
Formal Analysis and Verification of Peer-to-Peer
Node Behaviour
Petter Sandvik1,2 and Kaisa Sere1

1Department of Information Technologies, Åbo Akademi University
2Turku Centre for Computer Science (TUCS)
Joukahaisenkatu 3–5, 20520 Turku, Finland

{petter.sandvik,kaisa.sere}@abo.fi

Abstract—As services and applications move away from the
one-to-many relationship of the client-server model towards
many-to-many relations such as distributed cloud-based services
and peer-to-peer networks, there is a need for a reusable model of
how a node could work in such a network. We have constructed
a reusable formally derived and verified model of a node in a
peer-to-peer network for on-demand media streaming, validated
and animated it, and then compared the results with simulations.
We have thereby created an approach for analysing peer-to-peer
node behaviour.

Keywords-formal modelling; peer-to-peer; BitTorrent; on-
demand streaming.

I. INTRODUCTION

There has been a trend in computer software towards a
“utility computing vision” [1] in which computer services
are accessed without needing to know the specific underlying
structure. Rather than the traditional client-server architecture
of network services, this vision is largely dependent on many-
to-many relations such as distributed cloud-based services and
peer-to-peer systems. However, the recent increase in peer-to-
peer usage has highlighted a few issues when it comes to
development of such services. Testing a peer-to-peer system
can be difficult and cumbersome, due to the often large
scale and heterogeneous nature of the system. In some cases
simulations can be used, but designing a thorough simulation
is not an easy task. Furthermore, both testing and simulating
these types of systems may require us to emulate the whole
network of interacting nodes even if our interest would lie with
only one of them, such as when developing a new application
designed to interact with a network of existing ones.

Our background in formal methods made us wonder if this
problem could be approached from the opposite direction.
By this we mean that instead of testing and simulating the
whole network to confirm the correct behaviour of one node,
we create a formally verified model of one node and then
use that model for analysing peer-to-peer node behaviour in
general. We will here look at a peer-to-peer on-demand media
streaming system, in which content is divided into pieces,
distributed between peers using piece selection methods based
on BitTorrent on-demand media streaming [2], and then played
back in-order. We describe the creation of models for three
specific piece selection methods, based on a common reusable
formally derived and verified model in Event-B [3]. We then
show how ProB [4] can be used to animate our Event-B

model, giving results that we can compare with results from
simulations. Hence, we show how these different techniques
and tools complement each other in the design task.

The rest of this article is organised as follows: In Section II,
we describe the Event-B formalism and the tools we have
used, and in Section III, we give an overview of on-demand
streaming. Section IV details the creation of our formal model.
In Section V, we show the results of animation, and compare
them with results from previous simulations. We conclude this
article in Section VI with discussion and future work.

II. EVENT-B, THE RODIN PLATFORM AND PROB

Event-B [5] is a formalism based on Action Systems [6],
[7] and the B Method [8]. The primary concept in formal
development with Event-B is models [5]. A model in Event-B
consists of contexts, which describe the static parts such as
constants and sets, and machines, which contain the dynamic
parts such as variables, invariants (boolean predicates on
the variables), and events. An event contains actions, which
describe how the values of variables change in the event, and
guards, which are boolean predicates that all must evaluate to
true before the event can be enabled, i.e., able to execute.

In Event-B development starts from an abstract specifica-
tion, and the model is then refined stepwise into a concrete
implementation. In order to achieve a reliable system we use
superposition refinement [9], [10] to add functionality while
preserving the overall consistency, which means that we add
new variables and functionality in such a way that it prevents
the old functionality from being disturbed [11]. In order to
prove the correctness of each step of the development, we
rely on the Rodin Platform [12] tool, which automatically
generates proof obligations. These proof obligations, which
are mathematical formulas that need to be proven in order to
ensure correctness, can then be proven either automatically
or interactively with the Rodin Platform tool. The choice of
Event-B as the formalism to use for a model of this kind was
largely due to this integrated tool support.

While the Rodin Platform tool is good for modelling and
proving, we would also like to animate, or “execute” our
models. This is because the mathematical correctness does
not prove that our model does what we wanted it to do [5],
and we would also like results that can be compared to
those from simulations. ProB [4] is a free-to-use animator

47Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

and model checking tool, and supports models from both the
B Method and Event-B. While ProB is available as a plug-
in for the Rodin Platform tool, we have used the standalone,
fully featured version for animation.

III. ON-DEMAND STREAMING

Streaming can be described as the transport of data in a con-
tinuous flow, in which the data can be used before it has been
received in its entirety. There are two different approaches to
streaming content; live streaming and on-demand streaming.
From an end user perspective live streaming is similar to a
broadcast; that is, everyone who receives the media is intended
to receive the same content at the same time. On-demand
streaming is different, in that it is “essentially playback, as a
stream, of pre-recorded content” [13]. This makes on-demand
streaming more similar to traditional file transfer. However,
on-demand streaming is still “play-while-downloading” and
not “open-after-downloading” [14], and traditional file sharing
protocols can therefore not be used without modifications. This
holds true especially if we look at peer-to-peer file sharing,
where content is often transferred out-of-order.

The basis for the peer-to-peer media streaming solution we
will look at is the file sharing protocol BitTorrent [15]. In
BitTorrent, content is partitioned into pieces of equal size,
and by default these pieces are requested out-of-order. By
modifying the algorithms used to select the order in which
the pieces of the content is requested, i.e. piece selection,
BitTorrent can be made to work for streaming content. Several
different modifications to the BitTorrent protocol to enable
streaming media have been proposed, for instance BiToS [16]
and Give-to-Get [17]. We have here chosen to model three
different piece selection methods; sequential, rarest-first with
buffer (RFB) and distance-availability weighted (DAW). Se-
quential represents a straightforward streaming solution, re-
questing pieces in their original order. While this is used for
instance when streaming content in the OneSwarm friend-to-
friend sharing application [18], BitTorrent contains a tit-for-tat
incentive mechanism that requires data to be out-of-order to
function as intended, and the sequential method may therefore
be of limited use when unknown peers are involved. RFB is
a modification of the rarest-first method used in BitTorrent
file sharing, where the piece held by the fewest other peers
is requested. The addition of a buffer means that a specific
number of pieces after the piece currently being played back
are requested with the highest priority, thus striving towards
always having a certain amount of the content immediately
available for playback. and only after that will the rarest
piece be requested. DAW [2] tries to strike a balance between
requesting rare pieces and pieces that are close to being played
back, by calculating priority using the distance (i.e., difference
in sequence number between a specific piece and the currently
playing one) multiplied with the availability. If there is more
than one piece with the same priority, the piece with the lowest
piece number, i.e. closest to being played back, will be chosen
in both RFB and DAW.

For streaming to work, we note that data cannot be received
slower than it should be played back, and this is something that

we must take into consideration when creating our model. In
the following section, we describe a common Event-B model
for the piece selection methods, and refine that model into
three specific ones corresponding to the three mentioned piece
selection methods.

IV. MODELLING WITH EVENT-B

Entire peer-to-peer systems and other distributed architec-
tures have been formally modelled [19], [20], [21]. We have
created a reusable Event-B model for a node in an on-demand
content streaming network [3]. The difference between the two
approaches is that instead of looking at the whole network
of peers, we model just how one peer looks at the system.
Our idea when creating a model is to build it in separate
layers, separating the functional parts from each other so
that the model could easily be adopted for use with different
functionality. Here we focus on modelling the piece selection
methods.

As we model our peer-to-peer client as a client for streaming
media, we see that three major functions are needed; piece
selection (possibly out-of-order), piece transfer (possibly out-
of-order) and playback (always in-order). These three func-
tions are independent of each other, but must be performed
in this sequence. Hence, pieces must be selected before they
are transferred, and pieces must be transferred before they
can be played back. An example situation is shown in Fig. 1.
As mentioned previously, the content must be transferred at
least as fast as it should be played back in order to ensure
that streaming works. Therefore, we require that selection will
always take place at the same rate as playback or faster; that
is, for each time we advance playback we will have selected
at least one additional piece.

selected

transferred

playing

numselected

numtransferred

pieces1 2 3 4 5 6 7 ...

Fig. 1. The relation between selected, transferred and playing.
The arrows indicate the number of pieces (7 selected, 5 transferred and 3
playing), while the grey squares indicate the specific pieces.

A. Common Model

We will start with a common model for all three piece
selection methods [3], and here we will briefly describe the
features of this model. We have two constants, pieces
and simreq, which define how many pieces the content is
divided into and the number of simultaneous requests, i.e.,
the maximum amount of pieces that can be selected but not
yet transferred. We have variables for how many pieces we
have selected (numselected) and exactly which pieces have
been selected (selected), and similar variables for pieces
that have been requested, i.e., transfer started, and for which
the transfer has completed. We also keep track of which piece
we are playing back and the priority for all pieces, as well as
which piece we last updated priority for (priupd). The type
restrictions of these variables are defined by invariants [3].

48Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

machine PieceSelect_M
variables playing completed numselected

selected numtransferred transferred

numrequested requested priority priupd

invariants
...

events
...

end

We initialise our common model with having zero pieces,
and therefore not having selected, requested or transferred
anything. Priorities are set initially for all pieces, but before
the priorities are actually used they will be updated. This
is done by an abstract event called CHANGE_PRIORITIES.
which will be refined later. Initially, this event is enabled as
long as we have not updated priorities for all possible pieces
to request (@grd4 1) and for any p which is a non-zero
natural number (@grd4 2). The priority of the piece after the
previously updated one is then set to p (@act4 1), while the
value of priupd is set to that piece (@act4 2). This means
that we will update priorities of all pieces from the currently
playing one to the last one.

event CHANGE_PRIORITIES ≙

any p

where
@grd4 1 priupd < pieces

@grd4 2 p ∈ N1

then
@act4 1 priority(priupd+1) ∶= p

@act4 2 priupd ∶= priupd + 1
end

As the main focus in this model is piece selection, we
will now look at the piece selection events. Because we
require that content must be transferred faster than it should
be played back, we also require that piece selection happens
faster than playback. We have modelled this by separating
the main flow of the program into two events: SELECT and
SELECT_AND_ADVANCE. This means that the action taken in
each step can be that of selecting a piece, or selecting a piece
and advancing playback. In other words, every time something
happens in our model we will select a piece, and some of those
times we also advance playback. Naturally, after initialisation
we always start with selecting a piece and only after that piece
has been transferred could it be possible to advance playback.

The SELECT event is enabled when we have not yet
selected as many pieces as we can (@grd0 1 and @grd2 4)
and when we have updated priorities for all pieces (@grd4 5).
The parameter n must also be such that it can represent a piece
we have not yet selected (@grd1 2 and @grd1 3) and the
priority for piece number n must be less than or equal to the
priorities of all other possible pieces (@grd4 6). In practice,
this means that the maximum priority that can be given to
any piece is a numerical value of one, with higher numerical
values being less prioritised. It also means that if there is
more than one piece with the same priority, and that priority
has the lowest numerical value of all priorities given to valid
pieces, which one of these pieces to select is not determined.
In our case, we will in the next refinements specify which of

these pieces to select. However, the way the piece selection
is modelled in this common model is actually consistent with
the original BitTorrent specification, which does not specify an
order when two or more pieces have the same availability [22].

What the SELECT event actually does is to increase the
number of selected pieces (@act0 1), indicate that the specific
piece has been selected (@act1 2) and reset the priupd
variable so that we can update priorities before the next piece
is selected (@act4 3).

event SELECT ≙

any n

where
@grd0 1 numselected < pieces

@grd1 2 n ∈ playing+1..pieces

@grd1 3 selected(n) = FALSE

@grd2 4 numselected − numtransferred < simreq

@grd4 5 priupd = pieces

@grd4 6 ∀k ⋅ (k ∈ playing+1..pieces ∧ k ≠ n ∧

selected(k)= FALSE ⇒

priority(n) ≤ priority(k))
then

@act0 1 numselected ∶= numselected + 1

@act1 2 selected(n) ∶= TRUE

@act4 3 priupd ∶= playing
end

The SELECT_AND_ADVANCE event is very similar to
the SELECT event, with the addition of guards and action
concerning advancing playback. Thus, for this event to be
enabled we require that we have not played all selected and
transferred pieces (@grd0 a and @grd2 c), and that we have
already selected and transferred the piece following the one
currently being played back (@grd1 b and @grd3 d). The
actions of this event are identical to the SELECT event,
except for the addition of an action increasing the number
of the currently playing piece (@act0 a) and therefore also
requiring the increased value in the action that resets priority
updates (@act4 3).

event SELECT_AND_ADVANCE ≙

any n

where
@grd0 1 numselected < pieces

@grd0 a playing < numselected

@grd1 2 n ∈ playing+1..pieces

@grd1 3 selected(n) = FALSE

@grd1 b selected(playing+1) = TRUE

@grd2 4 numselected − numtransferred < simreq

@grd2 c playing < numtransferred

@grd3 d transferred(playing+1) = TRUE

@grd4 5 priupd = pieces

@grd4 6 ∀k ⋅ (k ∈ playing+1..pieces ∧ k ≠ n ∧

selected(k)= FALSE ⇒

priority(n) ≤ priority(k))
then

@act0 1 numselected ∶= numselected + 1

@act0 a playing ∶= playing + 1

@act1 2 selected(n) ∶= TRUE

@act4 3 priupd ∶= playing + 1
end

49Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

Our model also contains events which are not interesting in
this context and therefore not shown here. We have events for
pieces being requested and transferred, and in both we require
that it is possible to perform the actions enabled by the event,
which increase the number of requested or transferred pieces
and mark the specific piece number as requested or transferred,
respectively. The transfer event thereby updates variables that
can be seen in the guards of the SELECT_AND_ADVANCE
event. There is also an event that only advances playback after
all pieces have been selected. We also have a final event which
represents the conditions that must be true for the execution
to terminate, which is that all pieces must have been selected,
requested, transferred and played back. Only then will we set
our variable completed to TRUE.

B. Three Piece Selection Models

Now that we have described our common model, we will
take a look at our refined models which represent the use of
three different piece selection methods.

1) The Sequential Piece Selection Method: The sequential
piece selection method is very simple. Essentially, pieces are
selected in order by setting the priority for a piece to its
piece number. To model such a piece selection method we
can use our common model as a basis, without needing any
new variables, constants or events. In fact, the only change
is refining the CHANGE_PRIORITIES event. The parameter
p from the abstract event is here replaced by its concrete
representation, priupd+1, which is the piece number of the
piece for which we are changing priority. This necessitates the
addition of a witness (@p), and we also remove the type guard
for p.
event CHANGE_PRIORITIES_SEQUENTIAL ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

with
@p priupd+1 = p

then
@act4 1 priority(priupd+1) ∶= priupd+1

@act4 2 priupd ∶= priupd + 1
end

2) The Rarest-First Method with Buffer: To model the
rarest-first method with buffer (RFB) based on our common
abstract model, we need to refine the abstract priority into a
concrete one. As described in Section III, the priority in RFB
is highest in the buffer, which consists of a fixed number of
pieces after the playing one. Outside the buffer, the priority
of each piece is set to the availability of that piece. Thus,
we add a constant buffersize to describe the size of the
buffer, and constants minavail and maxavail to describe
the minimum and maximum values for piece availability.
Availabilities must be larger than zero, because allowing zero
availability for a piece would introduce additional complexity
in piece selection and uncertainty as to whether all pieces
could actually be transferred. We also need a new variable,
availability, to describe the availability of each piece.
We also add the following invariant, which states that when

we have updated priorities for some but not all pieces, the
pieces that we have updated priorities for and that are outside
the buffer will have their priorities equal to their availability.
@inv5 23 ∀t ⋅ (t ∈ playing+1..priupd ∧

priupd < pieces ∧ t > playing+buffersize

⇒ (priority(t) = availability(t)))

Initially we set availability to minavail for all pieces.
Because the availability is not controlled by us, we need an
abstract event which changes the availability of a piece. This
event should be enabled independently of piece selection, but
not when updating priorities because they depend on the avail-
ability. The new event CHANGE_AVAILABILITY is enabled
for any valid piece (@grd5 1) and availability (@grd5 2)
whenever we have updated priorities for all pieces (@grd5 3),
and sets the availability of that piece (@act5 1).
event CHANGE_AVAILABILITY ≙

any n a

where
@grd5 1 n ∈ 1..pieces

@grd5 2 a ∈ minavail..maxavail

@grd5 3 priupd = pieces
then

@act5 1 availability(n) ∶= a
end

For changing priorities, we refine our abstract event into
two separate events, CHANGE_PRIORITIES_BUFFER
for setting priorities for pieces in the buffer, and
CHANGE_PRIORITIES_RFB for the other pieces. The
guard (@grd5 3) separates the two different events, ensuring
that only one of them is enabled at a time. The parameter
p from the abstract event is changed into a concrete one,
necessitating the witness (@p) and removal of the guard
stating the type of p. As can be seen both in the witnesses
and in the actions (@act4 1), in these events the replacement
for p is 1 and the availability of the piece, respectively.

event CHANGE_PRIORITIES_BUFFER ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

@grd5 3 priupd < playing + buffersize

with
@p 1 = p

then
@act4 1 priority(priupd+1) ∶= 1

@act4 2 priupd ∶= priupd + 1
end

event CHANGE_PRIORITIES_RFB ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

@grd5 3 priupd ≥ playing + buffersize

with
@p availability(priupd+1) = p

then
@act4 1 priority(priupd+1) ∶=

availability(priupd+1)

@act4 2 priupd ∶= priupd + 1
end

50Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

The SELECT and SELECT_AND_ADVANCE events both gain
one guard. This guard corresponds to the requirement that if
two pieces have the same priority, the one with the lowest
piece number is selected.

@grd5 7 ∀j ⋅ (j ∈ playing+1..pieces ∧ j ≠ n

∧ selected(j) = FALSE ∧

(priority(n) = priority(j)) ⇒ (n < j))

The remaining events do not need refining.

3) The Distance-Availability Weighted Method: When
modelling the distance-availability weighted piece selection
method (DAW), we can use our experience with modelling
RFB as many parts are similar. In this refinement, the contexts
of RFB and DAW are identical, and so are the variables.
However, the invariant concerning priority (@inv5 23) is
different. Here, the priorities we have updated outside the
buffer should be set to distance times availability [2].

@inv5 23 ∀t ⋅ (t ∈ playing+1..priupd ∧

priupd < pieces ∧ t > playing+buffersize

⇒ (priority(t) = (t − (playing+buffersize))

∗ availability(t)))

The CHANGE_AVAILABILITY event introduced in the
refinement for RFB is abstract enough that it can be used
as-is for DAW as well, but the big difference lies in the
CHANGE_PRIORITIES event. Like in RFB, we refine the
abstract event from our common model into two different
events; one for pieces in the buffer and one for pieces outside
the buffer. The CHANGE_PRIORITIES_BUFFER event for
pieces in the buffer is, again, identical to the RFB one, as they
both assign the highest priority to buffersize pieces after
the playing one. However, the event that changes priorities for
pieces outside the buffer is different. The parameter p from
the abstract event is here replaced with a witness stating the
corresponding concrete priority according to the DAW piece
selection method.

event CHANGE_PRIORITIES_DAW ≙

refines CHANGE_PRIORITIES
when

@grd4 1 priupd < pieces

@grd5 3 priupd ≥ playing + buffersize

with
@p ((priupd+1) − (playing+buffersize))

∗ availability(priupd+1) = p
then

@act4 1 priority(priupd+1) ∶=

((priupd+1) − (playing+buffersize))

∗ availability(priupd+1)

@act4 2 priupd ∶= priupd + 1
end

The remaining events are identical to the RFB ones, which
in some cases means that they are unchanged from the
common model. The requirement that if two or more pieces
have identical priority the one with the lowest piece number
must be selected is also present in DAW.

C. Proof Obligations

Event-B models have certain properties, and when refining
a model these properties need to be preserved in order for the
model to remain correct. The Rodin Platform tool generates
proof obligations, which are the mathematical formulas that
need to be proven in order to ensure this correctness, including
preserving the invariants and strengthening of the guards of our
Event-B models. The Rodin Platform tool can automatically
discharge most of these proof obligations by means of auto-
matic provers, but some may need to be proven interactively,
which the Rodin Platform also provides the means for. Table I
shows the amount of proof obligations generated for each
machine by version 2.0.1 of the Rodin Platform tool, and
how many of those that needed user interaction. The Rodin
Platform tool was used on a computer with a 2.4 GHz Intel
Core 2 Duo processor running Mac OS X 10.5.8.

TABLE I
Proof Obligations of our Event-B Model.

Machine Total Proofs Interactive Proofs

PieceSelect M 71 2
PieceSelect M SEQ 72 2
PieceSelect M RFB 92 3
PieceSelect M DAW 93 4

V. VALIDATION, ANIMATION AND COMPARISON

As mentioned in Section II, we have used the standalone,
fully featured version of ProB [4]. Due to the way our
models are created and ProB interacts with them, memory
and processing time constraints have forced us to use smaller
values than we would in a real-life situation. Combined with
limitations from simulations, this means that we look at the
case when the content is divided into 20 pieces, only one
request can be outstanding at any time, and the buffer size for
RFB and DAW is set to 3. Although smaller than what would
be used in a real-world situation, we believe that this is large
enough to be noticeable but small enough not to impact the
results.

We have compared the results from animating our models
in ProB with the results from simple mathematical simula-
tions [2], [13]. These simulations show the behaviour of the
piece selection methods for the whole network, and here we
chose a network of ten peers starting from scratch and one
seed holding all the content. The results show how many of the
peers hold each piece after twelve pieces have been selected,
when selection happens twice as fast as playback.

Because our Event-B model looks at the network from the
point of one node only, we have completed 40 random runs
of the animation in ProB, and present the average results
from these runs. The minimum availability was set to one
and the maximum availability was set to five, and as in the
simulation we have stopped to look at the situation after
twelve pieces have been selected. Fig. 2 shows the results
from both simulation and ProB animation for RFB and DAW
piece selection methods.

The results for the sequential piece selection method are not
shown, because the results from the simulation are identical

51Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

Fig. 2. The availability of each piece after twelve pieces have been selected,
when using RFB and DAW.

to the ProB results, as should be expected. In both cases,
the twelve first pieces are always selected after twelve pieces
in total have been selected. For RFB and DAW, we note
that the results from simulation and ProB animation are very
similar. Some of the differences that exist are due to the fact
that the simulations use the actual availability for each piece
when calculating priority, while the animation uses random
values corresponding to the nondeterminism in our Event-B
model. Another difference regards the playback position. In
the simulations, playback has always reached exactly piece
number six after twelve pieces have been selected, because
playback is advanced exactly every other time selection is
done. In the animation, we start with selecting a piece, and
after that we either select a piece or select a piece and advance
playback with equal probability, which leads to variation in
playback position but a mathematical average of 5.5. This
means that unlike in the simulation, in the ProB animation
an RFB node may not always have selected the 9 first pieces,
and this is visible in Fig. 2. The very nature of DAW makes it
unlikely, although not impossible, for the same thing to happen
with DAW.

VI. CONCLUSIONS AND FUTURE WORK

We have created a formally constructed and verified Event-B
model of a node in a peer-to-peer content streaming network.
This model we have then refined and animated, and the results
have been compared with simulations. Using the same piece
selection methods, our formal model of one peer has given us
similar average results as a simulation of the whole network of
peers. While we ran the ProB animation using smaller figures
than would be used in a real-world situation, we still believe
that our results show the added value that our method creates.
By itself or together with simulations, animation of a formally
derived and verified model can be used as an approach to
analysing and verifying peer-to-peer node behaviour.

As our model is reusable, future work could include refining
our model for other piece selection methods and extending
the models and comparisons to other peer-to-peer systems be-
sides an on-demand streaming one. Another possible direction
would be refining our formal models to include the network
structure in order to facilitate analysing aspects that require
knowledge of more than just one node.

REFERENCES

[1] R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
Computing and Emerging IT Platforms: Vision, Hype, and Reality for
Delivering Computing as the 5th Utility,” Future Generation Computer
Systems, vol. 25, pp. 599–616, 2009.

[2] P. Sandvik and M. Neovius, “The Distance-Availability Weighted Piece
Selection Method for BitTorrent: A BitTorrent Piece Selection Method
for On-Demand Streaming,” in Proceedings of AP2PS ’09, October
2009.

[3] P. Sandvik, K. Sere, and M. Waldén, “An Event-B
Model for On-Demand Streaming,” Turku Centre for
Computer Science (TUCS), Tech. Rep. 994, December 2010,
http://tucs.fi/publications/insight.php?id=tSaSeWa10a (Accessed
September 2011).

[4] “The ProB Animator and Model Checker,”
http://www.stups.uni-duesseldorf.de/ProB/ (Accessed September 2011).

[5] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[6] R.-J. Back and K. Sere, “From Modular Systems to Action Systems,”
Software - Concepts and Tools, vol. 13, pp. 26–39, 1996.

[7] M. Waldén and K. Sere, “Reasoning About Action Systems Using the
B-Method,” Formal Methods in Systems Design, vol. 13, pp. 5–35, 1998.

[8] J.-R. Abrial, The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[9] R.-J. Back and R. Kurki-Suonio, “Decentralization of Process Nets with
Centralized Control,” in Proceedings of the 2nd ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, 1983, pp. 131–142.

[10] S. Katz, “A Superimposition Control Construct for Distributed Systems,”
ACM Transactions on Programming Languages and Systems, vol. 15(2),
pp. 337–356, April 1993.

[11] K. Sere, “A Formalization of Superposition Refinement,” in Proceedings
of the 2nd Israel Symposium on the Theory and Computing Systems, June
1993.

[12] “Event-B and the Rodin Platform,” http://www.event-b.org/ (Accessed
September 2011).

[13] P. Sandvik, “Adapting Peer-to-Peer File Sharing Technology for On-
Demand Media Streaming,” Master’s thesis, Åbo Akademi University,
May 2008.

[14] D. Xu, M. Hefeeda, S. Hambrusch, and B. Bhargava, “On Peer-to-Peer
Media Streaming,” in Proceedings of the 22nd International Conference
on Distributed Computing Systems (ICDCS’02), 2002.

[15] B. Cohen, “BitTorrent - A New P2P App,” Yahoo eGroups,
http://finance.groups.yahoo.com/group/decentralization/message/3160
(Accessed September 2011).

[16] A. Vlavianos, M. Iliofotou, and M. Faloutsos, “BiToS: Enhancing
BitTorrent for Supporting Streaming Applications,” in 9th IEEE Global
Internet Symposium 2006, April 2006.

[17] J. Mol, J. Pouwelse, M. Meulpolder, D. Epema, and H. Sips, “Give-
to-Get: Free-riding-resilient Video-on-Demand in P2P Systems,” in
Multimedia Computing and Networking 2008, Society of Photo-Optical
Instrumentation Engineers (SPIE) Conference Series, Vol. 6818, 2008.

[18] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Privacy-
Preserving P2P Data Sharing with OneSwarm,” in SIGCOMM’10,
August–September 2010, pp. 111–122.

[19] L. Yan and J. Ni, “Building a Formal Framework for Mobile Ad
Hoc Computing,” in Proceedings of the International Conference on
Computational Science (ICCS’04), June 2004.

[20] L. Yan, “A Formal Architectural Model for Peer-to-Peer Systems,” in
Handbook of Peer-to-Peer Networking 2010 Part 12, X. Shen, H. Yu,
J. Buford, and M. Akon, Eds. Springer US, 2010, pp. 1295–1314.

[21] M. Kamali, L. Laibinis, L. Petre, and K. Sere, “Self-Recovering Sensor-
Actor Networks,” in FOCLASA, 2010.

[22] B. Cohen, “Incentives Build Robustness in BitTorrent,” in 1st Workshop
on Economics of Peer-to-Peer Systems, June 2003.

52Copyright (c) IARIA, 2011. ISBN: 978-1-61208-173-1

AP2PS 2011 : The Third International Conference on Advances in P2P Systems

