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Abstract—Numerous applications of ambulant medical care,
house automation and security use binary sensors such as
passive infrared motion sensors or light barriers to monitor
activity in the house. Multi-target tracking algorithms allow
for at least a partial separation of activity in data from such
sensors from multiple persons. While many tracking algorithms
demonstrate good performance across various sensing modalities
and sensor setups, little research has been done to determine the
impact of placement and varying density of sensors for tracking
performance. This paper presents the results of an evaluation
of a Bayesian multi-hypothesis multi-target tracking algorithm
on data of two residents monitored by a network of binary
sensors. We evaluate the algorithm on data from sensors of
varying quantity and placement. We show that our approach
outperforms other approaches in low-resolution setups. While
tracking performance naturally decreases with the number of
sensors, it also strongly varies by sensor positioning.

Keywords–Multi-target tracking; Assisted living; Wireless sensor
networks.

I. INTRODUCTION

The emergence of research on technical support systems for
ambulant care and support for patients and elderly stem from
numerous recent societal developments as well as changes in
demographic structure.

First, the coincidence of prolonged life expectancy [1]
and the atomization of households [2] puts an increasing
care demand into the hands of third parties. According to
the German Federal Statistical Office, the number of single-
households will increase sixfold in relation to the population
numbers. At the same time, the ratio between care personnel
supply and demand will cut in half [3].

Second, the increasing life expectancy, in combination with
improved medical care and ”modern lifestyles and behavior”
[4] causes an increase in the proportion of population living
the chronic diseases, thus further driving demand for ambulant
care.

Third, there is a general trend towards outpatient care by
hospitals. According to the Avalere Health analysis of Amer-
ican Hospital Association Annual Survey [5], the percentage
of revenue for community hospitals in the United States has
increased from 25% to 44% between 1992 and 2012.

These developments drive the research on technical support
systems in home and care environments. Applications for such
include automated assessments [6], activity monitoring [7] or

fall detection [8]. To preserve a maximum of privacy and
comfort while at the same time collecting data necessary for
the application, many approaches include the use of ambient
sensors such as motion sensors and light barriers. Since the
data collected from these sensors does not carry identifying
information, use of any such application in settings where more
than one person – the patient – moves or resides becomes
difficult.

Complex sensors, such as cameras and microphones are
rarely accepted in living spaces. Body-worn sensors are often
forgotten or ignored due to discomfort. Binary sensors such
as light barriers and motion sensors are easy to retrofit,
have relatively little power consumption and can be installed
unobtrusively. A no-requirements sensor model also enables
us to install more complex sensors (such as laser scanners or
depth-finding cameras) as required. The necessary information
can be extracted from their data by partitioning the sensors’
range and converting activity in each partition to a binary
signal.

To separate data from multiple persons moving in a space
monitored by binary sensors, we present a multi-target track-
ing algorithm using Bayesian estimation and multi-hypothesis
tracking. This algorithm makes no assumptions on the selection
and placement of sensors or sensing technology. Tracking takes
place on a graph of the sensors and their spatial relation.
It is thus not helpful in determining the precise location
of a present person, but at (or below) room-level accuracy.
This algorithm performs particularly well on low-resolution
data, such as when only few binary sensors are used. We
test the algorithm across various sets of sensors, varying by
placement and number. A decreasing number of sensors will
likely have an impact on the tracking accuracy, but is important
in regard to energy consumption, costs and user acceptance.
We show that data from two residents in an apartment can be
separated with high (>90%) accuracy, and that the selection
and placement of sensors can play a significant role in tracking
accuracy.

The remainder of this article is structured as follows:
Section II summarizes related works on multi-target tracking
and activity monitoring in the home using binary sensors.
Section III describes the theoretical principles surrounding data
association and multi-hypothesis tracking for single- and multi-
target tracking. Section IV explains how the approach was
evaluated, including data preparation, the evaluation function
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as well as the sensor placement concept. The results of the
evaluation are presented in section V. Section VI concludes
the article.

II. RELATED WORK

Prior work has shown that data collected from sensor net-
works allow for the deduction of information used in activity
monitoring, care assessments and behavior modeling. Target
tracking, in particular multi-target tracking, is a task often
applied to visual data such as video feeds and images. The
practical application of multi-target tracking in binary or low-
resolution home sensor networks has been to little research.

A. Target Tracking in Home Sensor Networks
Wilson and Atkeson [9] describe an algorithm for tracking

of multiple persons and their activity status in a binary sensor
network. In this work, the authors use a transition matrix rep-
resenting transition probabilities between sensors. By keeping
track of the targets’ identities, personal motion models emerge.
The data association is achieved using a particle filter. During
a five-day experiment in a house instrumented with 49 sensors
(contact switches, motion sensors), data during two-person
scenarios was correctly assigned 82.1% of the time.

Krüger et al. [10] use a particle filter and action plans to
assign sensor events from motion sensors and light switches
to tracks and simultaneously identify the target. Action plans
describe action sequences in terms of sensor data. These plans
can be synthesized or learned from historic data. For the
evaluation, an office corridor was equipped with six light
switches and six motion sensors. The mean squared error
across time and all targets is reported as approximately 0.26
for two-person scenarios. The work shows how – similar to
trained motion models – previous knowledge of a person’s
plans can help tracking individuals in binary sensor networks.

Oh and Sastry [11] perform tracking on data of binary
sensor networks and passage connectivity graphs. The graphs
are calculated from transition probability matrices. A tracking
algorithm, derived from the Viterbi algorithm, pruning strate-
gies and multiple target tracking extensions are presented. No
evaluation on real world data is conducted.

Marinakis et al. [12] derive the topology of a sensor
network in terms of transition times and probabilities from
data of unspecified sensors. The authors use Monte Carlo
Expectation Maximization to assign activity to agents (people
present) in order to build a graph of the sensor network.
95% of the topology of simulated node graphs is recovered
correctly. The results for a trial using a network of cameras
and photocell-based sensors are not reported.

B. Activity Monitoring in Home Sensor Networks
Numerous studies show that data collected from sensor

networks in living spaces allow for the deduction of infor-
mation relevant in applications of activity monitoring, care
assessments and behavior modeling.

Logan et al. showed that ambient motion-based sensors
provide the most useful information for detection and clas-
sification of daily in-home activities in a study compared to
RFID, on-body and on-object sensors. In their study, infrared
motion sensors yielded the best results overall, although classi-
fication performance on this data was better on activities that

are strongly correlated with locations in the home, such as
”watching TV” and ”meal preparation” [13].

Data from binary sensors can also be used to calculate
average room residence time and frequency: Assessment tests
are partly realizable by using recordings from light barriers and
reed contacts alone [14]. The authors argue that light barriers
alone do not constitute sufficient evidence of a person entering
a room, because people may change directions between rooms.
It is suggested to combine light barriers with sensors covering
larger areas. Room residence times are calculated by manually
labeling the sensors constituting a room using a floor plan and
knowledge of the sensors placements. In a similar study, the
authors model user behavior of a resident from the probability
of location at a certain time of day and the frequency of
presence in a location in a defined period of time [15]. Models
are created for rooms individually (bathroom, bedroom, living
room, kitchen). Based on the number of anomalous behavior
detected, the authors conclude that the models’ performance
varies by room: Presence in the bathroom is best modeled
duration-based, while the timeslot-based model yielded better
results for the other rooms.

Frenken et al. [6] use ambient sensors in an attempt
to automate measurement of mobility and gait velocity, as
required in the Timed Up and Go assessment [16]. For this,
five flats are equipped with home automation sensors and one
with an additional laser range scanner. It is shown that the
data is suitable to compute gait velocity at home. While data
from the laser range scanner is proven to be more precise than
home automation sensor data, no statistical post-processing or
filtering was performed on the latter.

III. APPROACH

We define a sensor graph of sensors s1, · · · , sN as a
weighted, directed graph G = (V,L), where V = {1, · · · , N}
is the set of nodes in the graph representing the sensors, and L
is the set of all edges (u, v) for which there is a direct passage
from the sensing region of sensor u to the sensing region of v
which does not intersect any other sensing regions. Informally,
two sensors u, v are connected if it is possible for a person to
traverse from the sensing region of u to the sensing region of
v without activating any other sensor.

Each resident in the target space is represented by a
discrete Bayesian filter on an unweighted, undirected graph
consisting of sensors as nodes and edges representing their
spatial adjacency. For our evaluation data, this graph was
published by Crandall et al. [17] (Figure 1). If the adjacency
relations are not known, they can be approximated by a path
planning algorithm [18] using a floor plan, if available, or
generated from historic data [19].

A. Tracking of individuals
Bayesian filters estimate the state of a dynamic system from

noisy data. We choose a probability distribution to represent
the location of each individual, because it helps estimating a
more precise location later on, especially when sensor regions
overlap. More importantly still, it helps the tracker to recover
more quickly when a noisy measurement is assigned to the
individual’s track. Lastly, we aim to replace the manually
constructed, unweighted graph with a weighted graph that
is automatically constructed from in-situ recorded data and
transition probabilities between sensors as weights (cf. [12]).
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Figure 1. Graph of sensors (with their internal IDs and their spatial relations
used in the evaluation (adapted from [17]).

Figure 2. Hypothesis formation overview.

All sensors are subject to noise, but many motion and
home automation sensors come with an additional source for
noise: measurement delay. Many sensors do not measure or
report measurements for a specified amount of time after
triggering. This period can last from a few seconds to several
minutes due to radio communication regulations. This results
in sensors missing the presence or movement, thus breaking
the continuity of measurements of a motion track.

At which point and how many filters are created – that is to
say, how many individuals are assumed to be present – depends
on the performance (belief ) of the previously existing track:
When new measurements cause the current data to be more
likely when assigned to more or fewer tracks (= individuals)
than before, a new filter is spawned or an existing filter is
discarded. The data could be bundled into larger updates within
reasonable time frames (cf. [20]), but in our case an update
occurs for each new sensor event.

B. Multi-target tracking
When new sensor data arrives, hypotheses are created by

considering all possible assignments of the data to existing
and new tracks (”hypotheses”) until the filter’s window size is
reached. This is particularly useful in a low-resolution setting
like ours, where individuals may occlude each other in sensor
readings for any period of time.

The window size in multi-hypothesis tracking (MHT) de-
scribes the maximum number of events (or time steps) that are
considered before choosing a likely hypothesis. Windowing

is necessary to limit the number of possible hypotheses and
to limit the information loss in case no acceptable hypothesis
remains and the data is discarded. The influence of the window
size on tracking accuracy has been shown previously [21]. For
our evaluation, we use a window size of 10 events.

The idea of multi-hypothesis tracking dates back to 1979,
when Donald B. Reid published ”An algorithm for tracking
multiple targets” [22]. Reid’s algorithm was developed to work
on data from a continuous scale sensor (e.g., radar). Therefore,
Reid speaks of associating measurements to clusters. In the
work presented here, the target space is discrete (nodes on
a graph), and targets and their locations are stored as a
probability distribution over the space using Bayesian filters.

There are several significant differences between Reid’s
original work and the approach described here. In accordance
with Reid’s type 2 sensor, our sensor model expects positive
reports only, meaning that we consider only sensor data report-
ing activity. However, tracks are updated per hypothesis, rather
than generated and filtered individually (hypothesis-oriented
MHT). This means that hypotheses are not constructed from
compatible tracks, but all possible combinations of updates
of existing hypotheses. Furthermore, the tracker is updated
every time a sensor reports activity. Because of this, and the
fact that our state space is discrete, computational complexity
is reduced. For a more detailed description of track- and
hypothesis-oriented MHT, see Blackman [20].

For each triggered sensor, a new hypothesis based on
all previously existing hypotheses is created, in which the
triggered sensor is

• considered noise and discarded,
• used to update one of the existing filters, or
• assigned to a new filter.

Due to the exponential growth of the number of possible
hypotheses ( > 4.74× 1013 for 20 events), we must employ a
number of filters to optimize computation efficiency.

All hypotheses must pass a gating function before they are
considered for evaluation (see Figure 2). In our case, this gating
function is a simple comparison of the prior probability of each
filter to a threshold value. Afterwards, hypotheses are filtered
based on confidence, noise ratio and similarity. This procedure
is performed until a single hypothesis remains or the window
size is reached. In the former case, the hypothesis is accepted,
the underlying Bayesian filters updated, and the window size
reset. In the latter case, all hypotheses are evaluated. If no
single, dominating hypothesis can be found, all hypotheses are
discarded and the underlying filters reset.

The size of the window strongly influences the performance
of the algorithm. A larger window size will result in a larger
number of correct associations, but also in a larger number of
discarded sensor events [21].

Figure 2 depicts the general multi-hypothesis tracking
logic. For a more in-depth description of multi-hypothesis
tracking, see Blackman [20] or Reid [22].

IV. EVALUATION

A. Data Preparation
The data used for this evaluation was recorded at the

Center for Advanced Studies in Adaptive Systems (CASAS)
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at the University of Washington [23]. It shows activity of
two residents of a smart home environment, residing in a
4-room, 2-story apartment for approximately 8 months. For
our evaluation, we use subsets of the data recorded by the
50 motion sensors mounted to the ceiling. The smart home
is also equipped with contact sensors on doors and cabinets,
temperature, water and electricity sensors. For our purposes,
however, motion sensors offer the most precise and least noisy
data.

We use data for which at least both residents are present
and active. We choose time frames

• that last at least 20 minutes or contain at least 300
sensor events,

• in which both residents change rooms at least once,
and

• in which neither resident is inactive for more than 20%
of the time.

The result are twenty time frames, with 330 to 910 sensor
events with durations between 24 and 530 minutes. After
selection, each of the 13321 sensor events was labelled as
originating from Resident 1, Resident 2 or a third person using
the manually labelled events and the laboratory’s floor plan.

B. Data Association

The algorithm can track any number of targets. However,
our intended area of application – small households – allows us
to use an evaluation function that is tailored towards few targets
(1-3). For this evaluation, the algorithm was optimized to track
two targets by using an evaluation function that favors one- and
two-track hypotheses. Equation (1) describes the evaluation
function, where h is the hypothesis in question, conf(pn)
is the belief of the Bayesian filter at the most recent event
location n, ‖p‖ is the number of paths (= targets) in h, and m
is the expected number of targets in the sensor space.

eval(h) =

∑n
i=1 conf(pn)

‖p‖2+m
m+1

(1)

C. Sensor Placement

To get a better understanding of how the number of sensors
affects tracking accuracy, we also run the algorithm on subsets
of the original set of sensors in decreasing size (40, 30 and 20
sensors). Instead of choosing the sensors randomly, we chose
characteristics of sensors we deemed possibly influential on
tracking performance:

1) Number of neighboring sensors: Based on the assump-
tion that sensors in doorways, which usually have few neigh-
boring sensors, are critical in tracking room transitions, we
remove those in larger areas with many neighboring sensors.
The number of neighboring sensors can be calculated from the
sensor graph.

2) Duration of stay: Given that tracking stationary targets
is much simpler than moving targets, we consider subsets of
sensors that cover areas in which the average duration of stay is
short. The duration of stay can be calculated from the duration
between consecutive sensor events in recorded data.

Figure 3. Sensors clustered to represent rooms.

3) Activity: Considering the application of in-home activity
monitoring, it is imperative that the placement of sensors for
tracking accuracy improvement does not interfere with the
necessity of covering those areas in which the majority of
activity is taking place. Thus, we select and filter sensors based
on the amount of activity covered. The amount of activity
covered by a sensor is simply calculated by the number of
times it is triggered.

These criteria were used to create subsets of data of varying
size, selected by increasing, as well as decreasing order of the
respective criterium (cf. Figure 4).

D. Sensor Clustering
The procedure of selecting subsets of sensors for tracking

performance evaluation was also conducted for sets of 10
sensors. However, due to the selection criteria, most of the
sets had removed whole rooms, and in one case all data from
one individual. Thus, in order to evaluate tracking performance
on 10 sensors, we cluster the sensors by rooms and spatial
adjacency (see Figure 3), and treat the resulting clusters
as individual sensors. This also results in a more realistic
scenario, in which motion sensors often cover different size
areas up to whole rooms.

For this evaluation, we use data from all sensors, but we
replace the sensor IDs with IDs for their corresponding cluster.
This way, we make use of all sensor events but decrease their
spatial resolution.

V. RESULTS

Tracking accuracy using all sensors is 90.3%. This is the
percentage of the 13321 sensor events across all time frames
that are correctly associated to any of the targets. The accuracy
of individual time frames ranges from 62.1% to 99.5%, with a
median of 93.1%. The error is composed of false associations
(events that are falsely associated to another target, median
5.88%), no associations (events that could not be associated
with any target, 0.59%) and noise (events that are falsely
discarded as noise, 0.44%).
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Figure 4. Tracking performance across sensor subsets by size.

Figure 4 shows tracking accuracy across sensor subsets.
The sets vary by the number of included sensors (x-axis) and
their selection criterion. As can be seen, tracking accuracy
generally decreases with reduced sensor count. This is to be
expected as the resolution of the tracking space decreases
and situations with overlapping motion increases. Down to 30
sensors, tracking accuracy decreases only slightly for all but
one sensor set. For the set of sensors with much overall activity,
accuracy even increases slightly. The graph also shows that
performance variation increases with the number of sensors.
While tracking accuracy varies between 85.8% and 90.6% with
40 sensors, with 20 sensors accuracy ranges between 59.5%
and 88.2%.

Tracking accuracy on the clustered data set is 77.2%.

VI. CONCLUSION

The article at hand describes an algorithm for tracking of
multiple targets in a space monitored by binary sensors. It
enables the separation of sensor data generated by multiple
persons in smart home environments without the need for
identifying sensors. The algorithm makes use of a graph
consisting of sensors as nodes and their spatial relations as
vertices. Compared to other related works, the algorithm works
particularly well in low-resolution settings (i.e., with few
binary sensors). It was shown that tracking accuracy can be
improved by placing sensors based on activity characteristics.
For example, sensors with many neighboring sensors provide a
consistently higher accuracy than those with few, and sensors
in places where the duration of stay is long on average prove
to be less beneficial than those where duration of stay is short.

The data suggests that the decrease of tracking accuracy
resulting from smaller sets of sensors (i.e., decreased target
space resolution) can be largely absorbed by selective place-
ment of sensors. It was shown that tracking two targets in a
network of 20 or more can be achieved for over 90% of the
time. The algorithm tracked correctly on ten clusters of motion
sensors 77.1% of the time.

It must be noted that differences in tracking performance
may not only be due to advantageous sensor placement, but

also due to favorable data: While tracking in space with many
adjacent sensors works well, it neglects in part space where
tracking might be particularly difficult but useful, such as in
narrow hallways. The share of total events covered by the
different subsets of sensors range from 11 to 98%.

The experiment presented here gives insight into the im-
portance of sensor placement for multi-target tracking using
binary sensors. The next step will be to find the ideal sensor
setup for the data used in this evaluation, which may be
a mixture of the sensor subsets and criteria examined here.
Furthermore, the algorithm’s performance with more than two
targets must be evaluated.

It is further planned to include identifying information in
the algorithm so as to not only associate the data to tracks,
but to identify the target. This way, the sensor graph can be
replaced by an individual motion model, further improving
tracking accuracy.
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