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Abstract—In this paper, we propose SGR-Tree, an index
structure for multi-dimensional data in Peer-to-Peer (P2P)
systems. SGR-Tree is an R-Tree index structure constructed on
top of a Skip Graph, a P2P overlay network. In SGR-Tree, each
Skip Graph node corresponds to an R-Tree leaf node. However,
different from R-Tree, SGR-Tree does not employ internal
nodes for routing purpose. Instead, at each Skip Graph node,
we virtually partition the whole system into non-overlapping
regions, each of which is connected to the node via a neighbor
node. For each region, the node keeps the minimum hyper-
rectangle covering all hyper-rectangles, which are in charged
by nodes falling in the region. In this way, when a node issues
or receives a query, it simply sends or forwards the query
to neighbor nodes whose minimum covering hyper-rectangle
intersects with the search region. The main advantage of SGR-
Tree is that it can avoid not only the bottleneck problem at
the root node but also the high cost of maintaining internal
R-Tree nodes, especially when the index structure is often
changed. Nevertheless, we prove that SGR-Tree is still able to
process multi-dimensional queries efficiently within a boundary
of logN steps, where N is the number of nodes in the system.
We have done experiments to validate the practicability and
efficiency of SGR-Tree.
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I. INTRODUCTION

In the past decade, Peer-to-Peer (P2P) systems have
received a lot of interests from both computer users and
researchers. The main advantage of P2P systems is the capa-
bility of sharing resources so that large systems can be easily
formed by low-cost computers instead of expensive servers.
Since sharing data such as images, music files, and textual
documents are often represented as multi-dimensional points
in a multi-dimensional space, supporting multi-dimensional
data indexing in P2P systems is extremely important.

Multi-dimensional data indexing has been well studied
in centralized systems. A straightforward method to index
multi-dimensional data is to employ Space Filling Curves [1]
such as Hilbert curve or Z-curve (Z-order) to first convert
multi-dimensional data to one-dimensional data and then to
index the converted one-dimensional data in popular one-
dimensional index structures. The problem of this method,
however, is that it cannot index high-dimensional data ef-
ficiently. Alternatively, several index structures that directly
index multi-dimensional data such as R-Tree [2], M-Tree [3],

and SS-Tree [4] have been proposed. These index structures
are generally based on a tree, where the data space is
hierarchically divided into smaller subspaces when the space
is overloaded and the tree grows up.

A popular approach to support multi-dimensional data
indexing in P2P is to adapt centralized multi-dimensional
index structures in P2P environment. Given a tree based
index structure, the biggest challenge of this approach,
however, is how to deal with the bottle-neck problem at
the root of the tree structure since all queries need to be
started at the root node. VBI-Tree [5] solves this challenge
by keeping an upside-path routing table at every node in the
tree structure and using upside-paths together with sideways-
routing tables for routing purpose. In this way, since a query
can start at any node in the tree structure, the bottle neck
problem at the root node is eliminated. Nevertheless, the
disadvantage of this solution is that it incurs a high cost for
updating upside-paths of nodes when the index tree structure
is changed.

To avoid the high cost of maintaining upside-paths, we
propose SGR-Tree, an R-Tree [2] index structure built on top
of a Skip Graph [6]. SGR-Tree uses a different way to build
routing tables where no upside-paths are needed. In SGR-
Tree, each Skip Graph node corresponds to a leaf node in the
R-Tree. For routing purpose, each Skip Graph node virtually
partitions the whole system into non-overlapping regions,
each of which is connected to the node via a neighbor
node. For each region, the node keeps the minimum hyper-
rectangle covering all hyper-rectangles, which are in charged
by nodes falling in that region. In this way, a query is still
able to start at any node in the Skip Graph structure. When a
node issues or receives a query, it needs to send or forward
the query to all neighbor nodes whose minimum covering
hyper-rectangle intersects with the search region. In addition
to SGR-Tree, since load balancing is an important aspect
of P2P systems, we also propose a mechanism for load
balancing in SGR-Tree. Finally, we conduct experiments to
evaluate the performance of SGR-Tree.

The rest of this paper is organized as follows. Section II
introduces related work. Section III presents the architecture
of SGR-Tree. Section IV describes how query is processed
in SGR-Tree. Section V discusses the load balancing mech-
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anism. Finally, Section VI shows experimental study and
Section VII concludes the paper.

II. RELATED WORK

In general, there are two main approaches to support
multi-dimensional data indexing in P2P systems. In the first
approach, multi-dimensional data is first converted to one-
dimensional data using Space Filling Curves [1]. After that,
the result one-dimensional data is indexed to P2P systems
supporting one-dimensional data indexing. For example,
authors of [7] and [8] share the same idea of using Hilbert
curve for data conversion in the first step and Chord [9]
for data indexing in the second step. In these methods, the
system first encodes each dimensional value to a set of bit
keys so that an n-dimensional data item is represented by n
sets of bit keys. Hilbert curve is then used to convert these
sets of bits keys to a single value for indexing to Chord.
On the other hand, authors of [10] use Z-curse for data
conversion and Skip Graph [6] for data indexing. The main
disadvantage of methods belonging to the first approach is
that they are not efficient to index high-dimensional data.
Furthermore, these methods often have bad performance
when data distribution is skewed since the cost of load
balancing is very high.

To overcome the weakness of the first approach, the
second approach tries to adapt centralized multi-dimensional
data indexing structures in P2P environment. For exam-
ple, CAN [11], the first P2P system supporting multi-
dimensional data indexing, has a structure that is similar to
kd-tree [12] and grid file [13]. Alternatively, Skip Index [14]
utilizes kd-tree [12] to partition the data space into smaller
parts and then maps these parts to Skip Graph [6] by
encoding them into unique keys. On the other hand, P2PR-
Tree [15] proposes a tree structure, which is adapted from
R-Tree [2]. Additionally, VBI-Tree [5] and DP-Tree [16]
are designed as frameworks that can deploy different types
of index structures such as the R-Tree [2], M-Tree [3],
SS-Tree [4] as well as their variants. By employing tree
structures in distributed systems, the main challenge of
methods belonging to the second approach is how to avoid
the potential bottleneck occurred at the root node or nodes
near the root since queries always start at the root node. The
current solution used by existing index structures is to assign
each peer node to represent a leaf node and to let the leaf
node keep information about all internal nodes from itself to
the root for routing purpose. Since SGR-Tree uses a different
way to route queries where information of internal nodes is
not needed to maintain, this is the main difference between
SGR-Tree and existing index structures.

III. SYSTEM ARCHITECTURE

A. Overlay Network

In SGR-Tree, peers participating the system form a Skip
Graph structure (i.e., each peer is a Skip Graph node) and
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Figure 1. SGR-Tree architecture

each Skip Graph node corresponds to a leaf node in an
R-Tree index 1. While using Skip Graph as the overlay
network, SGR-Tree is different from the original Skip Graph
structure in three main features.

• Each node in SGR-Tree is in charge of a hyper-
rectangle in a multi-dimensional space instead of a
range of values as in the original Skip Graph structure.

• To share the load of an existing node for a new coming
node, the existing node splits its own hyper-rectangle
on one dimension into two smaller hyper-rectangles so
that the number of data covered by each hyper-rectangle
is approximately equal. After splitting, the node on the
left of the Skip Graph takes the lower hyper-rectangle
while the node on the right takes the upper hyper-
rectangle on the split dimension.

• When an existing node leaves the system, it passes
its hyper-rectangle to the neighbor node, whose hyper-
rectangle shares the border of its hyper-rectangle on
one dimension.

An example of an SGR-Tree supporting two-dimensional
data indexing with five nodes, A, B, C, D, and E in a
two-level Skip Graph is shown in Figure 1 in which the
top of the figure displays the Skip Graph overlay network
while the bottom of the figure describes hyper-rectangles in
charged by each node and the history of splitting the whole
two-dimensional space into these hyper-rectangles.

B. Routing Table

SGR-Tree does not use information of internal nodes in
the R-Tree structure for routing purpose as existing solutions
do. Instead, each node in SGR-Tree creates its own routing
table via its neighbor nodes. To create a routing table of
a node x, x virtually partitions nodes in the system into
non-overlapping regions, each of which is connected to x

1Since the terms “peer”, “Skip Graph node”, and “R-Tree leaf node” are
interchangeable in our system, we shall simply refer to them as “node”
when such reference does not cause any confusion. On the other hand, the
term “internal node” in R-Tree shall be kept as it is.
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Figure 2. Routing tables of nodes in an SGR-Tree

through a neighbor node. For each region, the routing table
of x contains information of the minimum hyper-rectangle
covering all hyper-rectangles of nodes falling in that region.
Given a neighbor y of x at level l in the Skip Graph structure,
we define the non-overlapping region connected through y
in the view of x as follows.

• If y is a neighbor of x at the highest level, the non-
overlapping region associated with y consists of all
nodes following y on the same side of x, including
y. For example, as in Figure 2, since C is a neighbor
of A at level 1, which is the highest level in the Skip
Graph, the non-overlapping region associated with C
in the routing table of A consists of C, D, and E (D
and E are nodes following C on the right side of A).

• If y is not a neighbor of x at the highest level, the non-
overlapping region associated with y includes all nodes
falling between y and z, the neighbor of x at the nearest
level higher than l on the same side of x as y, including
y. For example, as in Figure 2, since C is a neighbor of
B at level 0, which is not the highest level in the Skip
Graph, the non-overlapping region associated with C
in the routing table of B includes C and D (D is the
node falling between C and E, the next neighbor node
on the right side of B at level 1).

Figure 2 shows an SGR-Tree index structure with five
nodes and details of routing tables at these nodes. In each
routing table, the last two columns contain information of
neighbor nodes and the minimum hyper-rectangle covering
all hyper-rectangles of nodes in non-overlapping regions
associated with the neighbor nodes. Note that R(x) denotes
the hyper-rectangle in charged by x and Rmin(x, y, z)
denotes the minimum hyper-rectangle covering all hyper-
rectangles in charged by x, y, and z.

C. Routing Table Construction

To create the routing table of a new node x, each neighbor
y of x needs to send to x the minimum hyper-rectangle
covering the hyper-rectangle in charged by y and all hyper-
rectangles in charged by nodes following y on the opposite
side with x (this minimum hyper-rectangle can be calculated

from the routing table of y). Using received information
from neighbor nodes, x builds its routing table as follows.

• If y is a neighbor of x at the highest level in the
Skip Graph structure, the minimum hyper-rectangle
associated with y in the routing table is the minimum
hyper-rectangle x receives from y.

• If y is a neighbor of x at level l, which is not at the
highest level in the Skip Graph structure, the minimum
hyper-rectangle associated with y in the routing table
is the minimum hyper-rectangle covering the remainder
region of R(y) \ R(z), where R(y) is the minimum
hyper-rectangle x receives from y and R(z) is the min-
imum hyper-rectangle x receives from z, the neighbor
of x at the nearest level higher than l on the same side
of x as y.

For example, assume that a new node N joins to the
right of the existing node B of the SGR-Tree in Figure 2.
By joining the system, N takes over a part of the hyper-
rectangle in charged by B. The overlay network as well as
hyper-rectangles in charged by nodes in the SGR-Tree after
the join of N are shown in the top of Figure 3. As the figure
shows, the new node N has three neighbor nodes: A at level
1, B at level 0, and C and both levels 0 and 1. Thus, A,
B, and C need to send to N the minimum hyper-rectangles
covering all nodes following A, B and C in the opposite
side of N . They are respectively R(A), Rmin(A,B), and
Rmin(C,D,E). Since A and C are neighbors of N at
the highest level in the Skip Graph structure, R(A) and
Rmin(C,D,E) are also the minimum hyper-rectangles as-
sociated with A at C in the routing table of N . On the
other hand, since B is not a neighbor at the highest level
in the Skip Graph structure, the minimum hyper-rectangle
associated with B in the routing table of N is the minimum
hyper-rectangle covering Rmin(A,B) \R(A) = R(B).

Note that since the join of a new node affects the routing
tables of the new node’s neighbors, neighbors of the new
node also need to adjust their routing tables to reflect the
existence of the new node and calculate the minimum hyper-
rectangle associated with the new node from information
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Figure 3. Routing table of the new node N and changes in the routing tables of A, B, and C (neighbors of N ) in the SGR-Tree

provided by the new node. Nevertheless, the process of
creating the routing table for the new node and updating
routing tables of the new node’s neighbors incur no ad-
ditional message cost because the routing information can
be piggy-backed with required messages used in the join
process (messages used to set up neighbor links of the new
node and update neighbor links of existing nodes).

IV. QUERY PROCESSING

Since a multi-dimensional point query can be considered
as a special case of a multi-dimensional range query where
the searched region is a point, we only introduce the algo-
rithm for processing a multi-dimensional range query in this
section. Basically, when a node x issues a multi-dimensional
range query q, x sends q to all neighbor nodes, whose
minimum hyper-rectangle intersects with the searched region
of q. Besides, to avoid sending duplicate query messages to
the same node, when x sends q to a neighbor node y at
level l, x also determines and sends to y a lookup region
L(y, q), which limits neighbor nodes y can further forward
q. L(y, q) is defined as follows.

• If y is a neighbor of x at the highest level in the Skip
Graph structure, L(y, q) are all nodes following y in
the opposite side of x.

• If y is not a neighbor of x at the highest level in the Skip
Graph structure, L(y, q) are all nodes falling between
y and z, the neighbor of x at the nearest level higher
than l on the same side of x as y.

When y receives q from x, if the hyper-rectangle of which
y is in charge intersects with the searched region of q, y
executes q locally and returns the result to x. Additionally,
if there is any neighbor node t of y, which falls into L(y, q)
and has the minimum hyper-rectangle intersecting with the
searched region of q, y first calculates L(t, q) based on the
position of t and L(y, q) and then forwards q together with
L(t, q) to t. Note that y does not need to forward q to
other neighbor nodes not falling in L(y, q) because these

neighbor nodes should receive the same query q from x or
other neighbor nodes of x sooner or later.

For example, assume that node A issues a query q for the
shaded region as in Figure 4. While having three neighbor
nodes B, C, and D, A only sends q to D since the minimum
hyper-rectangle of D, which is Rmin(D,E, F,G,H, I, J),
intersects with the searched region of q (note that L(D, q) =
{E,F,G,H, I, J}). On the other hand, since the minimum
hyper-rectangles of B and C, which are R(B) and R(C),
do not intersect with the searched region of q, q is sent to
neither B nor C. When D receives q from A, by checking
its routing table, D continues to forward the query to E with
L(E, q) = {F} and G with L(G, q) = {H, I, J} since E
and G are neighbor nodes having minimum hyper-rectangles
intersecting with the searched region of q in the opposite
side of A. Similarly, q is then continuously forwarded to F
with L(F, q) = {} from E; to H with L(H, q) = {I, J}
from G; and to I with L(I, q) = {J} from H . Finally, the
query is processed locally at F , G, H , and I since hyper-
rectangles of which these nodes are in charge intersect with
the searched region of q. Note that in Figure 4, routing
entries with red and blue colors contain minimum hyper-
rectangles that intersects with the searched region of q.
However, only neighbor nodes in red routing entries fall in
the limited lookup region defined by the query sender, and
hence q is only forwarded to these nodes. As an example,
when F receives q from E, even though it has two neighbor
nodes G and H , whose minimum hyper-rectangle intersects
with the searched region of q, it does not forward q to G
and H because G and H are not in L(F, q).

According to the query processing algorithm, when a
query q is sent from a node x to a neighbor node y, the
lookup region for query processing at y, L(y, q), is limited
by nodes either falling between y and the next neighbor
node z at the nearest level higher than the level of y in the
same direction with y or all nodes following y if y is the
farthest neighbor node in one side of x. This way of limiting
the lookup region is actually similar to that of the traditional
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Figure 4. Query Processing in SGR-Tree

query processing in Skip Graph for single-dimensional range
query. The only difference between our query processing
algorithm and the traditional query processing is that our
algorithm allows to send a query to multiple nodes instead
of only one node. As a result, similar to traditional query
processing algorithm in Skip Graph, the maximum number
of steps required for processing a query in SGR-Tree is also
bounded at O(logN).

V. LOAD BALANCING

To serve load balancing purpose, in addition to keeping
minimum hyper-rectangles associated with neighbor nodes,
we also maintain the number of data belonging to these
minimum hyper-rectangles in the routing table. As a result,
when a new node joins the system, it can select a heavily
loaded node to join as an adjacent to share the heavy load.
On the other hand, when a node is overloaded, it can also
leverage information in the routing table to search for a
lightly loaded node. The lightly loaded node then leaves
the system and joins next to the heavily loaded node for
load balancing. In other to keep the information up to date,
whenever a load of a node is changed by a factor θ, the
node sends an update load request to all of its neighbor
nodes. When a node receives an update load request from
its neighbor, it first updates the load of the minimum hyper-
rectangle associated with the sender node. After that, if the

new load of the whole group is also changed by a factor
θ, the node continues to update its neighbor nodes but the
sender node about the change in load.

VI. EXPERIMENTAL STUDY

To evaluate the performance of SGR-Tree, we imple-
mented a simulator in Java to simulate an SGR-Tree of
10,000 nodes, where we inserted one by one 1,000,000 ran-
dom multi-dimensional data objects. We tested the simulator
with different data dimensionality from 2 to 20 and evalu-
ated the system’s performance according to three important
criteria: the number of steps required to process a query
(search steps), the number of messages required to process
a query (search messages), and the number of messages
required for building and updating routing tables (index
messages). We used VBI-Tree [5] for comparison purpose.
The experimental results are shown in Figure 5. The results
show that SGR-Tree is comparable to VBI-Tree in terms of
search steps and search messages. In particular, in both SGR-
Tree and VBI-Tree the number of search steps is independent
on data dimensionality while the number of search messages
increases with the increasing of data dimensionality. On the
other hand, in terms of index messages, SGR-Tree is much
better than VBI-Tree. In most cases, SGR-Tree only incurs
half of the cost compared to VBI-Tree. This confirms the
efficiency of SGR-Tree.
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Figure 5. Performance of SGR-Tree and VBI-Tree

VII. CONCLUSION

In this paper, we have introduced SGR-Tree, a structure
that is a combination of Skip Graph and R-Tree to support
multi-dimensional data indexing in P2P systems. In SGR-
Tree, participant peers form a Skip Graph overlay network
in which each Skip Graph node corresponds to a leaf node in
the R-Tree structure. For routing purpose, each node builds
its own routing table by virtually dividing the whole system
into non-overlapping regions, each of which is connected
to the node through a neighbor node. For each region, the
node maintains the minimum hyper-rectangle covering all
hyper-rectangles in charged by nodes in the region. Based
on this routing table structure, we have developed a query
processing algorithm that can process any multi-dimensional
query within O(logN) steps and the query can start at
any node in the SGR-Tree. Experiments have been done
to evaluate the efficiency of SGR-Tree.
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