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Abstract— In this paper, we propose a hierarchical human 

activity recognition system using Gaussian mixture models 

(GMMs) on continuous daily activities.  The system recognizes 

the human activities by making use of tri-axial accelerometer 

and bi-axial gyroscope. We use different features such as 

mean, variance, root mean square, pitch, and roll for activity 

classification. Comparative performance assessments are 

carried out using the publicly available Wearable Action 

Recognition Dataset (WARD). The hierarchical recognition 

happens in two steps. First, the test data is classified into two 

broad clusters – static activity and dynamic activity. Second, 

the recognition is carried out within the identified class. For 

continuous activity recognition, our proposed system is able to 

achieve a recognition accuracy of 86.92% which is 2.63% 

above the baseline system. The new algorithm also provides 

more flexibility for better feature selection for different sets of 

activities. 

 

Keywords-Human Activity recognition; wearable sensors; 

pattern recognition; Gaussian Mixture modeling (GMM). 

I.  INTRODUCTION  

Due to the recent progress in ubiquitous and wearable 

computing, activity recognition has become a major 

contributor towards many monitoring and interaction 

applications.  Human action/activity recognition is an 

emerging field of research. Physical activity can be defined 

as "any bodily movement produced by skeletal muscles that 

result in energy expenditure above the resting level" [1]. 

The objective of any human activity recognition system is to 

recognize any human activity using its observed 

sensor/visual data. Generally, human activities can be 

classified into two broad categories – static (which involves 

minimal movement of body parts such as standing or 

sitting) and dynamic (which involves some motion in the 

body parts such as boxing or walking).  

 

A popular approach to activity recognition is based on the 

use of visual data [1, 2], which is high-dimensional and 

dense. The visual data can sometimes become intrusive and 

disruptive, and hence, it poses a challenge to personal 

privacy. Moreover, the vision-based activity recognition 

systems are very sensitive to ambient lighting conditions and 

occlusion. With the recent miniaturization of simple sensors 

such as accelerometers and gyroscopes, researchers have 

begun to adopt the use of these low-powered, unobtrusive 

sensors.  

A. Motivation  

Due to the increase in the aging population, the world 

will soon have an increased number of aging baby boomers. 

As the existing and the future heath care sectors cannot 

effectively serve all the baby boomers, there is an increased 

demand for health monitoring and support of elderly-care 

units using assisted living systems. Consequently, the need 

for remote health care systems for patient monitoring is 

gradually growing; see Ibrahim et al. [3].   

 

In this paper, an inertial sensor framework is used for 

human activity recognition because it provides an 

unobtrusive, low-powered and cost effective solution for 

many applications such as daily assisted living of elder care, 

virtual-real world interaction, sports training, and long term 

monitoring purpose. Longer term monitoring would reveal 

the subject’s activity levels with respect to metabolic energy 

expenditure, associated with different activities such as 

walking, standing, etc. Medical professionals believe that 

one of the best ways to detect an emerging medical 

condition before it becomes critical is to look for changes in 

the activities of daily living (ADLs), instrumental ADLs 

(IADLs), and enhanced ADLs (EADLs); see Tapia et al. [4]. 

 

B. Objective 

In this work, our objective is to build a fast and accurate 

system for recognizing human activities. This system uses 

the data from the accelerometers and gyroscopes so as to 

recognize continuous activities.  

 

C. Organization 

This is paper is organized as follows. Section II discusses 

some prior works in the field of human action/activity 

recognition. In Section III, we discuss the approach and the 

procedure of our algorithm. In Section IV, the hierarchical 

action recognition approach is introduced. In Section V, the 

results are presented and discussed. Finally, Section VI 

concludes the paper with some recommendations about 

future work. 

II. LITERATURE REVIEW  

Recent developments in sensor technology have led to 

miniaturized inertial sensors – accelerometer and gyroscope. 
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These inertial sensors are widely used by the wearable 

activity recognition researchers. Bao et al [5] and Eric et al 

[6] have studied activity recognition using multiple sensors 

at different locations on the body. Thomas et al [7] have used 

the multimodal approach of activity recognition by 

combining motion sensors with ultrasonic sensors for 

continuous activity recognition. The application domains of 

activity recognition systems are diversity with examples such 

as Ernst et al [9] to recognize moves in martial arts, while 

David et al [10] built a mixed reality car parking game based 

on human computer interaction.  

 

A number of activity recognition algorithms have been 

explored and these include: 

 

1. Decision Trees: It finds a set of thresholds for a pattern-

dependent sequence of features. Bao et al [5] used C4.5 

decision tree classifier.   

2. Nearest Neighbor (NN): It assigns patterns to the 

majority of class among k nearest neighbor using a 

performance optimized value of k. Ravi et al [8], Bao et 

al [5], and Maurer et al [11] used NN classifiers for 

activity recognition. 

3. Naïve Bayes: It is a Bayes theorem based probabilistic 

classifier. Bao et al [5], and Maurer et al [11]  

4. Support Vector Machine (SVM): Ravi et al [8] have 

used SVM classifiers. 

5. Hidden Markov Model: one of the most popular 

statistical model for capturing temporal patterns in the 

data. It is extensively used in activity recognition. 

Yamato et al [1] used HMM to recognize different 

tennis strokes.  

6. Gaussian Mixture model (GMMs): GMMs are 

parametric representations of any probability density 

function. Allen et al [12] used GMMs for transactional 

activities with an accuracy of 76.6 %. Ibrahim et al [3] 

recognize simple activities with small set of activities 

with 88.76 %. In this paper, Gaussian mixture models 

are also used for recognition.  

Pattern recognition highly depends on the kinds of 

features used to model the patterns. Thus, features are very 

crucial for any recognition system. Some time domain 

features that have been commonly used include: 

 

1. Mean: The mean value feature has been used by Ravi et 

al [8], and Bao et al [5]. 

2. Variance: The variance feature has been used by Ravi et 

al [8] 

3. Root Mean Square (RMS): The RMS feature has been 

used by Maurer et al [11]. 

In the literature, researchers have tried different window 

lengths for activity recognition such as 6.7s in Bao et al [5], 

and 5.12s in Ravi et al [8]. In this paper, we use a window 

length of 1s is used to classify the activities. We have chosen 

a lower window length to facilitate real-time recognition. 

 

III. APPROACH AND PROCEDURE  

A. Dataset 

To present a general comparison of results, a public 

dataset ‘WARD: A Wearable Action Recognition Database’ 

collected by Yang et al [13, 14] is used. In the WARD 

database, sensor data of different continuous activities have 

been collected. It contains data corresponding to 20 different 

subjects and 13 different activities. It also contains non-

transient human actions. In order to sufficiently sample the 

continuous movement of a non-transient action, each subject 

performs one trial of an action for more than 10 seconds. The 

sensors are placed at different locations of the subject’s 

body. Each sensor contains a 3-axis accelerometer and a 2-

axis gyroscope. The locations of the sensors on the body are 

shown in Figure 1. 

 
Figure 1. Sensor locations and orientation of a subject for WARD dataset, 

where the bold lines represent the sensor locations. 

 

 Sensor 1: Outside center of the lower left forearm joint. 

The y-axis of the gyroscope points to the hand. 

 Sensor 2: Outside center of the lower right forearm joint. 

The y-axis of the gyroscope points to the hand. 

 Sensor 3: Front center of the waist. The x-axis of the 

gyroscope points down. 

 Sensor 4: Outside center of the left ankle. The y-axis of 

the gyroscope points to the foot. 

 Sensor 5: Outside center of the right ankle. The y-axis of 

the gyroscope points to the foot 

 

This dataset contains the following 13 activities: 1. Rest 

at Standing (ReSt). 2. Rest at Sitting (ReSi). 3. Rest at Lying 

(ReLi). 4. Walk forward (WaFo). 5. Walk forward left-circle 

(WaLe). 6. Walk forward right-circle (WaRi). 7. Turn left 

(TuLe). 8. Turn right (TuRi). 9. Go upstairs (Up). 10. Go 
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downstairs (Down). 11. Jog (Jog). 12. Jump (Jump) and 13. 

Push wheelchair (Push). For more details, please refer the 

WARD database manual [13].  

B. System Overview  

 

Our human activity recognition system recognizes the 

activities using the WARD data.  In this system, a statistical 

recognizer for different activities is built. The system is 

divided into two phases, namely the training phase and the 

testing phase. In the training phase, the raw data for all 

activities is first collected using the 3-axis accelerometer and 

2-axis gyroscope. The sampled data from the accelerometer 

and gyroscope are combined. Then, suitable time domain 

features are extracted and are used to model the activities 

using Gaussian mixture models (GMMs).  The models of all 

the different activities are stored at the end of the training 

phase. In the testing phase, activity data of the test subject is 

first collected and the features are extracted. Then, the 

maximum probability of match of the test sample against all 

stored sample patterns is calculated. That pattern, which has 

the highest likelihood of match against the test pattern, is 

recognized as the correct activity. The overall recognition 

system is depicted in Figure 2. 

 

 
 

Figure 2. System overview of the activity recognition system. 

C. Features for activity recognition 

 

We have used time domain features for performing 

activity recognition. This is because our initial set of 

experiments suggests that time domain features perform 

better as compared to frequency domain features. The time 

domain features that we have used for the classification are 

mean, variance and root mean square (RMS). 

 

In order to represent the angular information, the 

captured accelerometer and gyroscope data are used to 

calculate the pitch and roll. Since we are using 3-axis 

accelerometer and 2-axis gyroscope, the pitch and roll are 

calculated using the following equations.  

 

roll  = arctan(-acc_y/ -acc_z);  

pitch = arctan( acc_x, sqrt( acc_y * acc_y + acc_z * acc_z)); 

 

where, acc_x, acc_y and acc_z are the x-axis, y-axis and z-

axis accelerometer values respectively.  

D. Activity Modeling using the GMM Algorithm 

 

GMMs [15-16] are parametric representations of a 

probability density function. When trained to represent the 

distribution of a feature vector, GMMs can be used as 

classifiers. GMMs have proved to be a powerful tool for 

distinguishing time series data with different general 

properties. The use of GMMs for modeling activity is 

motivated by the interpretation that the (1) uni-variate 

Gaussian densities have a simple and concise representation, 

depending uniquely on two parameters, mean and variance, 

(2) they are capable of modeling arbitrary densities, (3) the 

Gaussian mixture distribution is universally studied and its 

behaviors are widely known, (4) a linear combination of 

Gaussian basis functions is capable of modeling a large class 

of sample distributions. In principle, the GMM can 

approximate any probability density function to an arbitrary 

accuracy.  

 

 
 

Figure 3. Depiction of an M component Gaussian mixture density [15]. 

A GMM is a weighted sum of M component densities as 

shown in Figure 3, given by the following equation:- 

     

P ( xt |λs) =    ∑               
 
    

 

Here, xt is a sequence of feature vectors from the activity 

data, x(t) is a feature vector having D-dimensions. bi(s) is 

the Gaussian probability distribution function (PDF) 

associated with the i
th

  mixture component and is given by: 

 

bi(xt) =   
 

       ∑    
 

   
     

  ( 
 

 
)         ∑   
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Here, µi  is the mean vector and ∑   
  is the covariance matrix 

of the i
th

 mixture component.  

 

The mixture weights are such that : 

  

∑   
   i     = 1 

 

Each trained activity is thus, represented by a Gaussian 

mixture model, collectively represented by   

 

λs={µi , ∑   
  , pi } 

 

where i =  ,2 ,…M,  and µi , ∑   
 , pi represent the mean, 

covariance and weights of the i
th

 mixture respectively. 

III. HIERARCHICAL RECOGNITION OF HUMAN ACTIVITY  

 

A hierarchical recognition approach is proposed for 

human activity recognition on continuous activities. The 

dataset has data corresponding to two different types of 

activities – static and dynamic. In static activities such as 

sitting, standing, and lying, the motion sensor values are 

expected to have minimal variations over time. Apart from 

sitting, standing and lying, all other activities are categorized 

as dynamic since some motion is involved.  

 

In our initial set of experiments, we observed that a 

number of static activities were mis-classified as dynamic 

activities and vice versa. In order to minimize such 

confusion, we propose to adopt a simple but powerful 

hierarchical approach to classify the full activity recognition 

on the continuous dataset. The first stage of this hierarchical 

approach tries to classify the test data into either static or 

dynamic activity categories. The second stage then tries to 

identify the correct activity from the chosen activity 

category. Together with improving the overall recognition 

accuracy, this approach also speeds up the process of 

computation because after the test activity is classified as 

static or dynamic in the first step, it will then, only be 

compared against its activity class for final recognition. The 

recognition flow of this algorithm is as shown in Figure 4.   

 

This algorithm provides two major advantages over the 

baseline one-step classification system. First, since the two 

activity clusters: static and dynamic differ a lot in their 

corresponding statistical properties, the accuracy of 

classifying into static or dynamic classes is high. Since the 

test data is only compared with activities of its identified 

class in the second stage, the possibility of inter-class 

misclassification is eliminated. Second, this hierarchical 

system provides greater flexibility to extract different 

features for different clusters so as to improve the overall 

system performance. 

 

 
 

Figure 4. Flow chart of Hierarchical human activity recognition. 

 

IV. RESULTS AND DISCUSSION 

A. Continuous Activity Recognition (CAR) on WARD 

dataset 

 

Different sets of experiments are performed to fine-tune 

the accuracy and speed of the recognition system. To achieve 

low latency, we use a window length of 1s in our recognition 

algorithm. The feature set includes pitch, roll, mean and 

variance from the accelerometer and gyroscope sensor data. 

To get the best number of mixture models, different numbers 

of mixture models are used to test the overall performance. 

The system with 32 mixture models gave the best overall 

performance, and thus we choose to model each activity 

using 32-GMMs. The results of the one-tier recognition 

system show an overall accuracy of 84.69 %. The confusion 

matrix of this system is shown in Table II.  

 

From the confusion matrix of the one tier system it can be 

observed that a large number of static activities is 

misclassified as dynamic activities. For example, the 

misclassification accuracy of Rest at Sitting (Static activity) 

as Push Wheelchair (Dynamic Activity) is 12.2%.  

 

A hierarchical algorithm using a two-step recognition 

process is proposed to classify the human continuous 

activities. The hierarchical recognition is proposed to 

minimize such inter-class misclassification as discussed 

above. To compare the results of the hierarchical algorithm 

over the one tier algorithm, we have used the same set of 

features {pitch & roll along mean and variance from 

accelerometer and gyroscope sensor data} and modeled them 

using 32-GMMs. The results of the cluster classification in 

the first step are shown in Table I. The overall accuracy of 

cluster classification is 96.58% where it is weighted against 

the number of test files for static and dynamic activities.  
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TABLE I. CLUSTER ACCURACY OF HIERARCHICAL 

RECOGNITION SYSTEM.  

 
Static Dynamic 

Static 95.5 4.5 

Dynamic 3.0 97.0 

 

In Table II, the accuracy of the one tier system with the 

same feature set and the same number of Gaussian mixtures 

as is used in the hierarchical system is 84.69 %. The 

accuracies of the hierarchical activity recognition system are 

shown in Table III. Here, we can observe that the overall 

accuracy of the hierarchical activity recognition system is 

86.92%.  This shows that the hierarchical algorithm 

improves the system performance by 2.63 % over the one 

tier system. It can also be observed from Table 3 that the 

misclassification of static activities as dynamic activities and 

vice versa is reduced. For example, the misclassification 

accuracy of Rest at Sitting (Static activity) as Push 

Wheelchair (Dynamic Activity) is 5.21% as compared to 

12.2% in one tied system.   

V. CONCLUSION AND RECOMMENDATIONS 

 

In this paper, we have proposed a hierarchical human 

activity recognition system using Gaussian mixture models 

(GMMs). The results of the system are competitive as 

compared to prior activity recognition systems. The 

performance of the proposed system is tested using the 

publicly available WARD dataset to provide a better 

comparability. An overall system accuracy of 86.92 % is 

achieved using this hierarchical approach, which is an 

improvement of 2.63% over the baseline system. The 

proposed hierarchical algorithm also provides the flexibility 

to use different feature sets for the identification of different 

classes of activities. Since the static activities and dynamic 

activities differ a lot in their statistical properties, the best 

performing feature sets for these clusters can be used to 

obtain the best performance in each individual cluster. 

 

Another important contribution of this paper is that the 

recognition is performed using less test data. In continuous 

activities, the activities are recognized using 1 sec of test 

data. Also, to capture the angular information, the pitch and 

roll using the accelerometer and gyroscope are used as the 

feature set. To further reduce the time of recognition, the 

concept of fast elimination of such patterns that certainly do 

not match a given behavioral pattern can be adopted. This 

concept has been proposed by Bajan [17]. 

 

In this paper, the sensors are placed at five different 

locations so as to capture full body motion statistics. The 

sensor placement is maintained as per the WARD Dataset so 

as to maintain the comparability of results. The orientation of 

sensors may not be optimum as this orientation of the 

sensors does not exploit the symmetry of body. In future, 

there is need to find the optimal number, orientation and 

placement of sensors required to perform human activity 

recognition.  

 

TABLE II. CONFUSION MATRIX OF ONE TIER ACTIVITY RECOGNITION SYSTEM (IN PERCENTAGE). 

  

 
ReSt ReSi ReLi WaFo WaLe WaRi TuLe TuRi Up Down Jog Jump Push 

ReSt 68.2 11.2 0 0 0.5 1.8 0 0 5.8 6.3 0 0 6.3 

ReSi 0.5 74.7 0 0 0 0 0 0 4.5 4.1 0 4.1 12.2 

ReLi 0 4.6 75.6 0 0 0 0 0 0 0 0 19.8 0 

WaFo 0 0 0 84.8 3.2 3.8 0 0 1.3 1.9 0.6 4.4 0 

WaLe 0 0 0 1.9 93.7 0 3.4 0 0 0 0 0.5 0.5 

WaRi 0 0 0 2.5 0 86.4 3 2 1 2 2.5 0.5 0 

TuLe 0 0 0 0 11.1 0 88.9 0 0 0 0 0 0 

TuRi 0 0 0 1 0 5.6 0 88.3 0 3.1 1.5 0.5 0 

Up 0 0 0 1.6 1.1 1.1 0 0 65.2 19.3 9.6 0 2.1 

Down 0 0 0 0 1.2 0 0 0 1.8 84.4 10.8 1.2 0.6 

Jog 0 0 0 0 0 0 0 0 2.9 0 97.1 0 0 

Jump 0 0 0 0 0 0 0 0 0 0.6 0.6 98.8 0 

Push 0.6 0 0 0 0 0 0 0 0.6 0.6 0 3.5 94.8 
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TABLE III. CONFUSION MATRIX OF OVERALL SYSTEM ACCURACY OF HIERARCHICAL RECOGNITION SYSTEM (IN PERCENTAGE) 

 
ReSt ReSi ReLi WaFo WaLe WaRi TuLe TuRi Up Down Jog Jump Push 

ReSt 70.4 11.2 0 0 0 3.6 4 0.9 0 6.3 0 0 3.6 

ReSi 6.6 83.9 0 0 0 0 0 0 0 4.3 0 0 5.2 

ReLi 0 5.7 94.3 0 0 0 0 0 0 0 0 0 0 

WaFo 0 0 0 84.2 3.2 3.8 0 0 1.3 1.9 0.6 4.4 0 

WaLe 0 0 0 1.9 93.7 0 3.4 0 0 0 0 0.5 0.5 

WaRi 0 0 0 2.5 0 87.3 3.1 1.5 1 2 2 0.5 0 

TuLe 0 0 0 0 11.1 0 88.9 0 0 0 0 0 0 

TuRi 0 0 0 1 0 5.6 0 88.8 0 3.1 1 0.5 0 

Up 0 0 0 1.6 1.1 0.5 0 0 66.3 18.5 9.8 0 2.2 

Down 0 0 0 0 1.2 0 0 0 1.8 84.4 10.8 1.2 0.6 

Jog 0 0 0 0 0 0 0 0 2.9 0 97.1 0 0 

Jump 0 0 0 0 0 0 0 0 0 0.6 0.6 98.8 0 

Push 1.2 4.1 0 0 0 0 0 0 0 0 0 2.9 91.8 
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