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Abstract—Nowadays, both modern computing infrastructures, as
well as their scientific workloads exhibit far reaching complexity
and diversity. Therefore, it is increasingly hard to comprehend
and manage them in an efficient manner. In particular, it can
lead to under- or overuse of resources. A prerequisite for efficient
resource allocation is the ability to predict their usage. In this
paper, we use real world workloads recorded in a modern
research infrastructure to conduct load prediction. We use well
established statistical model (ARIMA) and achieve good results in
predictions. The big data challenge is here given not by the sheer
size but rather by the speed of data collection and processing.
The quicker the prediction is made, the more time is available for
actions. Such predictions can be included in monitoring systems
to give human operators better insights into the status of their
infrastructures and lead to better load distribution.
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I. INTRODUCTION

This short paper marks the beginning of our research
towards automatic monitoring and managing of distributed
computing resources. Our main motivation stems from the in-
creasing complexity of the distributed research infrastructures
we have to manage. They comprise of High-Performance Com-
puting (HPC), High-Throughput Computing (HTC), and Cloud
resources. The resources are used by researchers from differ-
ent disciplines cooperating across the borders to accomplish
ambitious scientific goals. The usage patterns emerging from
this far-reaching diversity are challenging for the underlying
infrastructure. Yet, a mismatch in mapping of users demand
on hardware resources may potentially result in high cost, low
performance, and users’ disappointment.

One of the prerequisites for an efficient resource allocation
is the load prediction. Obviously, in case of increasing load
more hardware resources need to be allocated, conversely
decreasing load can trigger reallocation of idle resources. High
and very high levels of load can also be an indicator that
particular tasks were mapped on the wrong class of resources,
e.g., Cloud nodes instead of HTC, and an adjusting action
should take place. Given the fact that such an adjustment takes
some time, it is of crucial meaning to predict the future demand
directions to give the resource providers sufficient time for the
required changes. Lastly, a sudden change of load can be an
indication of a hardware failure or malicious action, potentially
requiring human intervention. In this paper, we will examine
if it is possible to predict future infrastructure workload based
on the historical measurements.

Collecting and analyzing workload data is a challenging
task. The single measurements are not large in size, but they
are only meaningful if analyzed quickly. An application of
decentralized approach for data evaluation would have clearly

some interesting properties but our goal is to use existing mon-
itoring infrastructure and extend it with a prediction capability.
In this approach, data are collected locally and then transferred
to the central unit for visualization, analysis, and storage.

Load analysis and prediction pave the way for an algorithm
driven infrastructure, in which no operator intervention is
required, but rather the infrastructure itself makes optimal
usage of the available resources. Given the aforementioned
complexity of the current research infrastructures, such an
automatic, algorithm-driven support is not a fancy vision but
rather an urgently required solution. It becomes increasingly
hard for human operators to grasp the tendencies and problems
in the managed infrastructures, and to make and implement
reallocation decisions.

In this paper, we mainly focus on using the model for
predicting future values of load in the test infrastructure. But a
good model itself provides an insight in the underlying process
which generated the experimental data. In our case, the model
can potentially help us in understanding how the resources
are used. This knowledge, in turn, can influence the choice
of resources deployed and overall improve the quality of the
service offered to the users.

The rest of the paper is structured as follows. In Section II,
we shortly summarize some of the previous work on broadly
defined predictions. Section III comprises our initial results.
We provide information on our setup, analyze stationarity of
the process we are going to predict on, and describe both the
model used and its predictive performance. We conclude the
paper with an outlook on future work in Section IV.

II. RELATED WORK

There is some research done in the broad field of predic-
tions that might be relevant and inspirational for our work.
Amjady analyzed electric load to issue short term prediction
of future load demand [1]. This is crucial for the economic and
secure operation of power systems. There are some differences
between electric load and hardware utilization, especially as
the first one exhibits a strong seasonal component. Neverthe-
less, the existing body of work in this field provides meaningful
insights into possibility and methodology of predictions, as
well as their economic relevance.

Statistical Process Monitoring (SPM) using either statistics
or machine learning methods can help in modeling and diag-
nosing of industrial process operations and production results
[2]. The overarching goal here is to conduct preventive service
before faults occur. The setting is similar to ours but the
systems analyzed differ in many ways. The work, however,
underpins the needs of algorithm help in managing complex
infrastructures and again give valuable hints on methodology.
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Roberts et al. [3] used profiles of power consumption to
detect malware infections on the host machines. The deviation
of recorded power consumption during predefined task were
detected with kernel-based Support Vector Machines (SVM).
The authors recorded four voltage and four corresponding
current channels and achieved perfect detection of malware
infections. Their problem statement differs substantially from
ours, yet clearly shows the potential of analyzing CPU loads
generated by applications.

Tao Li et al. [4] conducted a relevant study in a field similar
to ours. They proposed an algorithm combining linear regres-
sion and the improved Knuth-Morris-Pratt match to predict
the next moment load in the examined Cloud environment.
Furthermore, they conducted initial studies on automatic Cloud
resource reallocation based on this prediction. This work serves
as a good comparison for our results as we use a slightly dif-
ferent setting and different predicting algorithm. Particularly,
the authors used Cloud simulator for data generation whereas
we use traces from real infrastructure. There exists also a more
generic Patent by Wolters [5] on predictive monitoring of IT
structures. It provides less technical details, but proves the
commercial relevance of the work. There also exists a body
of work which uses prediction for efficient scheduling of the
computation jobs [6] [7]. The techniques used range from
neuronal networks to statistical models with no clear favorite.

Our cross-disciplinary survey was intended to give us an
overview on methodology used in different kinds of pre-
dictions. We have seen that techniques ranging from simple
statistical models up to multi-layer neural networks are used.
An open question is what method to use when predicting future
values of a given feature. Artificial Neural Networks (ANNs),
tend to perform well in some situations and fail in others.
The question “Neural networks: Forecasting breakthrough or
passing fad?” posed first by Chattfield [8] remains open. Thus,
in this first attempt on the problem, we decided to stick
to classical, and well-understood methods and explore the
potential of the idea. In the future, work we might turn towards
more sophisticated methods. However, there is some evidence
that simple modeling methods tend to perform better than
their more sophisticated counterparts [9]. We were also partly
motivated by the need to better understanding of the process
that generates the experimental data. Such an understanding is
better achieved with simple models.

III. EVALUATION

In our evaluation, we follow the well-established Box-
Jenkins methodology [10]. In this approach, the analysis
comprises of three phases: model identification, parameter
estimation, and model checking.

A. Data and tools
For our experiments, we used data collected within our

production infrastructure. It consists of a number of hosts
offering different kinds of services for academic users. The
services range from single-sign-on systems, through simple
storage offerings, up to Grid-based computing end points. We
use nagios [11] to perform periodic checks of the hosts and
services running. The tests comprise of host reachability, disk
usage, and relative CPU load, among others. Measurements
were done over two days with 5 minutes frequency. For this
initial evaluation, only load values were used.

TABLE I. STATIONARITY TESTS.

Train Test

Mean 0.0158 0.0183

Variance 0.0007 0.0008

The analysis was done with Jupyter Notebooks [12] and
we used popular Python libraries like pandas [13], statsmodels
[14], and matplotlib [15]. In this project, we follow the best
practices for structuring data science projects [16].

B. Model creation
To model and predict load changes, we use a very popular

Autoregressive Integrated Moving Average (ARIMA) model.
In the identification phase, we check the applicability of the
model. The first question that needs to be answered when
analyzing time series, is the stationarity of the process. We
used two metrics for that. Firstly, the series was split in a 60-40
ratio into parts which we later used for training and testing of
the model. Then, both mean and variance for the two intervals
were calculated. Only slight differences in values obtained for
both intervals (see Table I), suggest the stationarity of the
series. A more sophisticated way of establishing if a series
is stationary is the Augmented Dickey–Fuller test [17]. The
value calculated in the test was −3.611 laying beyond the 1%
significance threshold (−3.441 in our case). Given the results
of both tests, we can assume the series is close to stationary and
proceed in model creation that should be able to predict future
values. The small changes in the variance will be accounted
for by differencing in the ARIMA process.

The ARIMA model is characterized by three parameters.
The number of lags for autoregression is denoted as p. Pa-
rameter d defines the number of times the observations are
differenced. Finally, the q parameter describes the size of the
moving average window of the model. Since p basically defines
the relationship between subsequent observations, a good hint
for estimating its value is to use autocorrelation plot. On
Figure 1, we can see that there is strong autocorrelation within
the series, the first time the curve crosses 0 for lag 3, thus we
take p = 3 in our model. Because the process seems to be
close to stationary, we used a small value for d = 2. Finally,
the remaining q was taken as 1, meaning that we perform,
more or less exponential smoothing of the values, what makes
sense for CPU loads. Furthermore, it is common to set at least
one parameter value to one, as otherwise a risk of overfitting
is high.

After fitting the model to data, we estimated its quality.
The plot of model residuals distribution (Figure 2) shows that
mean value of residuals is close to zero (0.381× 10−3) and
the distribution is normal, confirming the good model fit.

C. Prediction
After successfully modeling the CPU load changes with

ARIMA model, we tested how good it can predict the future
values of load. This metric is crucial for the envisioned
automatic steering of resource allocation. If the model is
unable to predict correct values it would not be possible to
account for them.

The predictions were made in a rolling manner. Firstly,
we split the available data in two parts: train and test. The
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Figure 1. Autocorrelation plot of the measured CPU load.

Figure 2. Distribution of model residuals.

training set comprised of 350 measurements and was used to
fit ARIMA model, with previously selected parameters p = 3,
d = 2, and q = 1. Subsequently, a series of 40 predictions
(corresponding to about 3.5 hour interval) were made. After
each step, the predicted value was compared to the actual value
from the test set. Finally, the model was retrained with the train
set extended by the actual value. Figure 3 shows the quality
of the predictions made by our model. The dashed line shows
values from the test set, solid line represents predictions. One
can see that the model is a little bit conservative and sluggish
but overall predicts the values pretty well. The mean squared
error of all predictions was 0.698× 10−3. Prediction error can
be calculated as a difference between the actual and predicted
value. The distribution of such an error is depicted on Figure 4.
Most of the errors reside in the area close to 0.

IV. CONCLUSION AND FUTURE WORK

In this paper, we modeled the utilization of an IT infrastruc-
ture and used this model to predict future changes in workload.
The proposed model seems to be able to predict changes with
acceptable accuracy. The results obtained in this initial study
corroborate our assumptions and motivate us to further work
on this subject.

Currently, we only used load values measured over time,
but it will be interesting to see if other values available like
disk or memory usage could help to improve the predictions.
The data are available, but the current model cannot really deal
with multidimensional data well. The straight-forward solution

Figure 3. Predictions of CPU load made with the model.

Figure 4. Distribution of prediction errors.

would be to use few ARIMA models to run in parallel and
predict changes in each time series separately. Subsequently,
the results would be combined to give a prediction of the
holistic state of the resource.

Since our motivation is of a practical manner, we would
like to integrate the model predictions into our infrastructure,
monitoring solution. This will be the first step in assisting the
human operators in grasping the tendencies in the managed
infrastructure but also a field test for the proposed model.
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