web pages. In particular, if these pages are hosted in the
same server, the flows share the same two IPs and close
ports. Finally, related flows should be close in time. Eq. (3)
has been designed so that close ports and time stamps have
a significant impact on the functional but it is not so much
penalized by large distances. For this, 1-norm distances
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Figure 3. Parameters fitting for the similarity functional using the
calibration data. Parameters k1 and ko take values between 0.1 and 10.000
and are presented in a logarithmic scale

are considered instead of 2-norm distances, and they are
included in inverse form in the functional.

The definition of the functional is also convenient from
the practical point of view. The five variables (2 IPs, 2 ports
and beginning time stamp) considered in the functional are
obtained from the first packet in a flow. Therefore, one single
packet is enough for flows pairing. Unlikely, distance-based
approaches with the feature vector in Table II can only be
applied once the flows have finished.

The calibration data will be used to fit the parameters of
the similarity functional. Figure 3 shows the result of the
calibration for k; and ko values between 0.1 and 10,000, in
logarithmic scale. According to the results, the parameters
are set to k; = 1 and k9 = 1. It should be noted that the
results are quite stable for a large interval of the parameters.
In particular, the time closeness (k2) does not seem to be
relevant or even positive for certain values of k.

VI. COMPARISON

This section is devoted to compare the performance of
distance-based approaches and similarity rules for flows
pairing. The accuracy of each approach is defined as the
percentage of flow pairs belonging to the same class. Al-
though this work is focused on P2P classification, the pairing
strategy can be used for traffic classification in general.
This accuracy for traffic classification and P2P traffic iden-
tification for the calibration and test data-sets is presented
in Figure 4. Notice that all the calibration decisions, such
as the normalization in Euclidean distance, the covariance
in the Mahalanobis distance, and the values of k7 and ko
parameters in the similarity rules, are set from the calibration
data and then applied to the test data.
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Figure 4.  Comparison of strategies for flows pairing in terms of the
coincidence of classes within a pair. Percentage of accuracy in traffic
classification (TC) and P2P traffic identification (P2P/nP2P) and percentage
of true positives in no P2P (nP2P) and P2P (P2P) traffic. The percentage
of true positives of P2P traffic in the calibration data is 13%.

Figure 4 shows that the similarity rules outperform the
other two approaches, being the Mahalanobis distance the
worst choice. Figure 5 shows the first 30 eigenvalues of the
covariance matrix in the normalized calibration data. The
first four eigenvalues contain more than the 50% of the
variability within the data, which evidences the collinearity
of the variables considered in the feature vectors (Table II).
The Mahalanobis distance normalizes the weights of the
eigenvectors in the distance. This is negatively affecting the
performance, showing that the eigenvectors of highest eigen-
value associated contain the relevant similarity information
for classification. This is also convenient from the practical
point of view, since it means that the useful similarity
information is manifesting in a high number of variables.
This result is coherent with those in [11]. In particular, the
similarity information useful for classification is manifesting
in the five variables considered in the similarity rules, which
yield the best performance. This is especially convenient
considering that a flow can be paired from the first packet
using the similarity rules.

Finally, a comparison of the mean time between pairs
has been performed for Euclidean-based pairs and similarity
rules pairs. A t-test showed that this mean time is lower for
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the similarity rules pairs (p-value < 1712) for both calibra-
tion and test data-sets. Pairs of flows with less difference in
time are expected to be more reliable.

VII. CONCLUSION

This paper is devoted to introduce and compare different
strategies for traffic flows pairing based on similarity mea-
sures. This strategy is used for fast P2P traffic classification
in network monitoring, although it can be applied to traffic
classification in general.

According to the results presented, flows pairing can be
effectively performed using only five parameters for each
flow: the IPs and port numbers and the beginning time
stamp. These five parameters are combined in what has been
named similarity rule. The pairing based on similarity rules
outperforms the application of other traditional distances,
such as the Euclidean distance, in several ways:

o The parameters in the similarity rule are available from
the first packet in a flow, so that a flow can be paired
only with the information in the first packet. Distance-
based pairing needs the completeness of the flows.

o Similarity rules are faster to compute than distance-
based pairing, since only 5 parameters are used. Also,
they require less storage space.

o Classification based on similarity rules outperforms
classification based on traditional distances.

o Similarity rules provide closer flow pairs in time than
distance-based pairing.
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