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Abstract—Dynamic adaptive systems are systems that change 
their behavior at run time, based on system, user, environment 
and context information and needs. System configuration in 
terms of structure and behavior of open, self-organized sys-
tems cannot completely be predicted beforehand: New compo-
nents may join, others may leave the system, or the behavior of 
individual components of the system may change over time. 
But in many cases, it is necessary to ensure the compliance of 
the resulting overall system configuration to users, environ-
ment and context requirements. Therefore we have elaborated 
an approach to specify those requirements based on so called 
component templates and service application specifications. 
These specifications can be described without the necessity to 
know individual components, their specific interfaces or possi-
ble system configurations. Thus, we can control the resulting 
system configurations of an open, self-organizing system with 
respect to users, environment and context requirements. Our 
approach has been implemented on top of our component 
model and corresponding platform implementation called Dy-
namic Adaptive System Infrastructure (DAiSI). 

Keywords—self-adaptation; dynamic adaptive systems; com-
ponent templates and service application specification; adaptive 
component model; decentralized configuration. 

I. INTRODUCTION 
Software-based systems pervade our daily life—at work 

as well as at home. Public administration or enterprise organ-
izations can scarcely be managed without software-based 
systems. We come across devices executing software in 
nearly every household. The continuous increase in size and 
functionality of software systems has made some of them 
among the most complex man-made systems ever devised 
[1].  

In the last two decades, the trend towards “everything, 
every time, everywhere” has been dramatically increased 
through a) smaller mobile devices with higher computation 
and communication capabilities, b) ubiquitous availability of 
the Internet (almost all devices are connected with the Inter-
net and thereby connected with each other), and c) devices 
equipped with more and more connected, intelligent and so-
phisticated sensors and actuators. 

Nowadays, these devices are increasingly used within an 
organically grown, heterogeneous, and dynamic IT environ-
ment. Users expect them not only to provide their primary 

services but also to collaborate autonomously with each oth-
er and thus to provide real added additional value. The chal-
lenge is therefore to provide software systems that are cor-
rect, stable and robust in the presence of increasing challeng-
es such as change and complexity [5]. 

Change is inherent, both in the changing needs of users 
and in the changes, which take place in the operational envi-
ronment of the system. Hence, it is essential that our systems 
are able to adapt to maintain the satisfaction of the user ex-
pectations and environmental changes in terms of an evolu-
tionary change [2]. 

Dynamic change, in contrast to evolutionary change, oc-
curs while the system is operational. Dynamic change re-
quires that the system adapts at run time. Therefore we must 
plan for automated management of adaptation. The systems 
themselves must be capable of determining what system 
change is required and initiate and manage the change pro-
cess wherever needed. This is the aim of self-managed sys-
tems [3]. 

Self-managed systems are those capable of adapting to 
the current context as required through self-configuration, 
self-healing, self-monitoring, self-tuning, and so on. These 
are also referred to as self-x, autonomic systems. Additional-
ly, new components may enter or leave the system at run 
time. We call those systems ‘dynamic adaptive’ systems [4]. 

Providing dynamic adaptive systems is a great challenge 
in software engineering [5]. In order to provide dynamic 
adaptive systems, the activities of classical development ap-
proaches have to be partially or completely moved from de-
velopment time to run time. For instance, devices and soft-
ware components can be attached to a dynamic adaptive sys-
tem at any time. Consequently, devices and software compo-
nents can be removed from the dynamic adaptive system or 
they can fail as the result of a defect. Hence, for dynamic 
adaptive systems, system integration takes place during run 
time. 

To support the development of dynamic adaptive systems 
a couple of infrastructures and frameworks have been devel-
oped, as discussed in a related work section, Section II. In 
our research group, we have also developed a framework for 
dynamic adaptive (and distributed) systems, called DAiSI. 
DAiSI is a service-oriented and component based platform to 
implement dynamic adaptive systems [6]. 

Based on the existing components and their provided and 
required services DAiSI is able to autonomously find and es-
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tablish during run time valid system configurations with re-
spect to specific optimization goals and system guarantees. 
Even if new components join, or others leave DAiSI, or the 
behavior of individual components within DAiSI changes 
over time, DAiSI is able to reconfigure the overall system 
and establish a new valid system configuration at run time. 

But in many cases, it is necessary to ensure the compli-
ance of the resulting overall system configuration to users, 
environment and context requirements. Therefore we have 
elaborated an approach to specify those requirements based 
on so called component templates and service application 
specifications. The basic idea of our approach is to specify 
services users or the environment may be interested in form 
of so called “service application” specifications. 

A service application specification consists of a set of so 
called “component templates”. Each template is a placehold-
er for a set of components with specific properties. The ap-
plication developer specifies the properties of component 
templates and service applications during design time. Dur-
ing run time, DAiSI tries to establish the required service ap-
plications by assigning autonomously existing components 
to compatible templates in the corresponding service applica-
tion specifications.  

These specifications can be described without the neces-
sity to know individual components, their specific interfaces 
or possible system configurations. We have successfully im-
plemented the component templates and service applications 
specifications on top of the existing component model of 
DAiSI. Thus, DAiSI is not only able to find and establish 
valid system configurations but also to find and establish 
them with respect to users, the environment and context re-
quirements, which have to be explicitly expressed in compo-
nent templates and service applications specifications. 

The development of DAiSI was always motivated 
through running application examples and demonstrators. As 
DAiSI has been developed for more than ten years, we have 
demonstrated the application of our approach and our infra-
structure in a couple of different research demonstrators and 
industrial prototypes and products. 

The rest of the paper is structured as follows: In Section 
II, we present other works, we see as related to the DAiSI 
and its newest additions. Section III presents the fundamen-
tals of DAiSI as it was prior to the additions, presented in 
this paper. Section IV describes a small sample application 
we use to illustrate the need to control possible system con-
figurations in dynamic adaptive systems. Section V presents 
an approach to describe valid system configurations with re-
gard to applications. In Section VI, we provide a notation for 
the specification of application requirements. Section VII 
presents an algorithm that leads to a requirements conform 
system configuration and explains why DAiSI only produces 
valid system configurations during run time with respect to 
users, environment and context requirements. A short con-
clusion will round the paper up. 

II. RELATED WORK 
Component-based software development, component 

models and component frameworks provide a solid approach 
to support evolutionary changes to systems. It is a well-
understood method that proved useful in numerous applica-
tions. Components are the units of deployment and integra-

tion. This allows high flexibility and easy maintenance. Dur-
ing design time components may be added or removed from 
a system [7]. 

However, the early component models did not provide 
means of adding or removing components from a running 
system. Also, the integration of new interaction links (e.g., 
component bindings) was not possible. Service-oriented ap-
proaches stepped up to the challenge. These systems usually 
maintain a service repository, in which every component that 
enters the system is registered. A component that wants to 
use such a component can query the service register for a 
matching service and connect to it, if one is found. For the 
domain of dynamic systems this means that a component can 
register its provided and required services. If a suitable ser-
vice provider for one of the required services registers itself, 
it can be bound to satisfy the required service [8]. 

Service-oriented approaches have the inconvenient char-
acteristic of not dealing with the adaptability of components. 
A component developer is solely responsible for the imple-
mentation of the adaptive behavior. This starts at the applica-
tion logic and stretches to the discovery of unresponsive ser-
vices, the discovery of a newly available service, the discov-
ery of services with a better quality of service, and so on. A 
couple of frameworks have been developed to support dy-
namic adaptive behavior, while, at the same time, making it 
easier for the developer to focus on implementing the behav-
ioral changes in his component.  

REX is a framework for the support of dynamic-adaptive 
systems. It used the experience gained in the research for 
CONIC [9] and aimed at dynamic adaptive, parallel, distrib-
uted systems. The concept was that such systems consist of 
components that are linked by interfaces. A new interface 
description language was invented, to be able to describe the 
interfaces. Components were seen as types, allowing multi-
ple instances of every component to be present at run-time. 
Just like CONIC, REX allowed the creation and termination 
of component instances and the links between them. Both, 
CONIC and REX share the disadvantage that they support 
dynamic reconfiguration only through explicit reconfigura-
tion programs. These need to be different for every situation 
that is detected and intended. The approach moves the adap-
tation logic out of the component, but nevertheless, the de-
veloper has to deal with the adaptation strategy for every 
possible occurring change [10][11]. 

Current frameworks such as ProAdapt [12] and Con-
fig.NETServices [13] have a more generic adaption and con-
figuration mechanism. Components that were not known 
during the design-time of the system can be added or re-
moved from the dynamic adaptive system during run-time. 
Therefore, the framework provides a generic component 
configuration mechanism. As with our first version of the 
DAiSI framework, these frameworks are based on a central-
ized configuration mechanism. Moreover, the underlying 
component model is restricted—for instance the exclusive 
usage of services cannot be described. 

In [14], the authors presented a solution to ensure syntac-
tical and semantical compatibility of web services. They 
used the Web Service Definition Language (WSDL) and en-
riched it with the Web Service Semantic Profile (WSSP) for 
the semantical information. Additionally they allowed an ap-
plication architect to further reduce the configuration space 
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through the specification of constraints. While their approach 
is able to solve the sketched problem of preventing the wir-
ing of components that should not be connected, they only 
focus on the service definition and compatibility. Our DAiSI 
approach defines an infrastructure in which components are 
executed that implement a specific component model. We do 
want to compose an application out of components that can 
adapt its behavior at run-time. We achieve this by mapping 
sets of required services to sets of provided services and thus 
specifying which provided services depend on which re-
quired services. The solution presented in [14] does not offer 
a component model. All rules regarding the relation between 
required and provided services would have to be specified as 
external constraints. The authors in [15] provided a different 
solution to ensure semantic compatibility of web services. 
However, the same arguments as for [14] regarding the ab-
sence of a high-level component model hold true. 

With regard to the application architecture aware adapta-
tion, Rainbow [16][17] is one of the most dominant and 
well-known frameworks. Rainbow uses invariants for the 
specification of constraints in its architecture description 
language. For each invariant a method for the adaptation of 
the system can be specified. The method is then executed 
whenever the invariant is violated. This approach however 
requires the knowledge of all component types at design-
time, which is opposing our goal of an open system. Addi-
tionally, the developer has to implement the adaptation steps 
individually for every invariant. This imperative method for 
adaptation requires the component requiring the adaptation 
to have a view of the complete system and additionally in-
troduces a big overhead at design-time as well as at run-time. 

R-OSGi [18] takes advantage of the features developed 
for centralized module management in the OSGi platform, 
like, e.g., dynamic module loading and –unloading. It intro-
duces a way to transparently use remote OSGi modules in an 
application while still preserving good performance. Issues 
like network disruptions or unresponsive components are 
mapped to events of unloaded modules and thus can be han-
dled gracefully – a strength compared to many other plat-
forms. However R-OSGi does not provide means to specify 
application architecture specific requirements. As long as 
modules are compatible with each other they will be linked. 
The module developer has to ensure the application architec-
ture at the implementation level. Opposed to that, our ap-
proach proposes a high level description of application archi-
tectures through application templates that can be specified 
even after the required components have been developed. 

III. THE CORE OF THE EXISTING DAISI PLATFORM 
This section will introduce the foundations of the DAiSI 

platform, consisting of a dynamic adaptive component mod-
el, a domain architecture model and a decentralized configu-
ration service. 

As already briefly mentioned DAiSI components interact 
with each other through services. Each DAiSI component 
consists out of a set of component configurations. Each 
component configuration defines a set of required services 
and a set of provided services. Figure 1 shows a sketch of a 
DAiSI component with some explanatory comments for an 
athlete in the biathlon sports domain. 

 

 
Figure 1. Notation for DAiSI components and corresponding concepts. 

 
A component is depicted as a blue rectangle. Component 

configurations are bars that extend over the borders of the 
component and are depicted in yellow here. Associated to 
the component configurations are the provided and required 
services. The notation is similar to the UML lollipop notation 
[19] with full circles resembling provided, and semi circles 
representing required services. A filled circle indicates that 
the service is meant to be executed and thereby provided 
within the system, even if no other service requires its use. 

Figure 1 shows the CAthlete component, consisting of 
two component configurations: conf1 and conf2. The first 
component configuration requires exactly one service varia-
ble r1 of the IPulse interface. The second component config-
uration does not require any services to be able to provide its 
service p2 of IPerson. The service can be used by any num-
ber of service users (the cardinality is specified as *). The 
other component configuration (conf1) could provide the ser-
vice p1 of the type IAthlete, which could again be used by 
any number of users. The small orange circle with the three 
arrows in the lower right corner indicates that this compo-
nent is self-organizing, i.e., it does not require a centralized 
configuration service to resolve its requirements and change 
its execution state. 

Figure 2 shows the DAiSI component model as an UML 
class diagram [19]. The DynamicAdaptiveComponent class 
represents the component itself, represented as the light blue 
box in the notation example. It has three types of associa-
tions to the ComponentConfiguration class, namely current, 
activatable, and contains. The contains association resem-
bles the non-empty set of all component configurations. It is 
ordered by quality from best to worst, with the best compo-
nent configuration being the most desirable. Quality refers to 
the count of provided services, as well as the quality they are 
provided in. A subset of the contained are the activatable 
component configurations. These have their required ser-
vices resolved and could be activated. An active component 
configuration produces its provided services. The active 
component configuration is represented by the current asso-
ciation in the component model, with the cardinality allow-
ing one or zero current component configurations to be exe-
cuted for a component. 

The required services (represented by a semi-circle in the 
component notation in Figure 1) are represented by the Re-
quiredServiceReferenceSet class. Every component configu-
ration can declare any number of required services. The re-
solved association represents those that are resolved. Provid-
ed services (noted as full circles on the left hand side in Fig-
ure 1) are represented by the ProvidedService class. The flag 
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requestRun, represented by the full circle being filled with 
black in the component notation, indicates that the service 
should be activated, even if no other service requires its use. 
This is typically the case for services that provide graphical 
user interfaces or some functionality directly to the end user. 
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Figure 2. DAiSI component model, DAiSI domain architecture model, 

and the new additional template & application specifications. 
 
The provided and required services, more precisely their 

respective classes in the component model, are associated 
with each other through three associations. The first associa-
tion canUse represents the compatibility between two ser-
vices. If a provided service can be bound to the service re-
quirement of another class, these two are associated through 
a canUse association. A subset of the canUse association is 
wantsUse. At run-time it resembles a kind of reservation of a 
particular provided service by a required service reference 
set. After the connection is established and the provided ser-
vice satisfies the requirement, they are part of the uses asso-
ciation, which represents the actual connections. All classes 
covered to this point implement a state machine to maintain 
the state of the DAiSI component. If you want to know more 
about the state machines and the configuration mechanism, 
please refer to [20]. 

To this point we have covered the basic building blocks 
of the DAiSI component model. Another already established 
part of DAiSI is the domain architecture model. The relation 
to the actual developed application becomes apparent if you 
consider the DomainArchitecture class. It defines any num-

ber of DomainInterfaces. These are the interfaces that define 
the provided and required services. Thus, every Provided-
Service class implements a domain interface, while each re-
quired service reference set refers to exactly one. 

There are numerous examples in which the role of a spe-
cific domain service has to be considered in order to estab-
lish the desired system configuration. For that reason the 
class InterfaceRole enables the specification of additional 
criteria for the conformance of provided and required ser-
vices. An interface role references exactly one domain inter-
face and may define additional requirements regarding that 
domain interface. A provided service only fulfills an inter-
face role if it implements the domain interface and as well 
complies with the conditions defined in the interface role. 
Consequently a required service reference set not only re-
quires compatibility of the domain interface, but also of the 
interface role to be able to use a provided service. For more 
information about the DAiSI domain architecture model and 
interface roles consider [21]. 

Beside the DAiSI component model and the DAiSI do-
main architecture model a decentralized dynamic configura-
tion mechanism was also already established in the DAiSI 
platform. The set of services that implement the domain in-
terface referred by the RequiredServiceReferenceSet is repre-
sented by canUse, as stated before. Note, this only guaran-
tees a syntactically correct binding. Interface roles in addi-
tion provide a compatibility check with respect to a given 
common domain architecture. In [22][23] we have shown 
how this approach can be extended to guarantee behavior 
correct binding during run time, even in case of changes to 
the local and global state.  

The wantsUse set holds references to those services for 
which a usage request has been placed by calling wantsUse. 
And the uses set contains references to those services, which 
are currently in use by the component or by RequiredSer-
viceReferenceSet. Each time a new service becomes availa-
ble in the system, the new service is added to all canUse sets, 
if the corresponding RequiredServiceReferenceSet refers to 
the same DomainInterface as the ProvidedServices. If there 
is a request for dependency resolution, usage requests are 
placed at the services in canUse by calling wantsUse and 
those service references are copied to the wantsUse set.  

The management of these three associations—canUse, 
wantsUse and uses—between RequiredServiceReferenceSets 
and ProvidedServices is handled by DAiSI’s decentralized 
dynamic configuration mechanism. This configuration 
mechanism relies on the state machines presented in more 
detail in [20] and sketched in the following paragraphs. 

 

 
Figure 3. CTrainer component. 

Assume a given component as shown in Figure 3. The 
component t of type CTrainer has one single configuration. 
It provides a service of type ITrainer to the environment, 
which can be used by an arbitrary number of other compo-
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nents. The component requires zero to any number of refer-
ences to services of type IAthlete. 

The boolean flag requestRun is true for the service pro-
vided. Hence, DAiSI has to run the component and provide 
the service within the dynamic adaptive system to other 
components and to users. As the component requires zero 
references to services of type IAthlete, DAiSI can run the 
component directly and thereby provides the component ser-
vice to other components and users as shown in the sequence 
diagram in Figure 4. 
 

 
Figure 4. Sequence diagram showing the triggers and states of a stand alone 

DAiSI component. 

Now assume two components: The CAthlete component, 
shown on the left hand side of Figure 5, requires zero or one 
reference to a service of type IPulse. The second component, 
CPulse, shown on the right hand side of Figure 5, provides a 
service of type IPulse. Note, this service can only be exclu-
sively used by a single component. Figure 6 shows the states 
and triggers of the involved state machines in a sequence di-
agram for this example. 

 

 
Figure 5. CAthlete and CPulse components. 

 
Once the CPulse component is installed, DAiSI inte-

grates the new service in the canUse relationship of the Re-
quiredServiceReferenceSet r1 of the component CAthlete. 
Then DAiSI informs the CAthlete component that a new ser-
vice that can be used is available. DAiSI indicates that CAth-
lete wants to use this new service by adding this service in 
the set of services that CAthlete wants to use (set wantsUse).  

Once the service runs, it is assigned to the CAthlete com-
ponent, which can use the service from now on (added to the 
set uses of CAthlete). 

 
Figure 6. Inter-component configuration mechanism. 

 
A detailed example of the presented configuration algo-

rithms is presented in [20]. 

IV. INTRODUCTION OF THE RUNNING EXAMPLE AND THE 
NEED TO CONTROL SYSTEM CONFIGURATIONS 

For this example, we assume that a self-organizing sys-
tem is to be developed, which supports the training of biath-
letes, such as briefly described in the previous sections. In 
this particular case, the system is to provide the services de-
scribed below. 

First, a trainer is to be presented with an overview of his 
athletes’ performance data, where data from at least one ath-
lete should be displayed. For this purpose, it is assumed that 
the component presented in Figure 7 is available. 

 
 

 
Figure 7. The trainer component available in the system. 

 
The required functionality is provided by the service p1, 

which implements the interface ITrainer. The service defines 
a dependency with services that implement the interface 
IAthlete. However, the service can also be run when an ath-
lete system is not available in the system. The implementa-
tion of the trainer component would have to be adapted in 
order to meet the requirement that the trainer service can on-
ly be run when it has access to at least one athlete service. 
Moreover, the attribute minNoOfRequiredRefs of r1 from 
Figure 7 would have to be set to 1. However, a component 
code cannot always be modified in this way. In addition, 
adapting it manually for the specific application purpose con-
tradicts the original purpose of a component. The solution 
presented in the remainder of this section allows the applica-
tion-specific specification of the minimum and maximum 
number of required references for RequiredServiceRefer-
enceSets without having to adapt the component source code. 

The individual athletes’ performance data within the ap-
plication are provided via the interface IAthlete. For the ex-
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ample, it is assumed that the component presented in Figure 
8 is available. 

 

 
Figure 8. The CAthlete component. 

 
The component defines three ComponentConfigurations 

with conf1 specified as best configuration and conf3 as worst. 
The conf3 configuration can be activated if r1 can be con-
nected to a service that implements the interface IPulse. The 
conf2 configuration can be activated, if r2 and r3 are each 
connected with a ski pole. The conf1 configuration is activat-
ed if the dependencies of all three RequiredServiceRefer-
enceSets can be resolved. In all three configurations, the 
component provides a service that implements the domain 
interface IAthlete. It defines a method getPulse():int to query 
the current pulse and also a method getSkiingTech-
nique():String, which returns the currently used skiing tech-
nique (double poling/diagonal technique). If the conf3 con-
figuration is active, the call getSkiingTechnique returns the 
value null. If, in contrast, the conf2 configuration is active, 
the call getPulse returns the value -1.  

For the example application, it is now assumed that the 
skiing technique is to be analyzed in particular, i.e., only the 
conf2 ComponentConfiguration of the athlete component tim 
from Figure 8 is relevant. Even if one pulse service and two 
ski pole services are available, the conf1 configuration should 
not be activated even though it is the best component accord-
ing to the component specification. The framework present-
ed so far, and described in Section III, does not provide the 
potential to influence the ComponentConfiguration of a 
component from an application-specific point. In this con-
text, it is only possible to implement the component specifi-
cally to the application. In this section, expansions of the ex-
isting framework are described, which enable such an appli-
cation-specific influence on the activation of component con-
figurations. 

 

 
Figure 9. The CShootingLine component. 

 
It should also be possible for the example system de-

scribed here to allow shooting training. In this case, one 
shooting lane should be available for each athlete. In the sys-
tem, each shooting lane should be represented by a service, 
each implementing the domain interface IShootingLine. One 
example of such a component is presented in Figure 9. 

 

 
Figure 10. The structure of the component CSupervisor. 

 
In this case, the service p1 of the component also starts 

when there is no user in form of another component, as the 
flag requestRun is set (indicated by the shaded circle). How-
ever, for this example, the system should only allow shooting 
if a shooting supervisor is present. This is represented in the 
system by a service that implements the domain interface 
ISupervisor. The component presented in Figure 10 provides 
such a service.  

 

 
Figure 11. A system configuration that meets the requirements. 

 
At this point, the most complex requirement placed on 

the system has an influence. The system must guarantee that 
exactly one shooting lane component is available for each 
athlete connected to the trainer component. This means that 
the number of those services used by the shooting supervisor 
component must be in agreement with the athlete compo-
nents, which the trainer component accesses. 

One system configuration that meets all criteria described 
above is presented in Figure 11. Here, a trainer component is 
connected with an athlete component, which in turn is con-
nected to a left and a right ski pole. In addition, the applica-
tion consists of a shooting supervisor component, which in 
turn is connected to a shooting lane component. 

In the current DAiSI, such system configuration require-
ments cannot be specified and therefore cannot be guaran-
teed. Moreover, further requirements would be relevant for 
this application, such as: if a new athlete component is added 
to the system in the configuration described above, it should 
only be integrated into the application when a shooting lane 
component is available for this athlete. The application is al-
so stopped, for example, when the athlete component from 
Figure 11 is only connected with one ski pole component.  

DAiSI as described in Section III (without the new part 
for the specification of the component templates and applica-
tion specifications) is not able to implement requirements re-
lating to the application as a whole. For example, the better 
conf1 configuration of the component “tim” from Figure 11 
would be activated, although this is explicitly considered un-
desirable by the application developer. 
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V. APPLICATION SPECIFIC SYSTEM CONFIGURATION 
This section provides a short overview of the solution 

approach for the specification of valid system configuration 
requirements. One application configuration consists of a 
number of components, as well as connections between these 
components. Therefore, the primary task of DAiSI is to se-
lect the components that can be considered for a configura-
tion conforming to the application architecture out of the 
number of all available components. In addition, the compo-
nents must be connected in such a way that all specified re-
quirements are met. 

The solution presented below enables requirements spec-
ification with which components are considered for use with-
in the application. On the other hand, the manner in which 
these components are to be connected with each other can be 
defined. Based on such a specification and number of com-
ponents available, the framework developed will later be 
able to create an application architecture-conform configura-
tion. Furthermore, the framework reconfigures the applica-
tion automatically, if the requirements are no longer met. 
The solution approach is continuously based on a system of 
self-organizing components. However, the configuration is 
accomplished with the assistance of a central but light con-
figuration unit. 

 

 
Figure 12. Suitable components for an application configuration. 

 
The criteria for selection of suitable components for an 

application are defined with the assistance of so-called tem-
plates. An application specification consists of one or more 
of such templates. In this way, the biathlon application de-
scribed above could, for instance, consist of a template for 
trainer components, and one for athlete components, one for 
shooting lane components, etc. For each of these templates, 
requirements can be stored that specify under which circum-
stances a component is compatible with a template. For ex-
ample, constraints can be stored for an athlete template, 
which specifies that only such components that provide a 
service that implements the domain interface IAthlete are 
compatible. The framework ensures that for the runtime, on-
ly components matching the outline are allocated to the tem-
plate. From then on, a template will be represented by a rec-
tangle with dashed lines. Requirements related to required 
and provided component services are represented visually by 
circles and semi-circles with dashed lines (described in detail 
below). In Figure 12, two placeholders within an application 
template can be seen. One or two components can be allocat-

ed to the application, while one of the given components re-
mains ignored, as it is not compatible. 

The components selected must be connected with each 
other in the next step, in order to obtain an executable sys-
tem. For this purpose, in addition to the templates, the links 
between templates are defined, and represented as dashed ar-
rows (see Figure 12). They provide information on how the 
allocated components are to be connected with each other. In 
this way it is possible to define that each component allocat-
ed to the tTrainer template in Figure 12 must be connected 
with at least one component, which is allocated to the tAth-
lete template. Later during run time, the framework ensures 
that the requirements related to the links between the com-
ponents are considered. Figure 13 shows one possible result-
ing system configuration. 

 

 
Figure 13. Generation of a valid configuration. 

 
The following paragraphs present the requirements in de-

tail, how they can be specified and how they are implement-
ed in the framework. 

VI. SPECIFICATION OF APPLICATION REQUIREMENTS 
WITH COMPONENT TEMPLATES AND SERVICE APPLICATIONS 

The DAiSI platform is expanded to describe application-
specific requirements for system configurations. These ex-
pansions represent the new parts of DAiSI in Figure 2, which 
are necessary to specify application-specific requirements for 
the system configurations, with the assistance of component 
templates and service application specifications. 

 

 
Figure 14. Graphical and textual application specification. 
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In order to be able to present application specifications in 
a concise manner, a uniform notation for the specification el-
ements introduced above is defined for the remainder of this 
work. Figure 14 shows a possible application specification 
for a biathlon application. 

An application is represented as rectangle with the name 
of the application noted at the top. Each Template is repre-
sented as a rectangle with dashed lines, which contains the 
name of the template. Within a template, the contents of the 
attributes minNoOfRequiredComponents and maxNoOf-
RequiredComponents are noted at the top right. A Provided-
TemplateInterface is represented as circle with dashed line, 
which is labeled with the name, as well as the referenced 
domain interface. RequiredTemplateInterfaces are represen-
ted correspondingly as semi-circles with dashed lines. They 
are also labeled with the referenced domain interface, the 
referenced interface role, if applicable, and with the name. 
Links between a RequiredTemplateInterface and a Provided-
TemplateInterface (connectedTo) are visualized with a 
dashed arrow. The predicate appConstraint specification is 
specified in a separate area under the templates. 

VII. REQUIREMENT CONFORM DYNAMIC ADAPTIVE 
APPLICATION CONFIGURATION  

The aim of the framework is to create an application con-
figuration, which meets all specified requirements. As soon 
as this is achieved, the applications’ state machine transitions 
from NOT_RUNNING to RUNNING. In other words: if an 
application is in the state RUNNING, the application config-
uration created conforms to the application architecture. 

This section describes how a valid application configura-
tion can be generated automatically. The method suggested 
here follows a brute-force approach, which iteratively gener-
ates all possible configurations. It is sketeched in Figure 15 
as pseudo code. While this is not optimal with regard to re-
sources, it is sufficient to generate a valid system configura-
tion. The focus of this paper is not the configuration algo-
rithm, but the introduction of application templates. 

 

 
Figure 15. createValidConfiguration() method, pseudo code listing. 
 
Since a valid configuration, which meets the require-

ments can change at any time, in such a way that it no longer 
conforms to the application architecture, the application con-
figuration is checked cyclical for conformance to the applica-
tion architecture. Just as the configuration algorithm offers 

room for improvements with regard to performance, the 
same holds true for the cyclical application architecture con-
formance checks.  

As soon as the configuration no longer meets the defined 
application architecture-specific requirements, and therefore 
the predicate isValidConfiguration is evaluated as false, the 
applications’ state machine changes back to the state 
NOT_RUNNING. 

The main task of the configuration process is to use a 
number of components to create an application configuration 
meeting all the requirements. For this purpose, the frame-
work initially creates a configuration that meets all structural 
requirements. This configuration is executed and the services 
commence. It is in the next step a check is made to ensure 
that the service state requirements are met, since these re-
quirements can only be confirmed when these services are 
running. If the requirements are not met, a new structurally 
compatible configuration must be created. 

The algorithm is divided into two parts: one part creates 
an application configuration (lines 2-9 in Figure 15) and the 
other parts checks the configuration for conformity with the 
requirements lines (11-12 in Figure 15). Creating a configu-
ration requires three steps. Firstly, selecting the components, 
then the ProvidedService- and RequiredServiceReferenceSets 
must each be allocated to a ProvidedTemplateInterface and 
RequiredTemplateInterface, respectively. Therefore, the two 
assignedTo quantities must be defined. Finally, the uses set 
must be determined for each RquiredServiceReferenceSet. 

The initial situation of the configuration process is a set 
of available components. A selection must be made to obtain 
an application configuration. To accomplish this, assignment 
of the selectedComponents set is created for each template, 
with the component static properties already being consid-
ered. The application calculates the set of all possible as-
signment combinations and makes them available via an it-
erator (possibleComponentAssignmentSets from Figure 15), 
based on the components available and the application speci-
fication, the method realize implements the specific assign-
ment. 

For clarification, study an application specification with 
two templates as presented in Figure 16. It is also assumed 
that five components are available in the system. 

In this example, the components a and b can be allocated 
to the tTrainer template and just one component must be al-
located to the template in order to fulfil the application re-
quirements. Both components provide a service that imple-
ments the ITrainer domain interface and define a Required-
ServiceReferenceSet that references the IAthlete domain in-
terface. Only component d can be allocated to the tAthlete 
template since this component is the only one that meets the 
template structural requirements. A total of two components 
are available for the tLStick and tRStick templates and exact-
ly one component must be allocated to each of these two 
templates, in order to be able to meet the application re-
quirements. This results in a number of possible allocations 
of components to templates. The configuration algorithm 
makes a selection, which is then implemented by the frame-
work. In the next step, ProvidedServices is allocated to Pro-
videdTemplateInterfaces and RequiredServiceReferenceSets 
to RequiredTemplateInterfaces.  
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Figure 16. Allocation of components to templates. 

 
ProvidedServices of a component could fit to several 

ProvidedTemplateInterfaces. Since ProvidedServices must 
be allocated to ProvidedTemplateInterfaces during run time, 
the framework must make a decision here. The same applies 
to RequiredServiceReferenceSets and RequiredTemplate-
Interfaces. For example, the RequiredTemplateInterfaces of 
the tAthlete template in Figure 16, do not reference any inter-
face roles but only the IStick domain interface as presented in 
Figure . 

 
Figure 17. Allocation of component interfaces to template interfaces. 
 
In this example, the RequiredServiceReferenceSet r1 can 

be allocated to RequiredTemplateInterface rtA1 as well as 
rtA2. The same applies to RequiredServiceReferenceSet r2. 

Within the algorithm in Figure 15, all possible alloca-
tions, which result from the allocation of components to 
templates in the previous step are now iterated. In the com-
ponent model, the allocation between RequiredServiceRefer-
enceSet and RequiredTemplateInterface, and between Pro-
videdService and ProvidedTemplateInterface are represented 
by the assignedTo association. The possibilities are iterated 
with the possibleInterfaceAssignmentSets iterator (lines 
5+6). The returned assignment is then implemented by call-
ing realize. In the next step, the uses set is assigned to the 
RequiredServiceReferenceSets of the components, which 
were allocated previously to the selectedComponents quanti-
ty. The last step for the generation of the configuration algo-
rithm consists of creating the use relations between the com-
ponents.  

The goal is assignment of the uses set for each Required-
ServiceReferenceSet of all components included in the appli-

cation, so that the requirements of the application specifica-
tion can be met. 

It often happens that there are several possibilities for the 
assignment of this set. The following situation is considered 
for illustration purposes (see Figure 15). In this case, the use 
of the provided service for both athlete components is con-
sidered for the RequiredServiceReferenceSet r1. In this case, 
the empty quantity would not be an invalid assignment since 
the value 1 is specified for the attribute minNoOfRequire-
dRefs of the component. In the algorithm in Figure 15, these 
possible assignments are iterated with possibleUsageSets it-
erator, in order to create valid application configurations. 

 
Figure 15. Example for possible assignments of the quantity uses. 

 
After making a component selection, subsequently allo-

cating the services and then assigning the uses set of all Re-
quiredServiceReferenceSets, a running configuration is cre-
ated automatically. For this purpose, the self-configuring 
components are informed at each stage if they are part of the 
application, to which template they should allocate them-
selves, to which template interfaces their services and Re-
quiredServicesReferenceSets should be allocated and with 
which service they should connect. The individual iterators 
of the algorithms are realized for individual components.  

After creating a configuration with the procedure de-
scribed above, the remaining applications of the application 
specification can now also be checked for conformity. The 
predicate isValidConfiguration must now be evaluated. Only 
if this predicate is evaluated to true, the application changes 
its state  to RUNNING. Otherwise, a new configuration must 
be created. The algorithm presented here is only a sketch of 
the procedure for creating a configuration, which conforms 
to the defined application architecture-specific requirements. 
Other algorithms are possible and can be found in [24]. 

VIII. CONCLUSION AND FUTURE WORK 
In this paper we introduced a major extension of our dy-

namic adaptive system infrastructure called DAiSI. DAiSI 
enables applications to adapt themselves automatically dur-
ing run time. It is able to integrate new components during 
and handle the loss of components by reconfiguration. In the 
former version, DAiSI tried to find a configuration, which is 
optimal for each individual component. As this may lead to 
applications where each component is running in its optimal 
configuration, but where the application as a whole does not 
meet the requirements, we presented an extension of DAiSI, 
which enables the specification of application-specific re-
quirements on the one hand, and its automatic realization 
during run time on the other. 
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Our concept introduced so called templates, which define 
fitting-criteria for component instances. Furthermore, the 
concept enables users to specify requirements regarding con-
nections between components. Our infrastructure is able to 
interpret this specification, and realize a suitable application 
configuration based on available components in the system. 
One of the major characteristics of our approach is, that dur-
ing design-time no knowledge about existing components 
and their instances is required. The match of components to 
templates is performed automatically during runtime based 
on provided/required interfaces, interface roles and predi-
cates. 

In the future, we will further extend our concept and our 
implementation by providing more specification capabilities 
regarding component selection and component interconnec-
tion. There is for example a possibility missing to specify an 
order on available components to enforce the use of, e.g., the 
best three components. Furthermore, there still exists poten-
tial for improvements of our prototypical implementation. 

However, the extension presented in this paper provides a 
sustainable concept towards the realization of decentralized, 
dynamic adaptive systems, while satisfying application-
specific requirements, which has been implemented as a 
proof of concept. 
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