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Email: gauss.lee@his.se, paul.hemeren@his.se
†Department of Design, Faculty of Textiles, Engineering and Business, University of Borås, Sweden
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Abstract—In this article, the authors present an interdisciplinary
project that illustrates the potential and challenges in dealing
with electronic textiles as sensing devices. An interactive system
consisting of a knitted sensor glove and electronic circuit and a
numeric hand posture recognition algorithm based on k-nearest-
neighbour (kNN) is introduced. The design of the sensor glove
itself is described, considering two sensitive fiber materials –
piezoresistive and piezoelectric fibers – and the construction using
an industrial knitting machine as well as the electronic setup is
sketched out. Based on the characteristics of the textile sensors,
a kNN technique based on a condensed dataset has been chosen
to recognize hand postures indicating numbers from one to five
from the sensor data. The authors describe two types of data
condensation techniques (Reduced Nearest Neighbours and Fast
Condensed Nearest Neighbours) in order to improve the data
quality used by kNN, which are compared in terms of run time,
condensation rate and recognition accuracy. Finally, the article
gives an outlook on potential application scenarios for sensor
gloves in pervasive computing.

Keywords–smart textile controllers, kNN, piezoresistive and
piezoelectric fibers

I. INTRODUCTION

Artificial Intelligence (AI) research into pervasive com-
puting deals with intelligent systems that are usually highly
distributed in space with a multitude of possible input and
output modalities. In addition to static distributed sensors, mo-
bile and wearable sensors have recently become increasingly
important to gather more accurate and different information on
the state and performance of the user [1], e.g., to track posture,
movements, or even physical and emotional states. Due to
the advances in textile technology and materials research,
textile sensors have emerged as a new alternative to established
electronic components in wearable applications. As Roggen
et al. [2] point out, textile sensors are particularly useful in
wearable applications for their close proximity to the skin,
potential multimodality, convenience and wearing comfort,
long-term use, and user acceptance.

However, textile sensors also pose a challenge on the
computing part, as they tend to be much less predictable than
conventional electronic components. In fact, textile sensing
materials often produce a significant amount of noise; they are
subject to a lot of mechanical stress and tend to wear out over
time; their performance can be dependent on environmental
influences such as temperature and humidity; and their physical

structure is much more difficult to model and predict before
the actual production, compared to standard sensors. The use
of textile sensors in a pervasive computing system therefore
relies on the use of an appropriate recognition algorithm that
is able to process the sensor data in a meaningful way.

In this paper, we present an interactive system that uses
a textile sensing device - that is, a glove with sensors on
each finger - as a wearable controller in a pervasive computing
context. Through the design of a complete e-textile system, we
also would like to comprehend fundamental benchmarks for a
sustainable and reusable textile sensing device. Gloves are a
popular and well-explored form of a wearable textile that can
be used for posture and gesture recognition to interact with
computational systems [3]. Data gloves have been used for
sign language recognition, robot control, graphic editor control,
virtual environments, number recognition, television control,
3D modelling [4]. Our goal was to provide an integrated, low-
level, low-cost alternative to more accurate and sophisticated
sensor gloves. Unlike most commercial systems, this system
uses sensors from textile materials that are fully integrated
with the surrounding structure, and therefore both lightweight
and comfortable as well as cheap and easy to produce. As
such, they provide a robust and mobile solution which is
less sensitive to distance and lighting conditions than camera-
based recognition systems, adaptable, and less complicated
than commercial system with a higher sensor density and
accuracy. We also explain the adaptation of existing gesture
recognition algorithms for the use with the new textile sensors.
We conclude with a test case to evaluate the combination of
textile hardware, wearable setup and a recognition algorithm.

In section II-A, we give a brief overview of the hardware
components of the interactive system we used, from hardware
(sensor glove) to algorithm. We then introduce an example
application for numeric hand posture recognition, for which
we deployed a k-nearest-neighbour (kNN) approach, in section
II-B. The experiments to compare the two kNN models based
on both simulation and sensory data are described in section
III together with a performance demonstration of the algorithm
with a NAO robot. In Section IV, we summarize the perspec-
tive of smart textile technology used for activity recognition.
We also conclude with an assessment of the challenges of
applying e-textile sensors in our sensor glove application.
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II. THE GLOVE CONTROL SYSTEM

A. Hardware Setup

Data gloves are a popular application for wearable sensors,
as they provide wearer comfort while enabling the monitoring
of hand movements and postures. Existing projects have used
a broad range of sensor technologies to detect finger bending,
such as commercial bending sensors [5], [6], [7], optical fibers
[8], [9], or printed polymer sensors [10]. The textile, in these
cases, merely serves as a carrier substrate for the sensor
components. In contrast, our work demonstrates bend sensitive
gloves where textile fibres with sensor properties were directly
integrated in the textile during the knitting process (Figure
1), resulting in a comfortable and lightweight construction.
Unlike existing systems, these gloves are fabricated as one
piece, with the sensors being part of the knitted structure.
This approach is more similar to [11], where the sensor
yarn is integrated into a hand-crocheted glove. Being fully
automated, the production process and the appearance of the
glove corresponds to a normal knitted glove, resulting in a
lightweight and cheap wearable that could be produced on a
large scale. For our glove, we considered two e-textile sensor
materials, piezoresistive and piezoelectric fibers.

Figure 1. The e-textile glove used in our work. The light grey fibres are
piezoresistive fibres. The buttons are sewn on the textiles to connect to the

flexible circuit board.

1) Piezo-resistive material: Piezo-resistive materials
change their resistance when deformed, i.e., pressed or
stretched. While this is essentially true for all conductive
materials, the material’s selection for a certain application
will also depend on the material’s mechanical properties and
its suitability for the relevant manufacturing process. Textile
piezo-resistive sensors may be constituted by, e.g., silicon-
based coatings filled with carbon particles [12], carbon-coated
rubbery fibres [13] or conductive fibers arranged in a
stretchable and elastic textile structure [14]. In our project, we
use a piezo-resistive thread (Bekaert Bekinox c©50/2 [15]) that
is a blend of 20% short steel fibers and 80% polyester yarn
with an average conductivity of 50Ω/cm under strain that
has been used in a similar project to produce bend sensors
on a glove [11]. When in a relaxed state, only a few steel
fibers make contact within the thread, resulting in a high
resistance. When the thread is stretched, the steel fibers are
forced closer to each other, which increases the conductivity
of the material. When used as sensors, the resistance of a
piezoresistive fiber is continuously measured and will be
proportional to the amount of pressure or strain.

This piezoresistive thread is readily available, relatively
cheap, easy to work with, making it simple to use as a
variable resistor in a simple voltage divider circuit, where

the voltage drop over it is proportional to its resistance. The
material is not insulated and surface contact is sufficient for
electrical connections. The piezoresistive effect, however,
depends highly on the production conditions and composition
of the sensors in a particular object: It can be influenced by
the yarn tension on the knitting machine, by the density of
the knitted structure, the stretchability and elasticity of the
surrounding material, as well as the fit of the wearable it is
part of. Also, the resistance of the material is considerably
high, adding up to a resistance of up to 1MΩ for a single
sensor in relaxed state.

2) Piezo-electric fibers: Piezoelectric materials generate
an electric voltage when deformed. This property is present
in different types of materials, e.g., minerals, ceramics and
polymers, and is due to a persistent polarisation in the
molecular structure, which causes a change in the charge
density in response to deformation. This can be measured
as a transient voltage across the material’s boundaries. The
continuous production of the piezoelectric polymer fibers used
in this work was recently presented [16]. This fibre (produced
and kindly supplied by Swerea IVF, Mölndal, Sweden) can be
readily processed in standard textile production methods, e.g.,
knitting, weaving, embroidery, and is highly sensitive to strain.
For example, a textile band woven from this fibre and fastened
around the chest of a person, has been shown to generate clear
output signals in response to the wearer’s heartbeat [17].
An advantage of piezoelectric materials is that, as opposed
to the piezo-resistive ones, they generate their own voltage.
In practice though, especially in polymers, the generated
current is extremely small and the piezoelectric fiber must
be connected to an operational amplifier working as a high
impedance buffer, for the output signals to be of a useful
amplitude. Thus, in comparison to the piezoresistive fiber,
the electronic assembly for the piezoelectric material is more
complex and requires more components.

3) Robot and its software interface: The humanoid used in
our work is a commercialised robot from Aldebaran Robotics,
called NAO [18]. The NAO robot has 25 degrees of freedom
and multiple useful sensors (e.g., ultrasound, gyro and motor
sensors). It can also perform a lot of sophisticated functions,
such as dancing, walking and speaking. The software embed-
ded in the robot is called Naoqi which works as a mid-ware to
synchronise all the modules running on the NAO. In our work,
the hand posture recognition module and the entertainment
module are being synchronised for communicating with each
other based on hand postures.

B. Data Processing
The piezoresistive sensors in the glove show a complex

response to bending of one or several fingers at a time that
does not correspond with a straightforward proportional
increase in conductivity. This behaviour is somewhat typical
for wearables. Most applications of wearable devices involve
a sophisticated process of translating sensory data into context
specific meanings based on a variety of computational models
[2]. In order to interpret data from wearable sensors, many
different pattern recognition and machine learning techniques
can be used, such as neural networks [19], fuzzy logic models
[20], dynamic time warping [21] and knowledge based
models [22]. Generally speaking, these techniques are usually
employed in an activity recognition chain which includes
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sequential functions of data preprocessing/segmentation,
feature extraction, classification, classifier fusion, decision
filtering and high-level reasoning[2]. The activity recognition
chain is a salient part of the whole e-textile system
consisting of a three-level design: sensor hardware, signal
processing/activity analysis and high-level interaction[2].
The sensor hardware design refers to the process of sensor
design and characteristics test. After a proper sensor test and
signal preprocessing (which guarantees that the sensor is
appropriately designed and signals are not noisy), acquired
data can then be used in an activity recognition chain
(ARC). In the end of an ARC, a high level interactive
model (if required) might be designed for more sophisticated
applications (e.g., emotion recognition, cognitive processes).

C. kNN: an algorithm for hand posture recognition

Generally speaking, there are three categories of train-
ing/learning algorithms broadly used for recognizing different
hand postures with high accuracy: neural networks (NN),
hidden markov models (HMM) and instance-based learning
models (kNN) [3]. However, there is no guarantee that NN or
HMM can converge if structure configurations of NN or HMM
are inappropriately set (e.g., number of layers for NN, number
of hidden states for HMM) [3]. kNN can avoid no-convergence
risk as there is always a classification decision based on
calculation of k nearest neighbours. We therefore choose an
instance based model (kNN) because of its simplicity for
implementation. Also, as an unsupervised learning technique
[23], kNN is data driven, which means it has the ability of
continuous training with more data. This provides an easy
approach to calibrating for new users by involving their data
in a continuous training process.

1) kNN algorithms: k nearest neighbours is an algorithm
that classifies a new dataset x based on a training data D. x can
be a dataset with m dimensions and D is a labeled database
(all the datasets have been correctly labeled with classes)
containing n datasets. A normal kNN should include two
general steps for classifying an input dataset [24]: a) calculate
the k nearest datasets within D for the input dataset x. b)
return the class that represents the maximum of the k datasets.
The nearest neighbours can be determined by the calculation
based on distinct distance metrics, such as euclidean distance,
minkowski distance and mahalanobis distance [24]. In our
work, we use the simplest euclidean distance.

Since the distance calculation dependent on training
database D directly determines the class of input dataset x,
the quality of the database becomes a salient factor for kNN
based classifiers. There are two factors that might potentially
affect the quality of the database: a) training data size (n)
and b) dimensions or attributes of data (m). Obviously, if
the training data size is too large, it will deteriorate the
speed of distance calculation in real time, causing the failure
of algorithm implementation. In order to avoid this, a data
condensation technique is needed to remove the redundancy in
the training data, which then leaves the minimum number of
data for sketching the probabilistic distribution of the original
data [25]. On the other hand, kNN still suffers the curse of
dimensionalities [26]. A dataset with too many dimensions or
attributes can cause the failure of kNN classification. Solutions
for this problem are using dimension reduction techniques,

e.g., principal component analysis [23] and backward elimi-
nation [26]. Meanwhile, in order to have usable training data,
some preprocessing techniques are necessary for standardizing
the data, e.g., signal filtering (remove noise in the data), signal
segmentation and normalization [3].

2) Data preprocessing: In our work, data preprocessing
only involves filtering and normalization. The aim of filtering
is to maximize the signal to noise ratio so that the influence
of noise can diminished. The filtering has been fulfilled in
electronic circuits by using standard low-pass resistor capac-
itor (RC) filters. Normalization is calculated on each dataset
following x′D = xD−min(xD)

max(xD)−min(xD) , where xD and x′D are a
dataset before and after normalization, respectively. min(xD)
is the minimum sensor value 0 and max(xD) is determined
by the sensor value with users fully bending each finger.
Then datasets are collected for postures corresponding to each
respective number and captured variation when pivoting a
user’s wrist.

3) Data condensation: Since each dataset used in our work
only contains five necessary numbers/dimensions from five
fingers, the data dimension can be considered to be minimum
so that dimension reduction algorithms are not used in our
work. However, the size of the training data used in our
work is 2000 for each posture which contains 1500 and 500
datasets for training and testing respectively. It is too large
for real time implementation. Therefore, data condensation
is necessary. The aim of data condensation is to find a
subset of the original training data, which does not influence
classification results [25]. There are a lot of types of data
condensation algorithms. According to a complete survey of
different data condensation techniques [27], CNN and FCNN
outperform most of other algorithms with the good features
of condensation rate and computation complexity. Therefore,
we apply both algorithms on simulated gaussian data and hand
posture data for comparison(for algorithm details, please refer
to [28] and [29]).

III. EXPERIMENTS AND RESULTS

In this section, we apply kNN algorithms on the sensor
glove for numeric hand posture recognition. In order to clearly
compare the two data condensation techniques used in the
experiments, we first test their performance on a database
containing three gaussian generated data classes. Then, we
apply the two algorithms to the numeric hand posture database.
Finally, a human-robot interaction demonstration is set up
to show that a humanoid can be controlled by recognising
numeric hand postures as “menu selection” input.

A. The glove textile and circuit construction
To knit a glove with each material, a Shima Seiki

SWG091N industrial knitting machine with six yarn feeders
has been used. The machine and the accompanying pro-
gramming software provide templates for gloves that can
be customized for specific hand measurements. The knitting
process of a five-finger glove first produces the index, middle
finger, ring finger and little finger separately, then proceeds
with the upper hand part, adds the thumb and finishes the
glove. This sequence requires that after finishing a finger, all
yarns are automatically cut. The amount of yarn feeders limits
the amount of yarns that can be used at the same time in one
knit structure.
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Given these constraints, the design of the sensors on the
glove is limited to the length of the fingers and cannot easily
be extended over the back of the hand. For the piezoelectric
fiber, it would require re-connecting the fiber cores between
the finger and the back of the hand; for both fiber types, it
would be necessary to have more than six yarn feeders - one
for each finger including the thumb, one for the basic material
(wool), and one for the high-conductive copper thread (7/1
high flex copper thread from Karl Grimm [30]) that is used
for the connections to each finger on the palm side of the
hand.

Both sensor types are to a certain degree ambiguous in
their response - they do not only react to stretching (i.e.,
bending of the fingers), but also to pressure (e.g., pressing
the knuckles without bending the fingers). The two fiber types
provide different kinds of signals: The piezoresistive fiber
allows for continous readings of the amount of bending. The
piezoelectric fiber produces an event-based signal depending
on the force and velocity of the bending motion. For the
posture recognition, we decided to work with a glove version
that had piezoresistive sensors on all five fingers (Figure 1).
While sensors and - to some extent - the electric connections
can be very well integrated with the knitted structure of the
glove, the more delicate electronic components of a wearable
device usually have to be arranged on a more conventional
substrate and then attached to the e-textile device through
mechanical connections. In our case, all components other than
the sensors and the connection to the sensor were mounted on
a custom made printed flexible circuit board (C.I.F. AN10 1-
sided plain flex circuit board with 35 microns copper layer),
which was attached to the glove with snap buttons and closed
around the wrist like a bracelet (Figure 2). This construction
principle, which has been developed by [31], makes the sensing
and communication circuit small and lightweight so that it can
be conveniently used.

For both sensor gloves, we used an ATTiny 84 micro-
controller as processor to read the sensor data from either
the voltage divider or the amplifier (LMC 660 op amp) with
a simple program that outputs the sensor data to a serial
connection. The connection runs via a six-pin header that can
be connected to a Bluetooth device or a FTDI board with a
mini USB plug with the same footprint. The circuit can run on
the power from the FTDI or on a LiPo coin cell battery placed
in a small pouch on the flex circuit itself. For the piezoresistive
glove, large capacitors (1µF) have been added parallel to the
pullup resistors for filtering. 1).

Figure 2. The flexible circuit wearable on one’s wrist with component names
and labels.

B. Test on simulation data
In order to visualise how the two data condensation tech-

niques perform, we chose to test them with a simulation
training database with three gaussian generated classes. Each
data set contained a two dimensional coordinate in a x − y
space and each class contained 500 datasets. The testing
database included 300 data of which each class had 100
datasets. The condensed database based on CNN and FCNN
is shown in Figure 3.
From results shown in Figure 3, we clearly see that the FCNN
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Figure 3. Upper: original database (shown in blue, red and yellow for three
classes) and FCNN condensed database (black). Down: original database

(shown in blue, red and yellow for three classes) and CNN condensed
database (black).

condensed database is more aligned close to the borderlines
separating every two classes except for the centroids. However,
the CNN condensed database contains less data and is more
distributed within the class clusters. In machine learning,
finding class borderlines is very useful and important for
classifiers such as a support vector machine, regression models,
neural network and kNN[23]. Also it is more convenient to
classify input data based on an FCNN condensed database
with clear class boundaries. When verifying the trained model
with the kNN rule (k = 3) based on the testing database, the
accuracy rate is 98% and 93% for FCNN and CNN condensed
data respectively. Clearly, in the case of simulation data, FCNN
outperforms CNN in terms of accuracy. However, it takes less
than 2 minutes to run CNN, compared to 10 minutes for
FCNN.

C. Hand posture recognition experiments
The numeric hand postures (from 1 to 5) adopted in our ex-

periments are shown in Figure 4. Using the sensor glove, 8000
datasets was collected from one user; each posture corresponds
to 2000 datasets. For each posture, the database was split into
1500 for training and 500 for post-training test. Each data
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contained five dimension input from each finger respectively.
Then, CNN and FCNN were used to extract condensed data
out of 6000 datasets. We assume that a calibration process
(retraining) needs to be done for each user since every user
has different hand size. The results of the comparison between
CNN and FCNN are shown in Table I.

Figure 4. Hand postures representing numbers from 1 to 5 (from left to
right).

TABLE I. Comparison of CNN and FCNN

Algorithms Training Time (seconds) Condensed rate Accuracy
CNN 127.543s 94.43% 75.4 %
FCNN 5 hours (approximately) 87.5% 96.3 %

NAO robotcommunication 
hardware

Figure 5. The sensor glove used in a human robot interaction demonstration.

From the results in Table I, we can draw some conclusions
about the comparison of the two condensation techniques: a)
in terms of condensation rate, CNN tends to remove more
data than FCNN while FCNN can classify with much higher
accuracy. There might be a trade off between condensation
rate and classification accuracy. b) The training time of CNN
is rather shorter than FCNN as FCNN is an incremental
algorithm which involves a thorough database search for
every incremental step. This result is similar to the results
obtained by Amal et al [27] pertaining to the advantages and
disadvantages of different data condensation techniques. With
condensed datasets, kNN algorithms can run very fast. The
response time for a new posture changed from a previous one
is on average smaller than 0.01s compared to 1.2s for non-
condensed datasets.

D. A robotics demonstration
Finally, the use of a self-designed sensor glove as an

external controller to interact with a humanoid has been
demonstrated. This human robot interaction relied on a pre-
viously trained classifier in real time, requiring the classifier
to be both accurate and fast-responding. Three games were
designed for the user to try on the NAO robot (Figure 5).

The user could use hand gestures to communicate with the
robot both to select which game to play, and to actually play
it. For example, in the game named “number reaction”, the
user needed to react with hand postures to a number said by
the NAO robot. This fully demonstrates the function of kNN
model working with the sensor glove. As a result, the well-
trained classifier could quickly determine hand postures in real
time from data streams (Please refer to the video [32]).

IV. CONCLUSION

A. Challenges for our e-textile glove system
In this article, we demonstrated a smart textile glove used

as a controller for an application in a robotics control context.
Presumably, the smart textile glove can also be applied to
control other pervasive devices which are communicable and
controllable to our systems. However, there are still some chal-
lenges in our system, due to the variability in the characteristics
of textile sensors:

• Sensitivity – In this particular e-textile system, the upper
finger knuckles were not covered by the sensors, which
reduces the sensitivity of the sensors for detecting finger
bending. The extent and placement of the sensors can
be improved by elongating the sensor to cover all finger
knuckles and to use a looser fit for the glove, e.g., by
adding elasthane to the non-conductive basis material.

• Hysteresis– Textile materials typically exhibit stress relax-
ation and creep, causing the sensitivity to degrade after a
certain period of constant use. This fact limits the textile
materials useful in sensor applications to those with high
elasticity and good ageing properties, but also inevitably
introduces a factor of time dependence in all measure-
ments. One solution might be setting up a periodic test for
the sensor glove to measure and record the variation of the
sensors, and establishing a model to statistically describe
the variation in order to compensate/cancel effects of
deterioration.

• Offset – A textile sensor will typically have a pre-strain,
depending among other things on the size of the wearer.
Integrating data from a large number of users is of great
importance to establish a general calibration system mak-
ing the sensor glove easily reusable. In our system, we
use a retraining strategy to solve this problem. Obviously,
retraining for every user will increase calibration time. A
solution to this problem might be to statistically model
the probabilistic variation of data from different users
and establish a general calibration system which has the
ability to integrate new data to reduce calibration time.

B. Future work
In future work, the whole sensor glove system needs to be

improved from three different perspectives: a) Improvement
on hardware design. Considering the constraints of the knitting
machine, different knitting patterns and techniques must be
tried to provide a more meaningful sensor allocation on the
back of the hand. This might be achieved by combining
piezoelectric fibers (to detect the bending motion) with
piezoresistive fibers (to detect the posture). b) Improvement
on the activity recognition chain. Calibrating the “ground
truth” of the sensor glove is necessary to establish an accurate
model for different hand gestures. This needs a detailed
model of hand kinematics by clarifying the variation of sensor
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sensitivity and users’ different hand sizes. The final aim of
ground truth modelling is to accurately map one user’s hand
motion into a 3-dimensional Cartesian space. c) Improvement
on applications. We assume that a simple numeric hand
posture recognition system can be extensively developed to a
sign language interpretation system. This is useful for helping
speechless people to communicate with an intelligent machine.
This application upgrade involves not only improvement on
hardware by increasing the sensor functionality, but also by
improving techniques for interpreting dynamic hand gestures
in a sequence instead of only recognizing static hand postures.
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