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Abstract—In recent years, smartwatches have emerged as a
viable platform for a variety of medical and health-related
applications. In addition to the benefits of a stable hardware
platform, these devices have a significant advantage over other
wrist-worn devices, in that user acceptance of watches are
much higher than other custom hardware solutions. In this
paper, we describe the development of an Android application
on a Samsung smartwatch device for evaluating eating habits
using a microphone and various signal processing techniques.
Though other works on acoustic monitoring of food habits
have been conducted, the varied arm movement during eating
creates a unique set of challenges that our work attempts to
address. Evaluation results confirm the efficacy of our technique;
classification was performed between apple and potato chip bites,
water swallows, and talking, with an F-Measure of 94.5% based
on 200 collected samples. Index Terms—smartwatch; nutrition;
spectrogram

I. INTRODUCTION

There is little doubt that obesity is associated with vari-
ous negative health outcomes such as an increased risk for
stroke, diabetes, various cancers, heart disease, and other
conditions. In 2008, medical costs associated with obesity
were estimated to exceed $147 billion, with over one-third
of adults in the United States estimated to be obese [1]. The
two major contributors to weight gain are an inactive lifestyle
and poor diet. Though the former has been addressed by
many wearable devices in recent years both in research and
the consumer electronics field, few works exist on automatic
detection of dietary habits in an inconspicuous form-factor
[2][3][4]. Instead, characterization of an individual’s eating
habits is possible through manual record keeping such as food
diaries, 24-hour recalls, and food frequency questionnaires.
However, these approaches suffer from low accuracy, high
user burden, and low rates of long-term compliance. Wireless
health-monitoring technologies have the potential to promote
healthy behavior and address the ultimate goal of enabling
better lifestyle choices.

In recent years, several electronic devices have been pro-
posed for monitoring dietary habits. However, most works
attempt to characterize eating from patterns in chewing and
swallow counts, and very few attempt to identify the nutritive
properties of the foods themselves. Therefore, a fundamental
question in the field of electronic food monitoring is the
validity of chew and swallow counts as a heuristic for es-
timation of Caloric intake. A very recent work by Fontana
et al. [5] addresses this issue by comparing several different
techniques for estimation of Caloric intake: weighed food
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Fig. 1. A high level architecture of the proposed system is shown above.
Many different forms of eating can be detected using a smartwatch,

provided the appropriate hand is used and the watch is brought close
enough to the mouth.

records (gold standard), diet diaries, and electronic sensor-
based measurements of chews and swallows. The conclusion
of this study was that chew and swallow counts were more
closely affiliated to the gold standard measurement than self-
reporting methods and photographic food records.

Many prior works address the problem of nutrition moni-
toring by processing audio signals associated with ingestion
[6][7]. Typically, these systems use a throat microphone for
recognizing deglutition (swallows), or using time-frequency
decomposition techniques, such as Wavelet Packet Decompo-
sition (WPD) or Spectrogram Analysis to extract distinctive
features, and either classify between different food groups or
recognize anomalies in swallow patterns. While many of these
works are novel from a perspective of algorithmic techniques,
they generally propose custom hardware solutions or bulky
non-standard equipment which are of limited use outside of
clinical environments.

Recently, smart-watches have emerged as a new platform
that provide several promising applications such as wrist-
worn activity monitoring, heart rate tracking, and even stress
measurement. Watch usage is well established and has a
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high level of social acceptance, as confirmed not only by
our personal studies but by their ubiquity in day-to-day life.
Furthermore, the smart-watch platform provides many useful
services that can collectively improve user adherence rates,
rather than specialized devices with just one application that
may fail to sustain a user’s interest.

This paper explores the idea of tracking eating habits using
a custom Android application on the smart-watch platform.
Though identifying eating-related gestures using wrist-worn
devices is a viable application of the watch, the focus of our
work is to explore the idea of using audio to detect eating
behavior based on bites, rather than swallows as other works
have done. A high-level system architecture is presented in
Figure 1. The first step is audio-based acquisition of eating-
related sounds such as bites, acquired from the microphone
integrated within the smartwatch. After data acquisition, the
audio is processed using various classifiers to identify the
sound and infer the associated activity. After synchronizing
with cloud services, the user is provided with information
about their recent eatings habits, and appropriate feedback
when necessary.

The paper is structured as follows. In Section II, we
present related work. In Section III, we describe the system
architecture. Section IV presents an overview of the proposed
algorithms for classification. Section V describes the experi-
mental procedure, followed by results in Section VI. Section
VII concludes the paper.

II. RELATED WORK

Many works have proposed detecting food intake using
static microphone placement, generally on the throat. For
example, the work in [8] uses acoustic data acquired from
a small microphone placed near the bottom of the throat.
Their system is coupled with a strain gauge placed near the
ear. Other works attempt to characterize and address swallow
disorders in seniors, such as dysphagia [9].

In the work by Amft et al. in [10], authors analyze bite
weight and classify food acoustically from an earpad-mounted
sensor. In [7], the authors present a similar earpad-based sensor
design to monitor chewing sounds. Food grouping analysis
revealed three significant clusters of food: wet and loud, dry
and loud, soft and quiet. An overall recognition accuracy of
over 86.6% was achieved. A more recent study using support
vector machines have been able to reach swallow detection
accuracies of up to 84.7% in an in-lab setting [11]. These
devices are mounted very high in the upper trachea, near the
laryngopharynx.

In [12], Pler et al. proposed a system geared towards patients
living in ambient assisted living conditions and used miniature
electret microphones which were integrated into a hearing aid
case, and placed in the ear canal. In [13], the authors are able
to achieve a food detection accuracy of 79% using hidden
Markov models based on data acquired from microphones in
the ear canal.

III. SYSTEM ARCHITECTURE

Our proposed system does not require any custom hard-
ware: the Android application runs on Samsung Galaxy Gear
smartwatch running Android 4.2.1. This phone features an 800
MHz ARM-based processor, 512 MB of RAM, and a 320x320
pixel 1.6 inch display. The device also supports transfer of data
using the Bluetooth LE protocol, and can be configured to
access the Internet using Bluetooth tethering with compatible
smartphones.

Data was recorded using the Samsung Galaxy Gear micro-
phone in MPEG-4 Part 14 (m4a) format at a rate of 96 kbps,
as prior research has shown that the spectral energy for many
common foods is between 0-10 kHz, with highest amplitude
ranges between 1 and 2 kHz for water [14][15].

IV. ALGORITHM DESIGN

A. Frequency-Domain Evaluation: Liquids

We begin our algorithm analysis with the objective of
detecting liquid ingestion using a smartwatch. Because we
have a-priori knowledge about the kind of data we would
like to identify, we could pre-process the recorded data before
classification, as we describe in this section.
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Fig. 2. A spectrogram of an audio clip consisting of five swallows,
generated with a window of size 1024 samples. There is a visible change in
the spectral density at points corresponding with swallows as shown above.

Figure 2 shows a spectrogram corresponding with an audio
clip consisting of five water swallows acquired from the
smartwatch. This spectrogram is generated with the Short-
Time Fourier Transform, and shows changes in the frequency
distribution over time [6]. Figure 3 shows a more detailed
comparison between a brief interval of noise (1s) and a water
swallow. Generally speaking, the data of interest is between
600 Hz and 1 kHz, as shown by the deviation between the
signals at this time, and confirmed by the spectrogram shown
in Figure 2. We conclude that analysis of this frequency range
is critical for classification of liquid swallows. This observation
is confirmed by Figure 4, which shows the transformation
of an audio signal corresponding with ten swallows. The
top waveform is the original, while the bottom is the post-
processed filter output in which noise is substantially reduced.
This is achieved by band-pass filtering the audio data with
cutoffs of 600 Hz and 1 kHz and a rolloff of 48 dB- meaning
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Fig. 4. Post-processing of the audio signal corresponding with water can
dramatically improve signal-to-noise ratio. The top shows the original

waveform. The bottom shows the waveform after a bandpass filter is applied.

the amplitude decreases by 48 dB for each octave outside the
filter threshold.

While the resulting signal clearly shows the swallows,
marked by pronounced peaks, this technique is not very
generalizable to other foods besides water, because the data
is pre-processed. In the case of the frequency distribution of
a one second window around the initial bite of a potato chip,
compared to an equal period of chewing, the amplitude of the
bite signal is greater from 600 Hz to 4 kHz. However, the
pattern is not as distinctive as for liquids, and may certainly
vary between individuals with different eating styles. A more
generalizable approach is described in the next subsection.

B. Generalizable Feature Extraction

Detection of eating habits is somewhat different than that
of liquid consumption, as the smartwatch will not be near the
throat during a swallow. Therefore, in these cases we attempt
to identify when an individual bites into a food item rather than
chewing. The smartwatch platform is particularly well suited
for this application because the microphone will be nearest
to the sound source during the times at which the signal is
of interest. The proposed model must be flexible to identify
biting and swallowing for many different foods and drinks,
between individuals with varying eating styles.

openSMILE [17] is a feature extraction tool intended for
producing large audio feature sets. This tool is capable of
various audio signal processing operations such as applying

TABLE I. Partial List of openSMILE Speech Features from [16]

Speech-Related Features
Signal Energy Loudness Mel/Bark/Octave Spectra

MFCC PLP-CC Pitch
Voice Quality Formants LPC

Line Spectral Pairs Spectral Shape CENS and CHROMA

TABLE II. Partial List of openSMILE Statistical Features from [16]

Speech-Related Features
Means Extremes Moments

Segments Samples Peaks
Zero Crossings Quadratic Regression Percentiles

Duration Onset DCT Coefficient

window functions, fast-Fourier transforms,finite impulse re-
sponse filterbanks, autocorrelation, and cepstrum. In addition
to these techniques, openSMILE is capable of extracting
various speech related features and statistical features. A
partial list of extracted features is shown in Tables I and
II, respectively. After data is collected from a variety of
subjects eating several foods, classifiers can be used to identify
strong features that are accurate predictors of swallows and
bites for various foods, while reducing the dimensionality by
eliminating redundant or weakly correlated features.

A microphone on a Smartwatch can either constantly record
data, or be configured to record audio based on motion-based
triggers indicative of eating-related gestures, in order to save
battery life. The recorded audio is stored on a buffer in Smart-
watch memory with storage for 4096 samples, corresponding
with 0.25 seconds of data. Once the buffer is full, features are
extracted using openSMILE (elaborated upon in subsequent
sections), and the audio clip is classified divided into several
distinct categories corresponding with the various foods the
system has been trained to detect. A counter is incremented
corresponding with the food type detected, which is necessary
for long-term record keeping. In the event that eating behavior
is detected, subsequent detection is disabled for a period of
two seconds to prevent duplicate records caused by the same
event. The algorithm is presented in Figure ??, with β = 4096
samples and τ = 2 seconds.

To minimize the overlap between neighboring segments for
performance reasons, the last 50ms of buffer data are cleared
after each classification activity, and classification resumes
when the buffer is full once again (not shown).

V. EXPERIMENTAL PROCEDURE

A. Data Collection for Recognition

A total of ten subjects were used for data collection, with
ages ranging from 22 to 35 in order to develop a model for
identifying swallows. The subjects included eight males and
two females. Each subject was asked to eat the following
foods, in order: three apple slices with at least two bites per
slice, one 8 oz. glass of room-temperature water, and one bag
of potato chips. The moments at which the food was bitten
into (or swallowed as in the case of the water) were manually
annotated.
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RecordAudio(Buffer)
if Buffer.Utilization = β then

d = Buffer[1:β];
f = ExtractFeatures(D);
s = {Water, Talk, Apple, Chips, Other};
c = Classify(F,s);

Counterc++;
if c 6= Other then

PauseRecording(τ )
Fig. 5. Simplified Classification Scheme

Data was manually extracted from the audio recordings at a
later time. Regardless of the food or activity type, each sample
was exactly 0.25 seconds in length, and the peak of the wave
amplitude was not necessary centered in the window. In some
cases, such as during the biting of an apple, one quarter of a
second was not sufficient to capture the entire bite.

Subjects were also asked to read a brief passage from a
Wikipedia article, with no particular instruction about the rate
at which they should read. The data was then automatically
split into 0.25 second audio fragments using an audio process-
ing program. Therefore, some samples were collected between
phrases, and were relatively silent.

B. Smartwatch Feedback: A Survey

Before the system development phase, we had several
important questions about how individuals feel about smart-
watches. As described previously, a wearable device must have
both high accuracy, and high rates of user adherence for the
subject to reach his or her intended goals. Furthermore, we
proposed several questions about which hand a subject prefers
to wear a watch. For example, our experimental evaluation
requires that subjects wear a watch on the same hand with
which they typically eat food such as chips or raise a glass of
water.

An online survey was conducted with a total of 221 re-
sponses in which various questions were posed with respect
to how individuals feel about wearing a smart-watch. The
participants in the study were anonymous, but represented
a diverse set of ages, cultures, and genders. The study was
originally conducted on January 28th for an internal data
collection on smartwatch usage applied to the domain of
medication adherence, but we found the majority of the
questions were also applicable to food-intake monitoring. The
survey consisted of a total of 9 questions. Partial results and
discussion can be found in Section VI.

VI. RESULTS AND DISCUSSION

A. Audio Classification

Results for classification between apples, chips, water, and
speaking are shown in Table IV based on 50 unprocessed
samples collected from each of these foods, using the Random

Forest classifier [18] with 6555 extracted features from each
sample. The Random Forest classifier consisted of 100 trees,
each constructed using 13 random features, and was validated
using 10-fold cross validation. This particular classifier was
chosen for its high accuracy in our experimentation- several
other classifiers performed poorly in comparison. A total of
189 instances were classified correctly (94.5%) while the
remaining 11 (5.5%) were classified incorrectly. The weighted
average precision, recall, and F-Measure was 94.6%, 94.5%,
and 94.5% respectively. Classification of water and speaking
were particularly accurate, with only one incorrect classifica-
tion. The majority of classification errors were between apples
and potato chips.

B. Feature Extraction

From the 6555 extracted features, the Correlation Fea-
ture Selection (CFS) Subset Evaluator was used to evaluate
991,139 subsets of features. This subset evaluator considers
both the individual predictive ability of features, as well as
the redundancy between them, and found the merit of the
best subset to be 0.948. The search was stale after 5 node
expansions. In other words, the subset evaluator aggregates
the best features linearly beginning with those that show
the highest correlation, and terminates after five consecutive
subsets show no improvement in classification accuracy.

The top ten features are listed in Table III. The first feature
is the skewness of the logarithmic signal energy, in which
skewness is defined as the asymmetry of the variable in
comparison with a normal probability distribution [19]. More
formally, skewness is defined in below, where µi is the ith
central moment about the mean.

γ1 =
µ3

µ2
3/2

(1)

The ith moment Mi moment of a discrete function f(x)
defined on an interval [a,b] can be generalized as:

Mi =

b∑
x=a

xif(x) (2)

To calculate the moment about the mean for a probability
density function, it is necessary to first calculate the mean m.
The ith moment about the mean can be represented as:

M̄s =

∑b
i=a(xi −m)s

b− a
(3)

Therefore, for a probability density function f(x), the first
moment about the mean is always zero (with s = 1), while
the second moment is the variance. The third central moment
is defined as skewness such that a distribution skewed to the
right has a positive value, while one shifted towards the left
has a negative skewness.

The second most highly correlated feature is the mean peak
distribution, which is defined as the mean distance between
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peaks for the logarithmic representation of the signal energy.
The third feature is the number of non-zero values of the
normalized log-energy signal.

Features 4-10, preceded by MFCC, are Mel-Frequency
Cepstral Coefficients [20], which represent the spectral char-
acteristics of the signal. A cepstrum is the result of the Inverse
Fourier Transform of the logarithm of a signal spectrum. Mel-
Frequency Cepstral Coefficients are based on the mel scale,
which is a perpetual scale of pitches judged by listeners to be
equidistant from one another [21]. The relationship between
the frequency and mel scales is logarithmic, and can be defined
by the following formula (though other variations exist) [21]:

MEL(f) = 2595 · log10(1 +
f

700
) (4)

Assume we attempt to obtain the MFCC of a 0.25 second
audio clip. The first step is to compute the Discrete Fourier
Transform of the window, Y(k), from which we can obtain
the power spectral density (PSD), P(k) using the following
formula in which W is the window size:

P (k) =
1

W
|Y (k)|2 (5)

Next, we must obtain an estimate of the energies of different
frequency ranges in the signal. However, the human ear can
discern differences in frequency at low frequency ranges
with a much higher resolution than at higher ranges, due
to the physical properties of the cochlea. Therefore, a Mel
Filterbank [22] is applied to the signal, which consists of
N partially overlapping triangular window functions in the
frequency domain. At higher frequencies, the triangular filters
are wider, because we are less concerned with small variations
in energy in these frequency ranges. [23]. Generally, N is a
value between 20 and 40, with each window in the filterbank
equally spaced in the Mel domain, which ranges from 300 Hz
to 8000 Hz for speech-processing applications.

A dot product is computed between the filterbank and vector
P(k), which yields N intermediary coefficients- one for each
triangle window function in the filterbank. Because humans
do not perceive loudness on a linear scale, the logarithm is
calculated for all N coefficients. Finally, the Discrete Cosine
Transform [24] (DCT) of the log powers is applied in order to
decorrelate the energies of the overlapping filterbank energies.
The resulting coefficients are used to extract statistical features
as shown in Table III.

C. Smartwatch Feedback: A Survey

Figure 6 provides several pertinent questions from the sur-
vey. From the total sample of 221 respondents, 86% claimed
to be right handed, 12% right-handed, and the remaining
responded that they were ’unsure’ or the question was ’not
applicable’. In the following question, a total of 76% of
respondents stated that they generally would wear a watch on
their left hand, with an additional 19% who preferred to wear

TABLE III. Partial List of Selected Features

Rank Feature Name
1 pcm LOGenergy sma skewness
2 pcm LOGenergy sma meanPeakDist
3 pcm LOGenergy sma nnz
4 mfcc sma[0] quartile3
5 mfcc sma[0] meanPeakDist
6 mfcc sma[0] nnz
7 mfcc sma[1] quartile2
8 mfcc sma[1] meanPeakDist
9 mfcc sma[1] peakMean
10 mfcc sma[1] amean

TABLE IV. Audio: Confusion Matrix (Random Forest)

Predicted Outcome
Swallow Type Apple Chips Water Talk Recall

Apple 46 4 0 0 92%
Chips 6 44 0 0 88%
Water 1 0 49 0 98%
Talk 0 0 0 50 100%

Precision 86.7% 89.7% 100% 100%

the watch on their right. The remaining 5% of those surveyed
expressed no preference.

The next question asked respondents how they felt about
wearing watches in general. Most individuals stated that they
always wear a watch (38%). However, 23% claimed that they
preferred not to wear a watch, 24% stated that they would not
mind, and 14% stated that they like to wear a watch. Only 1%
of individuals claimed that they would not consider wearing a
watch. However, another survey question revealed that those
who drank water out of a glass would use their primary hand
to lift the cup for their mouth (69%), rather than the secondary
hand on which the watch is worn (20%) with a remaining 10%
claiming to be unsure. Clearly, this would pose a challenge to
detection of liquid consumption.

The next question asked respondents if they would be
willing to wear a watch on the opposite hand to which
they are accustomed. The results were quite promising, with
40% of respondents answering ’maybe’, 32% answering ’yes’,
and 28% answering ’no’. It appears that enough individuals
are willing to change which hand they wear their watch, to
make detection of most eating habits possible if the algorithm
settings are customized to their personal habits.

VII. CONCLUSION AND FUTURE WORK

This paper presents a novel approach to detecting inges-
tion of foods and liquids, using a Samsung smartwatch for
identification of bites and swallows from acoustic signals. We
conclude that the smartwatch platform is a strong choice for
non-invasive evaluation of eating habits, and the versatility
and comfort of the watch platform is a substantial advantage
over existing schemes that rely on custom hardware solutions.
This paper also presents a survey of users about smartwatch
usage which confirms that a substantial portion of individuals
would be willing to wear a watch on the hand with which they
primarily eat.
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How	do	you	feel	about	watches	in	general?	

On	what	hand	would	you	typically	wear	a	watch?	

Would	you	wear	a	watch	on	the	opposite	hand?	

Are	you	right	or	left	handed?	

Left	
(76%)	

Right	
(19%)	

Unsure	
or	N/A	
(5%)	

Always	wear	
(38%)	

Like	to	wear	a	
watch	(14%)	 Unsure	(<1%)

	
Would	not	
consider	(1%)	
	
Prefer	not	to	
wear	(23%)	

Wouldn’t	mind	
(24%)	

Maybe	(40%)

No	(28%)

Yes	(32%)	

Left	
(12%)	

Right	
(86%)	

Unsure	
or	N/A	
(2%)	

Fig. 6. Partial survey results are shown above.

In future works, we would like to automatically detect the
hand on which the watch is being worn, and modify the
classification thresholds accordingly in order to improve clas-
sification accuracy. This is necessary because the magnitude of
the signal will vary if the watch is not worn on the same hand
used to pick up an item of food. We would also like to explore
the integration of audio-based detection of eating with inertial
sensors for gesture recognition. Because smartwatches include
an accelerometer and gyroscope, detection of eating-related
motions coupled with audio data can improve our ability to
characterize a meal.
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