AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

Wireless Sensor Network Protocol for Smart Parking Application
Experimental Study on the Arduino Platform

Luis Ostiz Urdiain, Carlos Pita Romero
Computer Engineering and Networking Department
Universitat Ramon Llull, La Salle
Barcelona, Spain
Email: luis.ostiz@gmail.com, carlus.pita@ gmail.com

Abstract—The paper presents an Arduino-based wireless
sensor network to monitor parking lots using a non-standard
low-power energy-balanced system. The event-driven routing
protocol follows the hierarchical clustering philosophy. Energy
is saved by minimising the number of transmissions needed
to forward information to the base station. The smart sensor
platform is build using the popular Arduino development
platform, Sharp IR distance sensors and nRF24 low-power
radio modules. Our practical results show that this platform is
easy to use, but not the most appropriate platform to develop
low-power wireless sensor network applications.

Keywords-Wireless Sensor Network (WSN); Smart Parking
Application; Clustering; Arduino; nRF24.

I. INTRODUCTION

With the rapid proliferation of vehicle availability and
usage in recent years, finding a vacant car parking space
is becoming more and more difficult, resulting in a number
of practical conflicts (e.g., time, environmental [1]). Using
Wireless Sensor Network (WSN) technology, we propose a
low power solution to this parking problem.

A WSN consists of a large number of smart sensors which
form a multi-hop network by radio communication in sensor
fields. They measure and process information gathered from
the sensing area and transmit it to the data base station.
WSN can be used in many fields such as environment
monitoring, intelligent transportation and smart homes [2].
In our system, we monitor a group of ten sensors, each one
detecting periodically if there is a car parked a parking lot.
This information is forwarded to a sink node. The sink node
itself is connected to a management center, which is not yet
a part of this research. The management center can help
other drivers to discover areas with available parking lots.

The sensors nodes are based on the popular Arduino
platform [?]. Arduino is an open-source electronics
prototyping platform with flexible and easy-to-use hardware
and software. We are developing a network protocol on
top of nRF24L.01 radio modules [3]. We have taken some
features from other network WSN protocols, in particular
clustering hierarchical protocols, such as Low Energy

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

Jeroen Doggen, Tim Dams, Patrick Van Houtven
Department of Applied Engineering and Technology
Artesis University College Antwerp
Antwerp, Belgium
Email: jeroen.doggen@artesis.be, tim.dams@artesis.be,
patrick.vanhoutven @artesis.be

Figure 1.

Proposed Single-Hop Clustering Topology

Adaptive Clustering Hierarchy (LEACH) [4] and Threshold
sensitive Energy Efficient sensor Network (TEEN) [5].
The remainder of the paper is organised as follows. In
Section II, we discribe the system design the node hardware
architecture and the software libraries. In Section III, we
explain the design of the layer 2 and 3 WSN protocol
operation. The research questions and experiments are in
Section IV. Finally, we describe future work in Section V.

II. SYSTEM DESIGN

For this experimental study we developed network of
smart objects based on the Arduino development platform.

A. Cluster Network

The proposed single-hop clustering topology is shown in
Figure 1. The sensor network is divided in 5 groups, one for
each cluster and one for the sink node. Each group uses a
specific RF channel. The sensors detect if there is a car in the
parking lot. The sensor will be located in a strategically fixed
position on the floor and will sense periodically to detect
cars. Knowing our nodes are deployed in a fixed position,
we decided that the cluster members are invariable.

45

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

Seeeduino board

Figure 2.

1) Sensor Node (SN): A SN periodically measures
the distance with the sensor and compares it with the
last measurement. If the result has changed it sends an
advertisement message (ADV) to the cluster head.

2) Cluster Head (CH): The CH monitors a parking lot,
but at the same time, it waits for advertisement messages
from the other SNs. It aggregates the information and
forwards it to the sink node. This role rotates between all
the nodes within the same cluster.

3) Sink Node: This fixed node is continuously listening
on designated channels to forward packets, coming from the
cluster heads, to the management system.

B. Node Architecture

We use the Seeeduino platform [6], an Arduino-
compatible development board, but with many
improvements on the hardware side, e.g., energy efficient
surface mount device (SMD) components and extra
analog and digital I/O pins. The Atmel ATmega328P
microcontroller has 32 KB integrated flash memory
with read-while-write capabilities, 1 KB EEPROM and
2 KB SRAM. We use a dedicated nRF24L.01 low power
radio module working in the 2.4 2.5 GHz ISM band. The
radio uses FSK modulation type and can operate within
125 RF channels with 250 Kb/s, 1 or 2 Mb/s of data rate.
We use the GP2Y0A21YK [7] infra-red proximity sensor
made by Sharp, which is a wide-angle distance measuring
sensor that delivers an analog output varying from 3.1 V
at 10 cm to 0.4 V at 80 cm. We use 6 external 1.2 V
rechargeable NiMH AA batteries (1300 mAh) providing
7.2 V per SN and a USB powered sink node. As the
energy levels of the batteries decrease, the battery voltage
goes down. In practice, the module stops working properly
below the 6 V cut-off voltage.

C. Software Libraries

The source code of all our libraries are publicly available
under de GNU Lesser General Public License on their

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

respective Google Code website [8].

1) Low-Power Library: This Arduino library, developed
by Rocket Stream Electronics, allows us to put the
microcontroller into different power saving modes [9].

2) nRF24 Module Library: This library for the
RF module, developed by J. Coliz [10], provides the physical
layer functions: transmitting and receiving packets. It also
allows us to change the RF channel, set the retransmission
options and power down the chip.

3) Distance Sensor Library: We developed this library to
use Sharp IR Distance Sensors in Arduino projects. We use
the sensor output to fetch the distance from a lookup table
holding a sensor-specific transfer function.

4) Cluster Network Library: We developed this library
that implements the layer 2 and 3 operation of the system.
This library, described in detail in Section III is build on top
of the nRF24 library.

5) Detecting Car Library: We assume that a car is
occupying a parking lot when the distance value is between
10 cm and 60 cm for several seconds. If the distance value
exceeds 60 cm, the parking lot is available. If the value is
below 10 cm, the measurement is considered invalid.

6) Node Energy Library: Library which provides the
current energy level depending on the time spent in the
different phases. It is used to decide which node has the
highest energy level during CH selection.

III. WSN PROTOCOL DESIGN

We are developing and testing a non-standard wireless
communication protocol based on some features of
clustering hierarchical protocols such as LEACH [4] and
TEEN [5].

Low Energy Adaptive Clustering Hierarchy
Protocol (LEACH) is a very common WSN protocol.
LEACH is based on the division of the network nodes
in clusters and the election of a set of temporary CHs.
The CHs are in charge of their part of the network and
aggregate collected data for later delivery to a sink.

Our implementation is based on the LEACH clustering
philosophy but instead of using a selection procedure based
on probability, we use the remaining energy level to rotate
the CH role periodically [11].

In TEEN, the environment is sensed constantly, but the
transmission of the information to the CH is done only when
the data exceed the upper and lower threshold previously
defined by the CH. Therefore, this protocol reduces the
number of the transmissions to the necessary, only when the
measured parameter value is outside the range of interest.

Our measurement model to detect cars is based on this
concept. A sensor only transmits the parking lot status when
it detects an arriving or a leaving car. We can assume a
sensor will not have new information to report very often.
Thereby, we lower the number of necessary transmissions
to a minimum, thus increasing the system’s lifetime.

46

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

A

o CH Selection

Round

\ 4

Communication

L.

Round = X

d++

A

>4_

Round < X
Round?

{

Figure 3. Flowchart of System Operation

A. Layer 2 Operation

In the collision avoidance mechanism we implemented,
every node that wants to transmit must first listen to the
channel. If it is free, the node transmits the packet and waits
for an acknowledgement. If it is occupied, the node waits
for a back-off time and listens to the channel again. After
a number of unsuccessful tries, the packet is dropped. The
optimal amount of tries is still being evaluated.

B. System Operation

The system operation, shown in Figure 3, is divided in
three phases: CH selection, sensing, communication.
1) Cluster Head Selection Phase:

o The CH broadcasts an Energy Request message.

o The SNs measure their energy level and send it to the
CH with an Energy Reply message.

o The CH collects all replies and compares the energy
levels. The node with the highest energy level is
selected as the new CH.

e CH broadcasts the new CH ID to all the SNs.

o The SNs update the CH ID at the same time.

2) Sensing Phase: The node detects if there is a change
in the parking lot status. If there is one, it goes in to the
Communication Phase, otherwise the node goes to sleep
mode. Because the SNs are synchronised during the CH
selection, they hould wake up at the same time.

3) Communication Phase: The node report the updated
parking lot status to the CH by sending an ADV message.
Meanwhile, the CH collects the ADV packets of all SNs.
The CH sends an aggregated data packet (DATA), which
contains all the collected status updates, to the sink.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

IV. EXPERIMENTAL STUDY

Our goal is to develop an energy-efficient implementation
of a smart parking application. Some of the research
questions in this project are:

1) Is the Arduino platform a good choice for this specific

WSN application?

2) How can we minimise energy consumption per node

to maximise network lifetime?

3) How do we optimise the CH selection algorithm?

4) How reliable is this system?

To evaluate the performance of the protocol, we propose
two different variations of the same practical scenario. The
sink is positioned in the middle of a square area and 10 SNs
are positioned around the sink.

1) The whole network has been divided in 2 clusters,

with 5 SNs per cluster.

2) The network is formed by 10 SNs which are part of

the same cluster.

A. Energy Consumption

To minimise the energy consumption, we maximise
the sleep time by avoiding needless idle time and
communication. To know how much energy is consumed
per node, we defined different functional states depending
on different energy hardware power requirements based on
the low-power library specifications [9]. We measure the
current consumption in each state to calculate the total
energy consumption.

These defined states are: transmit, receive, idle and sleep.

First experiments on the energy consumption of the
module showed a very inefficient sleep mode because the
distance sensor was always powered up. An option to disable
the sensor will be added to the distance sensor library.

B. Packet Loss Ratio

A set of counters were added in order to record the
number of packets transmitted successfully and packets lost.
These measurements were made using a 90-minute recording
time with a bit rate of 1 Mb/s. In the first case the packet
loss was 41 %, in the second case 72 %. Further research
is needed to solve this issue. A possible cause of this very
high packet loss ratio is bad synchronisation.

C. Synchronisation

The ATmega328P internal oscillator has a significant error
margin when the board wakes up from sleeping mode.
Because this error is different in each board, the SNs will
not be able to communicate with the CH when a few rounds
have passed. We implemented a non-optimal software-based
solution around this hardware limitation:

1) The first round after a new CH is selected, the SNs

wake up 4.8 seconds before the CH (24 x 0.2 = 4.8).

2) Once the CH wakes up, it broadcasts a SYNC

message.

47

AMBIENT 2012 : The Second International Conference on Ambient Computing, Applications, Services and Technologies

3) The SNs receives the SYNC message from the CH
calculated the time between waking up and the SYNC
message.

4) The SN calculates its own sleeping time by taking the
waiting time for the SYNC message in to account and
adding one second as a safeguard.

5) In the second round after the CH selection, the
procedure is similar, with a safeguard time of 100 ms.

6) From now on, the non-CH sleeps the calculated time.

V. CONCLUSION AND FUTURE WORK

We proposed a low-power WSN solution for a smart
parking application. Along its development, the work has led
to new challenges and opportunities that might be interesting
to address.

A. Further Development of the Application

The next step in the development of a usable application is
server-side application that manages all sensor information,
such as its geographical position, parking lot types and
parking lot status. The user would be able to connect to the
server using a website or with mobile phone application to
request the location of available parking lots. Another useful
idea is developing an application to facilitate monitoring
of the smart parking network. Currently we are developing
an embedded display module for in-car placement similar
to [12]. This module sends requests over the Internet to
the central server to find free parking spaces. When the
car arrives in the correct street it can request up-to-date
information from the CH.

B. Protocol Enhancement

In order to polish the protocol, we propose to improve
its scalability and enable more complex data aggregation.
In a next phase it might be useful to have multi-hop
communication and location aware CH selection [13].
One important aspect that is currently not considered is
security. It could be a really interesting to introduce security
techniques which would not affect the protocol’s and the
system’s behaviour.

C. Conclusion

We proposed a practical implementation of an
event-driven WSN clustering protocol. Our protocol is
hierarchical, all nodes are divided in clusters with one CH.
We implemented an energy-aware CH selection algorithm
similar to the LEACH protocol.

The system was implemented using Seeeduino
development boards, nRF24L01 low-power RF modules
and Sharp IR distance sensors. We implemented a software
based synchronisation mechanism to solve the problems
caused by the inaccuracy of the Arduino internal Timer.

These results show that the battery, sensor and radio are
not the optimal hardware choices for this WSN Application.

Copyright (c) IARIA, 2012. ISBN: 978-1-61208-235-6

Although Arduino is easy to use as an experimental open-
source platform, it is currently not the most appropriate
platform to develop low-power WSN applications.

REFERENCES

[1] M. Idris, Y. Leng, E. Tamil, N. Noor, and Z. Razak, “Car park
system: A review of smart parking system and its technology,”
Information Technology Journal, pp. 101-113, 2009.

[2] Y. Li, M. Thai, and W. Wu, Wireless Sensor Networks and
Applications, ser. Signals and Communication Technology.
Springer, 2008, [Retrieved: August, 2012]. [Online].
Available: http://books.google.be/books?id=x1 MR5Ct-rp8C

[3] Olimex Ltd., “nRF24L01 Single Chip 2.4 GHz Transceiver
Datasheet,” [Retrieved: August, 2012]. [Online]. Available:
http://www.olimex.com/dev/mod-nrf24L.htm]l

[4] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy-Efficient Communication Protocols for Wireless
Microsensor Networks,” in 33rd Hawaii International
Conference on System Sciences, 2000, pp. 1-10.

[5] A. Manjeshwar and D. P. Agrawal, “TEEN: A Routing
Protocol for Enhanced Efficiency in Wireless Sensor
Networks,” in [International Workshop on Parallel and
Distributed Computing Issues in Wireless Sensor Networks
and Mobile Computing, San Francisco, USA, 2001, pp. 2009—

2015.
[6] “Seeeduino v2.21,” [Retrieved:
August, 2012]. [Online]. Available:

http://www.seeedstudio.com/wiki/Seeeduino_v2.21

[7] Sharp, “Sharp GP2Y0A21YK IR Distance Sensor Datasheet,”

2005, [Retrieved: August, 2012]. [Online]. Available:
http://www.sharpsma.com/webfm_send/1208

[8] J. Doggen, L. Ostiz, and C. Pita,
“Software Libraries for the Arduino Platform,”
[Retrieved: August, 2012]. [Online]. Available:
https://code.google.com/u/104098523773938750140

[9] Rocket Scream Electronics, “Lightweight
Low Power Arduino Library,” 2011,
[Retrieved: August, 2012]. [Online]. Available:

http://www.rocketscream.com/blog/2011/07/04/lightweight-
low-power-arduino-library
[10] J. Coliz, “nRF24L01(+) 2.4 GHz Wireless Transceiver
Driver,” 2011, [Retrieved: August, 2012]. [Online]. Available:
http://maniacbug.github.com/RF24/
[11] K. Ramesh and K. Somasundaram, “A comparative study of
clusterhead selection algorithms in wireless sensor networks,”
International Journal of Computer Science & Engineering
Survey (IJCSES), pp. 153-164, 2012.
[12] V. P. Thakare and N. A. Chavan, “Performance evaluation
of parking guidance and management system using wireless
sensor network,” International Journal of Recent Technology
and Engineering (IJRTE), vol. 1, pp. 96-102, 2012.
[13] T. V. Bhuvaneswari and V. Vaidehi, “Enhancement techniques
incorporated in leach- a survey,” Indian Journal of Science
and Technology, vol. 2, pp. 36—44, 2009.

48

