
Component Templates and Service Applications Specifications to Control
Dynamic Adaptive System Configurations

Holger Klus

ROSEN Technology & Research Center GmbH
Lingen (Ems), Germany

email: hklus@rosen-group.com

Andreas Rausch, Dirk Herrling
Department of Informatics

Technische Universität Clausthal
Clausthal-Zellerfeld, Germany

email: {andreas.rausch, dirk.herrling}@tu-clausthal.de

Abstract—Dynamic adaptive systems are systems that change
their behavior at run time, based on system, user, environment
and context information and needs. System configuration in
terms of structure and behavior of open, self-organized sys-
tems cannot completely be predicted beforehand: New compo-
nents may join, others may leave the system, or the behavior of
individual components of the system may change over time.
But in many cases, it is necessary to ensure the compliance of
the resulting overall system configuration to users, environ-
ment and context requirements. Therefore we have elaborated
an approach to specify those requirements based on so called
component templates and service application specifications.
These specifications can be described without the necessity to
know individual components, their specific interfaces or possi-
ble system configurations. Thus, we can control the resulting
system configurations of an open, self-organizing system with
respect to users, environment and context requirements. Our
approach has been implemented on top of our component
model and corresponding platform implementation called Dy-
namic Adaptive System Infrastructure (DAiSI).

Keywords—self-adaptation; dynamic adaptive systems; com-
ponent templates and service application specification; adaptive
component model; decentralized configuration.

I. INTRODUCTION
Software-based systems pervade our daily life—at work

as well as at home. Public administration or enterprise organ-
izations can scarcely be managed without software-based
systems. We come across devices executing software in
nearly every household. The continuous increase in size and
functionality of software systems has made some of them
among the most complex man-made systems ever devised
[1].

In the last two decades, the trend towards “everything,
every time, everywhere” has been dramatically increased
through a) smaller mobile devices with higher computation
and communication capabilities, b) ubiquitous availability of
the Internet (almost all devices are connected with the Inter-
net and thereby connected with each other), and c) devices
equipped with more and more connected, intelligent and so-
phisticated sensors and actuators.

Nowadays, these devices are increasingly used within an
organically grown, heterogeneous, and dynamic IT environ-
ment. Users expect them not only to provide their primary

services but also to collaborate autonomously with each oth-
er and thus to provide real added additional value. The chal-
lenge is therefore to provide software systems that are cor-
rect, stable and robust in the presence of increasing challeng-
es such as change and complexity [5].

Change is inherent, both in the changing needs of users
and in the changes, which take place in the operational envi-
ronment of the system. Hence, it is essential that our systems
are able to adapt to maintain the satisfaction of the user ex-
pectations and environmental changes in terms of an evolu-
tionary change [2].

Dynamic change, in contrast to evolutionary change, oc-
curs while the system is operational. Dynamic change re-
quires that the system adapts at run time. Therefore we must
plan for automated management of adaptation. The systems
themselves must be capable of determining what system
change is required and initiate and manage the change pro-
cess wherever needed. This is the aim of self-managed sys-
tems [3].

Self-managed systems are those capable of adapting to
the current context as required through self-configuration,
self-healing, self-monitoring, self-tuning, and so on. These
are also referred to as self-x, autonomic systems. Additional-
ly, new components may enter or leave the system at run
time. We call those systems ‘dynamic adaptive’ systems [4].

Providing dynamic adaptive systems is a great challenge
in software engineering [5]. In order to provide dynamic
adaptive systems, the activities of classical development ap-
proaches have to be partially or completely moved from de-
velopment time to run time. For instance, devices and soft-
ware components can be attached to a dynamic adaptive sys-
tem at any time. Consequently, devices and software compo-
nents can be removed from the dynamic adaptive system or
they can fail as the result of a defect. Hence, for dynamic
adaptive systems, system integration takes place during run
time.

To support the development of dynamic adaptive systems
a couple of infrastructures and frameworks have been devel-
oped, as discussed in a related work section, Section II. In
our research group, we have also developed a framework for
dynamic adaptive (and distributed) systems, called DAiSI.
DAiSI is a service-oriented and component based platform to
implement dynamic adaptive systems [6].

Based on the existing components and their provided and
required services DAiSI is able to autonomously find and es-

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

tablish during run time valid system configurations with re-
spect to specific optimization goals and system guarantees.
Even if new components join, or others leave DAiSI, or the
behavior of individual components within DAiSI changes
over time, DAiSI is able to reconfigure the overall system
and establish a new valid system configuration at run time.

But in many cases, it is necessary to ensure the compli-
ance of the resulting overall system configuration to users,
environment and context requirements. Therefore we have
elaborated an approach to specify those requirements based
on so called component templates and service application
specifications. The basic idea of our approach is to specify
services users or the environment may be interested in form
of so called “service application” specifications.

A service application specification consists of a set of so
called “component templates”. Each template is a placehold-
er for a set of components with specific properties. The ap-
plication developer specifies the properties of component
templates and service applications during design time. Dur-
ing run time, DAiSI tries to establish the required service ap-
plications by assigning autonomously existing components
to compatible templates in the corresponding service applica-
tion specifications.

These specifications can be described without the neces-
sity to know individual components, their specific interfaces
or possible system configurations. We have successfully im-
plemented the component templates and service applications
specifications on top of the existing component model of
DAiSI. Thus, DAiSI is not only able to find and establish
valid system configurations but also to find and establish
them with respect to users, the environment and context re-
quirements, which have to be explicitly expressed in compo-
nent templates and service applications specifications.

The development of DAiSI was always motivated
through running application examples and demonstrators. As
DAiSI has been developed for more than ten years, we have
demonstrated the application of our approach and our infra-
structure in a couple of different research demonstrators and
industrial prototypes and products.

The rest of the paper is structured as follows: In Section
II, we present other works, we see as related to the DAiSI
and its newest additions. Section III presents the fundamen-
tals of DAiSI as it was prior to the additions, presented in
this paper. Section IV describes a small sample application
we use to illustrate the need to control possible system con-
figurations in dynamic adaptive systems. Section V presents
an approach to describe valid system configurations with re-
gard to applications. In Section VI, we provide a notation for
the specification of application requirements. Section VII
presents an algorithm that leads to a requirements conform
system configuration and explains why DAiSI only produces
valid system configurations during run time with respect to
users, environment and context requirements. A short con-
clusion will round the paper up.

II. RELATED WORK
Component-based software development, component

models and component frameworks provide a solid approach
to support evolutionary changes to systems. It is a well-
understood method that proved useful in numerous applica-
tions. Components are the units of deployment and integra-

tion. This allows high flexibility and easy maintenance. Dur-
ing design time components may be added or removed from
a system [7].

However, the early component models did not provide
means of adding or removing components from a running
system. Also, the integration of new interaction links (e.g.,
component bindings) was not possible. Service-oriented ap-
proaches stepped up to the challenge. These systems usually
maintain a service repository, in which every component that
enters the system is registered. A component that wants to
use such a component can query the service register for a
matching service and connect to it, if one is found. For the
domain of dynamic systems this means that a component can
register its provided and required services. If a suitable ser-
vice provider for one of the required services registers itself,
it can be bound to satisfy the required service [8].

Service-oriented approaches have the inconvenient char-
acteristic of not dealing with the adaptability of components.
A component developer is solely responsible for the imple-
mentation of the adaptive behavior. This starts at the applica-
tion logic and stretches to the discovery of unresponsive ser-
vices, the discovery of a newly available service, the discov-
ery of services with a better quality of service, and so on. A
couple of frameworks have been developed to support dy-
namic adaptive behavior, while, at the same time, making it
easier for the developer to focus on implementing the behav-
ioral changes in his component.

REX is a framework for the support of dynamic-adaptive
systems. It used the experience gained in the research for
CONIC [9] and aimed at dynamic adaptive, parallel, distrib-
uted systems. The concept was that such systems consist of
components that are linked by interfaces. A new interface
description language was invented, to be able to describe the
interfaces. Components were seen as types, allowing multi-
ple instances of every component to be present at run-time.
Just like CONIC, REX allowed the creation and termination
of component instances and the links between them. Both,
CONIC and REX share the disadvantage that they support
dynamic reconfiguration only through explicit reconfigura-
tion programs. These need to be different for every situation
that is detected and intended. The approach moves the adap-
tation logic out of the component, but nevertheless, the de-
veloper has to deal with the adaptation strategy for every
possible occurring change [10][11].

Current frameworks such as ProAdapt [12] and Con-
fig.NETServices [13] have a more generic adaption and con-
figuration mechanism. Components that were not known
during the design-time of the system can be added or re-
moved from the dynamic adaptive system during run-time.
Therefore, the framework provides a generic component
configuration mechanism. As with our first version of the
DAiSI framework, these frameworks are based on a central-
ized configuration mechanism. Moreover, the underlying
component model is restricted—for instance the exclusive
usage of services cannot be described.

In [14], the authors presented a solution to ensure syntac-
tical and semantical compatibility of web services. They
used the Web Service Definition Language (WSDL) and en-
riched it with the Web Service Semantic Profile (WSSP) for
the semantical information. Additionally they allowed an ap-
plication architect to further reduce the configuration space

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

through the specification of constraints. While their approach
is able to solve the sketched problem of preventing the wir-
ing of components that should not be connected, they only
focus on the service definition and compatibility. Our DAiSI
approach defines an infrastructure in which components are
executed that implement a specific component model. We do
want to compose an application out of components that can
adapt its behavior at run-time. We achieve this by mapping
sets of required services to sets of provided services and thus
specifying which provided services depend on which re-
quired services. The solution presented in [14] does not offer
a component model. All rules regarding the relation between
required and provided services would have to be specified as
external constraints. The authors in [15] provided a different
solution to ensure semantic compatibility of web services.
However, the same arguments as for [14] regarding the ab-
sence of a high-level component model hold true.

With regard to the application architecture aware adapta-
tion, Rainbow [16][17] is one of the most dominant and
well-known frameworks. Rainbow uses invariants for the
specification of constraints in its architecture description
language. For each invariant a method for the adaptation of
the system can be specified. The method is then executed
whenever the invariant is violated. This approach however
requires the knowledge of all component types at design-
time, which is opposing our goal of an open system. Addi-
tionally, the developer has to implement the adaptation steps
individually for every invariant. This imperative method for
adaptation requires the component requiring the adaptation
to have a view of the complete system and additionally in-
troduces a big overhead at design-time as well as at run-time.

R-OSGi [18] takes advantage of the features developed
for centralized module management in the OSGi platform,
like, e.g., dynamic module loading and –unloading. It intro-
duces a way to transparently use remote OSGi modules in an
application while still preserving good performance. Issues
like network disruptions or unresponsive components are
mapped to events of unloaded modules and thus can be han-
dled gracefully – a strength compared to many other plat-
forms. However R-OSGi does not provide means to specify
application architecture specific requirements. As long as
modules are compatible with each other they will be linked.
The module developer has to ensure the application architec-
ture at the implementation level. Opposed to that, our ap-
proach proposes a high level description of application archi-
tectures through application templates that can be specified
even after the required components have been developed.

III. THE CORE OF THE EXISTING DAISI PLATFORM
This section will introduce the foundations of the DAiSI

platform, consisting of a dynamic adaptive component mod-
el, a domain architecture model and a decentralized configu-
ration service.

As already briefly mentioned DAiSI components interact
with each other through services. Each DAiSI component
consists out of a set of component configurations. Each
component configuration defines a set of required services
and a set of provided services. Figure 1 shows a sketch of a
DAiSI component with some explanatory comments for an
athlete in the biathlon sports domain.

Figure 1. Notation for DAiSI components and corresponding concepts.

A component is depicted as a blue rectangle. Component

configurations are bars that extend over the borders of the
component and are depicted in yellow here. Associated to
the component configurations are the provided and required
services. The notation is similar to the UML lollipop notation
[19] with full circles resembling provided, and semi circles
representing required services. A filled circle indicates that
the service is meant to be executed and thereby provided
within the system, even if no other service requires its use.

Figure 1 shows the CAthlete component, consisting of
two component configurations: conf1 and conf2. The first
component configuration requires exactly one service varia-
ble r1 of the IPulse interface. The second component config-
uration does not require any services to be able to provide its
service p2 of IPerson. The service can be used by any num-
ber of service users (the cardinality is specified as *). The
other component configuration (conf1) could provide the ser-
vice p1 of the type IAthlete, which could again be used by
any number of users. The small orange circle with the three
arrows in the lower right corner indicates that this compo-
nent is self-organizing, i.e., it does not require a centralized
configuration service to resolve its requirements and change
its execution state.

Figure 2 shows the DAiSI component model as an UML
class diagram [19]. The DynamicAdaptiveComponent class
represents the component itself, represented as the light blue
box in the notation example. It has three types of associa-
tions to the ComponentConfiguration class, namely current,
activatable, and contains. The contains association resem-
bles the non-empty set of all component configurations. It is
ordered by quality from best to worst, with the best compo-
nent configuration being the most desirable. Quality refers to
the count of provided services, as well as the quality they are
provided in. A subset of the contained are the activatable
component configurations. These have their required ser-
vices resolved and could be activated. An active component
configuration produces its provided services. The active
component configuration is represented by the current asso-
ciation in the component model, with the cardinality allow-
ing one or zero current component configurations to be exe-
cuted for a component.

The required services (represented by a semi-circle in the
component notation in Figure 1) are represented by the Re-
quiredServiceReferenceSet class. Every component configu-
ration can declare any number of required services. The re-
solved association represents those that are resolved. Provid-
ed services (noted as full circles on the left hand side in Fig-
ure 1) are represented by the ProvidedService class. The flag

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

requestRun, represented by the full circle being filled with
black in the component notation, indicates that the service
should be activated, even if no other service requires its use.
This is typically the case for services that provide graphical
user interfaces or some functionality directly to the end user.

DAiSICom
ponentM

odel
(existing!)

Com
ponentTem

plates
&
	
 Service	
 Applications
Specifications(N

EW
!)

DAiSIDom
ain

Architecture
M
odel

(existing!)

Figure 2. DAiSI component model, DAiSI domain architecture model,

and the new additional template & application specifications.

The provided and required services, more precisely their

respective classes in the component model, are associated
with each other through three associations. The first associa-
tion canUse represents the compatibility between two ser-
vices. If a provided service can be bound to the service re-
quirement of another class, these two are associated through
a canUse association. A subset of the canUse association is
wantsUse. At run-time it resembles a kind of reservation of a
particular provided service by a required service reference
set. After the connection is established and the provided ser-
vice satisfies the requirement, they are part of the uses asso-
ciation, which represents the actual connections. All classes
covered to this point implement a state machine to maintain
the state of the DAiSI component. If you want to know more
about the state machines and the configuration mechanism,
please refer to [20].

To this point we have covered the basic building blocks
of the DAiSI component model. Another already established
part of DAiSI is the domain architecture model. The relation
to the actual developed application becomes apparent if you
consider the DomainArchitecture class. It defines any num-

ber of DomainInterfaces. These are the interfaces that define
the provided and required services. Thus, every Provided-
Service class implements a domain interface, while each re-
quired service reference set refers to exactly one.

There are numerous examples in which the role of a spe-
cific domain service has to be considered in order to estab-
lish the desired system configuration. For that reason the
class InterfaceRole enables the specification of additional
criteria for the conformance of provided and required ser-
vices. An interface role references exactly one domain inter-
face and may define additional requirements regarding that
domain interface. A provided service only fulfills an inter-
face role if it implements the domain interface and as well
complies with the conditions defined in the interface role.
Consequently a required service reference set not only re-
quires compatibility of the domain interface, but also of the
interface role to be able to use a provided service. For more
information about the DAiSI domain architecture model and
interface roles consider [21].

Beside the DAiSI component model and the DAiSI do-
main architecture model a decentralized dynamic configura-
tion mechanism was also already established in the DAiSI
platform. The set of services that implement the domain in-
terface referred by the RequiredServiceReferenceSet is repre-
sented by canUse, as stated before. Note, this only guaran-
tees a syntactically correct binding. Interface roles in addi-
tion provide a compatibility check with respect to a given
common domain architecture. In [22][23] we have shown
how this approach can be extended to guarantee behavior
correct binding during run time, even in case of changes to
the local and global state.

The wantsUse set holds references to those services for
which a usage request has been placed by calling wantsUse.
And the uses set contains references to those services, which
are currently in use by the component or by RequiredSer-
viceReferenceSet. Each time a new service becomes availa-
ble in the system, the new service is added to all canUse sets,
if the corresponding RequiredServiceReferenceSet refers to
the same DomainInterface as the ProvidedServices. If there
is a request for dependency resolution, usage requests are
placed at the services in canUse by calling wantsUse and
those service references are copied to the wantsUse set.

The management of these three associations—canUse,
wantsUse and uses—between RequiredServiceReferenceSets
and ProvidedServices is handled by DAiSI’s decentralized
dynamic configuration mechanism. This configuration
mechanism relies on the state machines presented in more
detail in [20] and sketched in the following paragraphs.

Figure 3. CTrainer component.

Assume a given component as shown in Figure 3. The
component t of type CTrainer has one single configuration.
It provides a service of type ITrainer to the environment,
which can be used by an arbitrary number of other compo-

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

nents. The component requires zero to any number of refer-
ences to services of type IAthlete.

The boolean flag requestRun is true for the service pro-
vided. Hence, DAiSI has to run the component and provide
the service within the dynamic adaptive system to other
components and to users. As the component requires zero
references to services of type IAthlete, DAiSI can run the
component directly and thereby provides the component ser-
vice to other components and users as shown in the sequence
diagram in Figure 4.

Figure 4. Sequence diagram showing the triggers and states of a stand alone

DAiSI component.

Now assume two components: The CAthlete component,
shown on the left hand side of Figure 5, requires zero or one
reference to a service of type IPulse. The second component,
CPulse, shown on the right hand side of Figure 5, provides a
service of type IPulse. Note, this service can only be exclu-
sively used by a single component. Figure 6 shows the states
and triggers of the involved state machines in a sequence di-
agram for this example.

Figure 5. CAthlete and CPulse components.

Once the CPulse component is installed, DAiSI inte-

grates the new service in the canUse relationship of the Re-
quiredServiceReferenceSet r1 of the component CAthlete.
Then DAiSI informs the CAthlete component that a new ser-
vice that can be used is available. DAiSI indicates that CAth-
lete wants to use this new service by adding this service in
the set of services that CAthlete wants to use (set wantsUse).

Once the service runs, it is assigned to the CAthlete com-
ponent, which can use the service from now on (added to the
set uses of CAthlete).

Figure 6. Inter-component configuration mechanism.

A detailed example of the presented configuration algo-

rithms is presented in [20].

IV. INTRODUCTION OF THE RUNNING EXAMPLE AND THE
NEED TO CONTROL SYSTEM CONFIGURATIONS

For this example, we assume that a self-organizing sys-
tem is to be developed, which supports the training of biath-
letes, such as briefly described in the previous sections. In
this particular case, the system is to provide the services de-
scribed below.

First, a trainer is to be presented with an overview of his
athletes’ performance data, where data from at least one ath-
lete should be displayed. For this purpose, it is assumed that
the component presented in Figure 7 is available.

Figure 7. The trainer component available in the system.

The required functionality is provided by the service p1,

which implements the interface ITrainer. The service defines
a dependency with services that implement the interface
IAthlete. However, the service can also be run when an ath-
lete system is not available in the system. The implementa-
tion of the trainer component would have to be adapted in
order to meet the requirement that the trainer service can on-
ly be run when it has access to at least one athlete service.
Moreover, the attribute minNoOfRequiredRefs of r1 from
Figure 7 would have to be set to 1. However, a component
code cannot always be modified in this way. In addition,
adapting it manually for the specific application purpose con-
tradicts the original purpose of a component. The solution
presented in the remainder of this section allows the applica-
tion-specific specification of the minimum and maximum
number of required references for RequiredServiceRefer-
enceSets without having to adapt the component source code.

The individual athletes’ performance data within the ap-
plication are provided via the interface IAthlete. For the ex-

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

ample, it is assumed that the component presented in Figure
8 is available.

Figure 8. The CAthlete component.

The component defines three ComponentConfigurations

with conf1 specified as best configuration and conf3 as worst.
The conf3 configuration can be activated if r1 can be con-
nected to a service that implements the interface IPulse. The
conf2 configuration can be activated, if r2 and r3 are each
connected with a ski pole. The conf1 configuration is activat-
ed if the dependencies of all three RequiredServiceRefer-
enceSets can be resolved. In all three configurations, the
component provides a service that implements the domain
interface IAthlete. It defines a method getPulse():int to query
the current pulse and also a method getSkiingTech-
nique():String, which returns the currently used skiing tech-
nique (double poling/diagonal technique). If the conf3 con-
figuration is active, the call getSkiingTechnique returns the
value null. If, in contrast, the conf2 configuration is active,
the call getPulse returns the value -1.

For the example application, it is now assumed that the
skiing technique is to be analyzed in particular, i.e., only the
conf2 ComponentConfiguration of the athlete component tim
from Figure 8 is relevant. Even if one pulse service and two
ski pole services are available, the conf1 configuration should
not be activated even though it is the best component accord-
ing to the component specification. The framework present-
ed so far, and described in Section III, does not provide the
potential to influence the ComponentConfiguration of a
component from an application-specific point. In this con-
text, it is only possible to implement the component specifi-
cally to the application. In this section, expansions of the ex-
isting framework are described, which enable such an appli-
cation-specific influence on the activation of component con-
figurations.

Figure 9. The CShootingLine component.

It should also be possible for the example system de-

scribed here to allow shooting training. In this case, one
shooting lane should be available for each athlete. In the sys-
tem, each shooting lane should be represented by a service,
each implementing the domain interface IShootingLine. One
example of such a component is presented in Figure 9.

Figure 10. The structure of the component CSupervisor.

In this case, the service p1 of the component also starts

when there is no user in form of another component, as the
flag requestRun is set (indicated by the shaded circle). How-
ever, for this example, the system should only allow shooting
if a shooting supervisor is present. This is represented in the
system by a service that implements the domain interface
ISupervisor. The component presented in Figure 10 provides
such a service.

Figure 11. A system configuration that meets the requirements.

At this point, the most complex requirement placed on

the system has an influence. The system must guarantee that
exactly one shooting lane component is available for each
athlete connected to the trainer component. This means that
the number of those services used by the shooting supervisor
component must be in agreement with the athlete compo-
nents, which the trainer component accesses.

One system configuration that meets all criteria described
above is presented in Figure 11. Here, a trainer component is
connected with an athlete component, which in turn is con-
nected to a left and a right ski pole. In addition, the applica-
tion consists of a shooting supervisor component, which in
turn is connected to a shooting lane component.

In the current DAiSI, such system configuration require-
ments cannot be specified and therefore cannot be guaran-
teed. Moreover, further requirements would be relevant for
this application, such as: if a new athlete component is added
to the system in the configuration described above, it should
only be integrated into the application when a shooting lane
component is available for this athlete. The application is al-
so stopped, for example, when the athlete component from
Figure 11 is only connected with one ski pole component.

DAiSI as described in Section III (without the new part
for the specification of the component templates and applica-
tion specifications) is not able to implement requirements re-
lating to the application as a whole. For example, the better
conf1 configuration of the component “tim” from Figure 11
would be activated, although this is explicitly considered un-
desirable by the application developer.

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

V. APPLICATION SPECIFIC SYSTEM CONFIGURATION
This section provides a short overview of the solution

approach for the specification of valid system configuration
requirements. One application configuration consists of a
number of components, as well as connections between these
components. Therefore, the primary task of DAiSI is to se-
lect the components that can be considered for a configura-
tion conforming to the application architecture out of the
number of all available components. In addition, the compo-
nents must be connected in such a way that all specified re-
quirements are met.

The solution presented below enables requirements spec-
ification with which components are considered for use with-
in the application. On the other hand, the manner in which
these components are to be connected with each other can be
defined. Based on such a specification and number of com-
ponents available, the framework developed will later be
able to create an application architecture-conform configura-
tion. Furthermore, the framework reconfigures the applica-
tion automatically, if the requirements are no longer met.
The solution approach is continuously based on a system of
self-organizing components. However, the configuration is
accomplished with the assistance of a central but light con-
figuration unit.

Figure 12. Suitable components for an application configuration.

The criteria for selection of suitable components for an

application are defined with the assistance of so-called tem-
plates. An application specification consists of one or more
of such templates. In this way, the biathlon application de-
scribed above could, for instance, consist of a template for
trainer components, and one for athlete components, one for
shooting lane components, etc. For each of these templates,
requirements can be stored that specify under which circum-
stances a component is compatible with a template. For ex-
ample, constraints can be stored for an athlete template,
which specifies that only such components that provide a
service that implements the domain interface IAthlete are
compatible. The framework ensures that for the runtime, on-
ly components matching the outline are allocated to the tem-
plate. From then on, a template will be represented by a rec-
tangle with dashed lines. Requirements related to required
and provided component services are represented visually by
circles and semi-circles with dashed lines (described in detail
below). In Figure 12, two placeholders within an application
template can be seen. One or two components can be allocat-

ed to the application, while one of the given components re-
mains ignored, as it is not compatible.

The components selected must be connected with each
other in the next step, in order to obtain an executable sys-
tem. For this purpose, in addition to the templates, the links
between templates are defined, and represented as dashed ar-
rows (see Figure 12). They provide information on how the
allocated components are to be connected with each other. In
this way it is possible to define that each component allocat-
ed to the tTrainer template in Figure 12 must be connected
with at least one component, which is allocated to the tAth-
lete template. Later during run time, the framework ensures
that the requirements related to the links between the com-
ponents are considered. Figure 13 shows one possible result-
ing system configuration.

Figure 13. Generation of a valid configuration.

The following paragraphs present the requirements in de-

tail, how they can be specified and how they are implement-
ed in the framework.

VI. SPECIFICATION OF APPLICATION REQUIREMENTS
WITH COMPONENT TEMPLATES AND SERVICE APPLICATIONS

The DAiSI platform is expanded to describe application-
specific requirements for system configurations. These ex-
pansions represent the new parts of DAiSI in Figure 2, which
are necessary to specify application-specific requirements for
the system configurations, with the assistance of component
templates and service application specifications.

Figure 14. Graphical and textual application specification.

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

In order to be able to present application specifications in
a concise manner, a uniform notation for the specification el-
ements introduced above is defined for the remainder of this
work. Figure 14 shows a possible application specification
for a biathlon application.

An application is represented as rectangle with the name
of the application noted at the top. Each Template is repre-
sented as a rectangle with dashed lines, which contains the
name of the template. Within a template, the contents of the
attributes minNoOfRequiredComponents and maxNoOf-
RequiredComponents are noted at the top right. A Provided-
TemplateInterface is represented as circle with dashed line,
which is labeled with the name, as well as the referenced
domain interface. RequiredTemplateInterfaces are represen-
ted correspondingly as semi-circles with dashed lines. They
are also labeled with the referenced domain interface, the
referenced interface role, if applicable, and with the name.
Links between a RequiredTemplateInterface and a Provided-
TemplateInterface (connectedTo) are visualized with a
dashed arrow. The predicate appConstraint specification is
specified in a separate area under the templates.

VII. REQUIREMENT CONFORM DYNAMIC ADAPTIVE
APPLICATION CONFIGURATION

The aim of the framework is to create an application con-
figuration, which meets all specified requirements. As soon
as this is achieved, the applications’ state machine transitions
from NOT_RUNNING to RUNNING. In other words: if an
application is in the state RUNNING, the application config-
uration created conforms to the application architecture.

This section describes how a valid application configura-
tion can be generated automatically. The method suggested
here follows a brute-force approach, which iteratively gener-
ates all possible configurations. It is sketeched in Figure 15
as pseudo code. While this is not optimal with regard to re-
sources, it is sufficient to generate a valid system configura-
tion. The focus of this paper is not the configuration algo-
rithm, but the introduction of application templates.

Figure 15. createValidConfiguration() method, pseudo code listing.

Since a valid configuration, which meets the require-

ments can change at any time, in such a way that it no longer
conforms to the application architecture, the application con-
figuration is checked cyclical for conformance to the applica-
tion architecture. Just as the configuration algorithm offers

room for improvements with regard to performance, the
same holds true for the cyclical application architecture con-
formance checks.

As soon as the configuration no longer meets the defined
application architecture-specific requirements, and therefore
the predicate isValidConfiguration is evaluated as false, the
applications’ state machine changes back to the state
NOT_RUNNING.

The main task of the configuration process is to use a
number of components to create an application configuration
meeting all the requirements. For this purpose, the frame-
work initially creates a configuration that meets all structural
requirements. This configuration is executed and the services
commence. It is in the next step a check is made to ensure
that the service state requirements are met, since these re-
quirements can only be confirmed when these services are
running. If the requirements are not met, a new structurally
compatible configuration must be created.

The algorithm is divided into two parts: one part creates
an application configuration (lines 2-9 in Figure 15) and the
other parts checks the configuration for conformity with the
requirements lines (11-12 in Figure 15). Creating a configu-
ration requires three steps. Firstly, selecting the components,
then the ProvidedService- and RequiredServiceReferenceSets
must each be allocated to a ProvidedTemplateInterface and
RequiredTemplateInterface, respectively. Therefore, the two
assignedTo quantities must be defined. Finally, the uses set
must be determined for each RquiredServiceReferenceSet.

The initial situation of the configuration process is a set
of available components. A selection must be made to obtain
an application configuration. To accomplish this, assignment
of the selectedComponents set is created for each template,
with the component static properties already being consid-
ered. The application calculates the set of all possible as-
signment combinations and makes them available via an it-
erator (possibleComponentAssignmentSets from Figure 15),
based on the components available and the application speci-
fication, the method realize implements the specific assign-
ment.

For clarification, study an application specification with
two templates as presented in Figure 16. It is also assumed
that five components are available in the system.

In this example, the components a and b can be allocated
to the tTrainer template and just one component must be al-
located to the template in order to fulfil the application re-
quirements. Both components provide a service that imple-
ments the ITrainer domain interface and define a Required-
ServiceReferenceSet that references the IAthlete domain in-
terface. Only component d can be allocated to the tAthlete
template since this component is the only one that meets the
template structural requirements. A total of two components
are available for the tLStick and tRStick templates and exact-
ly one component must be allocated to each of these two
templates, in order to be able to meet the application re-
quirements. This results in a number of possible allocations
of components to templates. The configuration algorithm
makes a selection, which is then implemented by the frame-
work. In the next step, ProvidedServices is allocated to Pro-
videdTemplateInterfaces and RequiredServiceReferenceSets
to RequiredTemplateInterfaces.

49Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

Figure 16. Allocation of components to templates.

ProvidedServices of a component could fit to several

ProvidedTemplateInterfaces. Since ProvidedServices must
be allocated to ProvidedTemplateInterfaces during run time,
the framework must make a decision here. The same applies
to RequiredServiceReferenceSets and RequiredTemplate-
Interfaces. For example, the RequiredTemplateInterfaces of
the tAthlete template in Figure 16, do not reference any inter-
face roles but only the IStick domain interface as presented in
Figure .

Figure 17. Allocation of component interfaces to template interfaces.

In this example, the RequiredServiceReferenceSet r1 can

be allocated to RequiredTemplateInterface rtA1 as well as
rtA2. The same applies to RequiredServiceReferenceSet r2.

Within the algorithm in Figure 15, all possible alloca-
tions, which result from the allocation of components to
templates in the previous step are now iterated. In the com-
ponent model, the allocation between RequiredServiceRefer-
enceSet and RequiredTemplateInterface, and between Pro-
videdService and ProvidedTemplateInterface are represented
by the assignedTo association. The possibilities are iterated
with the possibleInterfaceAssignmentSets iterator (lines
5+6). The returned assignment is then implemented by call-
ing realize. In the next step, the uses set is assigned to the
RequiredServiceReferenceSets of the components, which
were allocated previously to the selectedComponents quanti-
ty. The last step for the generation of the configuration algo-
rithm consists of creating the use relations between the com-
ponents.

The goal is assignment of the uses set for each Required-
ServiceReferenceSet of all components included in the appli-

cation, so that the requirements of the application specifica-
tion can be met.

It often happens that there are several possibilities for the
assignment of this set. The following situation is considered
for illustration purposes (see Figure 15). In this case, the use
of the provided service for both athlete components is con-
sidered for the RequiredServiceReferenceSet r1. In this case,
the empty quantity would not be an invalid assignment since
the value 1 is specified for the attribute minNoOfRequire-
dRefs of the component. In the algorithm in Figure 15, these
possible assignments are iterated with possibleUsageSets it-
erator, in order to create valid application configurations.

Figure 15. Example for possible assignments of the quantity uses.

After making a component selection, subsequently allo-

cating the services and then assigning the uses set of all Re-
quiredServiceReferenceSets, a running configuration is cre-
ated automatically. For this purpose, the self-configuring
components are informed at each stage if they are part of the
application, to which template they should allocate them-
selves, to which template interfaces their services and Re-
quiredServicesReferenceSets should be allocated and with
which service they should connect. The individual iterators
of the algorithms are realized for individual components.

After creating a configuration with the procedure de-
scribed above, the remaining applications of the application
specification can now also be checked for conformity. The
predicate isValidConfiguration must now be evaluated. Only
if this predicate is evaluated to true, the application changes
its state to RUNNING. Otherwise, a new configuration must
be created. The algorithm presented here is only a sketch of
the procedure for creating a configuration, which conforms
to the defined application architecture-specific requirements.
Other algorithms are possible and can be found in [24].

VIII. CONCLUSION AND FUTURE WORK
In this paper we introduced a major extension of our dy-

namic adaptive system infrastructure called DAiSI. DAiSI
enables applications to adapt themselves automatically dur-
ing run time. It is able to integrate new components during
and handle the loss of components by reconfiguration. In the
former version, DAiSI tried to find a configuration, which is
optimal for each individual component. As this may lead to
applications where each component is running in its optimal
configuration, but where the application as a whole does not
meet the requirements, we presented an extension of DAiSI,
which enables the specification of application-specific re-
quirements on the one hand, and its automatic realization
during run time on the other.

50Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

Our concept introduced so called templates, which define
fitting-criteria for component instances. Furthermore, the
concept enables users to specify requirements regarding con-
nections between components. Our infrastructure is able to
interpret this specification, and realize a suitable application
configuration based on available components in the system.
One of the major characteristics of our approach is, that dur-
ing design-time no knowledge about existing components
and their instances is required. The match of components to
templates is performed automatically during runtime based
on provided/required interfaces, interface roles and predi-
cates.

In the future, we will further extend our concept and our
implementation by providing more specification capabilities
regarding component selection and component interconnec-
tion. There is for example a possibility missing to specify an
order on available components to enforce the use of, e.g., the
best three components. Furthermore, there still exists poten-
tial for improvements of our prototypical implementation.

However, the extension presented in this paper provides a
sustainable concept towards the realization of decentralized,
dynamic adaptive systems, while satisfying application-
specific requirements, which has been implemented as a
proof of concept.

REFERENCES
[1] L. Northrop, et al., “Ultra-large-scale systems—the software

challenge of the future,” Software Engineering Institute, Car-
negie Mellon, Tech. Rep., June 2006.

[2] D. Leffingwell and D. Widrig, “Managing Software Require-
ments: A Unified Approach,” Addison-Wesley Professional,
2003.

[3] J. Kramer and J. Magee, “Self-managed systems: an architec-
tural challenge,” in FOSE ‘07 Future of Software Engineer-
ing, IEEE Computer Society, Washington DC, USA, 2007,
pp. 259–268.

[4] B. H. C. Cheng, R. Lemos, H. Giese, P. Inverardi, and J.
Magee, “Software engineering for self-adaptive systems: A
second research roadmap,” in Software Engineering for Self-
Adaptive Systems II, Springer, Heidelberg, 2013, pp. 1–26.

[5] J. Kramer and J. Magee, “A rigorous architectural approach to
adaptive software engineering,” Journal of Computer Science
and Technology, vol. 24, no. 2, 2009, pp. 183–188.

[6] D. Niebuhr, H. Klus, M. Anastasopoulos, J. Koch, O. Weiß,
and A. Rausch, “DAiSI—dynamic adaptive system infrastruc-
ture,” Technical Report Fraunhofer IESE, 2007.

[7] C. Szyperski, “Component Software,” Addison Wesley Pub-
lishing Company, 2002.

[8] M. P. Papazoglou, “Service-oriented computing: concepts,
characteristics and directions,” in Proceedings of the 4th In-
ternational Conference on Web Information Systems Engi-
neering (WISE 2003). 10-12 December, Rome, Italy: IEEE
Computer Society Press, 2003, pp. 3–12.

[9] J. Magee, J. Kramer, and M. Sloman, “Constructing distribut-
ed systems in conic,” in IEEE Transactions on Software En-
gineering vol. 15, no. 6, 1989, pp. 663–675.

[10] J. Kramer, “Configuration programming: a framework for the
development of distributable systems,” in Proceedings of
IEEE International Conference on Computer Systems and
Software Engineering (COMPEURO 90), Tel-Aviv, Israel,
1990, pp. 374–384.

[11] J. Kramer, J. Magee, M. Sloman, and N. Dulay, “Configuring
objectbased distributed programs in rex,” Software Engineer-
ing Journal, vol. 7, no. 2, 1992, pp. 139–149.

[12] R. R. Aschoff and A. Zisman, “Proactive adaptation of ser-
vice composition,” in: H. A. Müller, L. Baresi (Eds.): Pro-
ceedings of the 7th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems
(SEAMS'12): Zürich, Switzerland, June 4-5, 2012. Los
Alamitos, California: IEEE Computer Society Press, 2012,
pp. 1–10.

[13] A. Rasche and A. Polze, “Configuration and dynamic recon-
figuration of component-based applications with microsoft
.NET,” in Proceedings of the 6th IEEE International Sympo-
sium on Object-Oriented Real-Time Distributed Computing
(ISORC 2003). 14-16 May 2003, Hakodate, Hokkaido, Japan:
IEEE Computer Society Press, 2003. ISBN 0-7695-1928-8,
pp. 164–171.

[14] T. Kawamura, J.-A. De Blasio, T. Hasegawa, M. Paolucci,
and K. Sycara, “Public deployment of semantic service
matchmaker with uddi business registry,” in The Semantic
Web ISWC 2004, ser. Lecture Notes in Computer Science, S.
McIlraith, D. Plexousakis, and F. van Harmelen, Eds. Spring-
er Berlin Heidelberg, 2004, vol. 3298, pp. 752–766.

[15] T. Haselwanter, P. Kotinurmi, M. Moran, T. Vitvar, and M.
Zaremba, “Wsmx: A semantic service oriented middleware
for b2b integration,” in International Conference on Service-
Oriented Computing. Springer, 2006, pp. 4–7.

[16] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steen-
kiste, “Rainbow: Architecture-based self-adaptation with re-
usable infrastructure,“ in Computer 37, 2004, No. 10, pp. 46–
54.

[17] S. Cheng, “Rainbow: Cost-effective software architecture-
based self- adaptation,“ Pittsburgh, Carnegie Mellon Univer-
sity, School of Computer Science, Dissertation, 2008.

[18] J. Rellermeyer, G. Alonso, and T. Roscoe, “R-Osgi: distribut-
ed applications through software modularization,” in Proceed-
ings of the ACM/IFIP/USENIX 2007 Conference on Middle-
ware (Middleware ’07), Newport Beach, California, 2007, pp.
1–20.

[19] OMG, OMG Unified Modeling Language (OMG UML), Su-
perstructure, Version 2.4.1, Object Management Group Std.,
Rev. 2.4.1, August 2011. [Online, retrieved: 06, 2015], avail-
able from: http://www.omg.org/spec/UML/2.4.1

[20] H. Klus, A. Rausch, and D. Herrling, “DAiSI-dynamic adap-
tive system infrastructure: component model and decentral-
ized configuration mechanism,“ in International Journal On
Advances in Intelligent Systems, vol. 7, no. 3 & 4, 2014, pp.
595–608.

[21] H. Klus, A. Rausch, and D. Herrling, “Interface roles for dy-
namic adaptive systems,” in Proceedings of ADAPTIVE
2015, The Seventh International Conference on Adaptive and
Self-Adaptive Systems and Applications, 2015, pp. 80–84.

[22] D. Niebuhr and A. Rausch, “Guaranteeing correctness of
component bindings in dynamic adaptive systems based on
run-time testing,” in Proceedings of the 4th Workshop on
Services Integration in Pervasive Environments (SIPE 09) at
the International Conference on Pervasive Services 2009
(ICSP 2009), 2009, pp. 7–12.

[23] D. Niebuhr, “Dependable dynamic adaptive systems: ap-
proach, model, and infrastructure,” Clausthal-Zellerfeld,
Technische Universität Clausthal, Department of Informatics,
Dissertation, 2010.

[24] H. Klus, “Anwendungsarchitektur-konforme konfiguration
selbstorganisierender softwaresysteme,” translates to: Appli-
cation architecture conform configuration of self-organizing
softwaresystems, Clausthal-Zellerfeld, Technische Universität
Clausthal, Department of Informatics, Dissertation, 2013.

51Copyright (c) IARIA, 2015. ISBN: 978-1-61208-421-3

AMBIENT 2015 : The Fifth International Conference on Ambient Computing, Applications, Services and Technologies

