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Abstract—Gateless ticket inspection is an interesting and attrac-
tive feature that can help achieve less waiting, less fare evasion,
less difficulty of use for railway services for everyone, including
physically handicapped people. In this paper, we study ride
route detection using Global Positioning System (GPS) as a new
approach for implementing gateless railway services. We assume
the gateless railway service has access to the user’s GPS location
through an application on their smartphone or another mobile
device. This position can then be compared with the GPS location
of trains in order to detect the stations at which the user boarded
and disembarked. Then, railway operators can charge the user
for the ride. A challenge in the ride detection for fare charge in
railway services is to detect the ride correctly, even if the GPS
trajectory is short, e.g., in case users only ride for one station.
In order to solve this challenge, we propose a ride detection
solution that uses different criteria to evaluate how far the user
and train were moving between two stations. In our simulation
using railway line open data provided by the Ministry of Land,
Infrastructure, Transport and Tourism (MLIT) in Japan, we show
that our proposed method reduced false positives by 25%-100%
in most cases.
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I. INTRODUCTION
Gateless ticket inspection is an interesting and attractive

feature that can help achieve less waiting, less fare evasion,
less difficulty of use of railway services for everyone, including
physically handicapped people. For example, a barrier-free fare
collection system using wireless communication technology
has been proposed in [1]. It enables wheelchair users and
people with strollers or big luggage to pass smoothly without
using a smart card or ticket at the gate.

In this paper, we study ride detection using GPS location
as a new approach for implementing gateless railway services.
We assume the gateless railway service has access to the user’s
GPS location through an application on their smartphone, or
another mobile device. This position can then be compared
with the GPS location of trains in order to detect the stations
at which the user boarded and disembarked. Then, railway
operators can charge the user for the ride.

There has been a lot of research on transportation mode
detection using GPS location [2]–[7]. These works have pro-
posed to infer a user’s mode of transportation, such as walking,
car, and rail based on the velocity calculated by trajectories of
GPS location, data of accelerometers, Geographic Information
System (GIS) data, and so on. However, all of them do
not discuss ride detection but focus on transportation mode
detection. In the ride detection, we need to know not only
that a user rode a train but exactly which train the user rode

because, for example, two operators could run trains on the
same line.

A challenge in ride detection for fare charging in railway
services is to detect the ride correctly even if the GPS trajectory
is short. It is not difficult to infer the transportation mode if a
user’s GPS trajectory is relatively long across multiple stations,
as noise in the data can be averaged out, and data preceding
and following a time point can be used for inference (e.g.,
if a user rode a train between A and B and C and D they
probably also rode it between B and C). A gateless railway
service needs to accurately charge all rides, even short ones so
we take the harder case of short GPS trajectories into particular
consideration.

To address the challenge of accurate ride detection, we
propose a ride detection system based on the GPS position
of both the user and the train. Using the estimated distance
between the user and the train, our system is able to accurately
detect rides, even when they occur only between two stations.

The rest of this paper is organized as follows. First, we
provide related works in Section II. Then, we introduce the
overview of the gateless railway service in Section III. We
detail the proposed method in Section IV and evaluates it by
the simulation in Section V. In Section VI, we discuss the
challenges to extend our approach to the real world. Finally,
we summarize the conclusions in Section VII.

II. RELATED WORK
Many studies in the previous decade have focused on

inferring transportation modes based on GPS location. Some
of them tried to infer the modes only from GPS trajectory data
[2][7] while others tried to improve the accuracy of the infer-
ence by using additional information, such as accelerometer
data [5] and GIS data [3][4][6]. However, all of them are not
discussing the ride detection but are focusing on transportation
mode detection.

As we mentioned in Section I, the main difference between
the transportation mode detection and the ride detection is
that high accuracy is required even for short GPS trajectories.
When considering ride detection, it is necessary for fare
charging to infer whether a user rode the train or not, even
if they only rode it just for one station. However, previous
studies and the criteria and features used in them tend not to
account for such short GPS trajectories. Thus, applying them
does not provide good enough accuracy of the inference in the
ride detection.

For example, Stenneth et al. [3] proposed a machine
learning approach using 8 features to infer the transportation
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Figure 1. Comparison of railway ride detection

mode detection. In these features, the average distance between
a user and a railway trajectory can be applied to the railway
ride detection. Hereafter, we call the ride detection using this
feature railway-trajectory-based approach in this paper. Figure
1(a) shows a conceptual diagram of the railway-trajectory-
based approach. Since this approach does not consider the
train’s location but only uses the distance between a user and
the closest railway line, decision errors might occur frequently
if a road runs along the railway line, as the figure shows.

Montoya et al. [6] proposed an approach that considers
the train location. They use station locations and timetables
to distinguish train, subway, and tram in the transportation
mode detection. More specifically, using route information in
General Transit Feed Specification (GTFS) format provided
by railway operators, they use the average distance between
a user and stations on the route. In addition, they consider
departure time and arrival time based on the timetable of the
route. Hereafter, we call the ride detection using these criteria
timetable-based approach in this paper. Figure 1(b) shows a
conceptual diagram of the timetable-based approach. However,
this approach has a limitation in the accuracy of the ride
detection for short GPS trajectories since it does not consider
the train location between stations.

To solve these challenges, we propose a GPS-location-
based approach that uses GPS locations of both users and
trains for the ride detection. Our proposed approach is based
on the distance between the user and the train between two
stations, based on their GPS locations. Figure 1(c) shows a
conceptual diagram of GPS-location-based approach and its
details are described in Section IV.

Note that Stenneth et al. [3] also use 2 features based on
real-time bus locations but both of them are not appropriate for
ride detection. One of them is Average Bus Closeness (ABC)
that is the average distance between a user and the closest
bus in a given time series, and the other one is Candidate Bus
Closeness (CBC) that is the minimum value among the sums of
the distance between a user and a bus at each time in a given
time series. The former is a feature that mixes information
regarding multiple buses and the latter is a feature that mixes
information across the multiple bus stops. Thus, both of them
cannot be used for ride detection.

III. GATELESS RAILWAY SERVICE
This section describes the gateless railway service that

our system could be used in. Figure 2 shows the overall
architecture of the service.
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Figure 2. Gateless railway service architecture

In this gateless railway service, the ride detection system
regularly collects GPS locations from user’s devices, such as
smartphones, and from trains operated by railway operators,
and stores them in a database. The ride detection system
periodically creates ride histories for each user and charges a
user’s credit card according to the histories. Then, the collected
payments will be paid to the railway operators.

Introducing the gateless railway service which removes the
gate itself has several advantages for both users and railway
operators though smooth ticket examining using contactless
smart cards have already been achieved in many countries. For
users, the accessibility in stations will be drastically improved.
For example, wheelchair users and people with strollers or big
luggage can access platforms smoothly without minding the
narrow gate. In addition, although a long queue can be formed
at the time of congestion in main stations, the gateless railway
service can alleviate it. As for railway operators, reducing costs
for introducing and maintaining automatic ticket examining
machines can be expected. Also, fare evasion in unmanned
stations can be reduced if a fare control based on the degree
of contribution for recording GPS locations as described in
Section VI and sudden ticket examination is combined and
performed.

IV. RAILWAY RIDE DETECTION

This section describes the proposed ride detection method.
Let lpt and lqt be the location of a train p and a user q at

a time t, respectively. We say that the user q is in presumed
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ride state for the train p if Euclidean distance d between lpt
and lqt is less than or equal to the threshold θd.

Let Lp
(A,B) be a sequence of the train p’s location between

stations A and B.

Lp
(A,B) = {lp1, l

p
2, · · · , lpn} (1)

where lp1 is the train p’s location at the departure time and lpn
is the train p’s location at the arrival time.

Similarly, a sequence of the user q’s location at the same
time can be represented as follows.

Lq = {lq1, l
q
2, · · · , lqn} (2)

We call the proportion of being the presumed ride state
in n judgments presumed ride rate for the user q in Lp

(A,B).
We assume that the railway operators determine that the user
virtually rode in the section and charge when the presumed
ride rate is greater than or equal to a certain threshold.

V. EVALUATION

In this section, we evaluate our GPS location-based ap-
proach with respect to the accuracy of the ride detection by
comparing it with the railway-trajectory-based one and the
timetable-based one in a simulation. First, we describe the
methodologies of the evaluation in Section V-A and then show
the results in Section V-B.

A. Methodologies
1) Indicators: There are the following 4 patterns for the

results of the inference.
• True Positive:

Inferred virtually rode and actually rode.
• True Negative:

Inferred not rode but actually not rode.
• False Positive:

Inferred virtually rode but actually not rode.
• False Negative:

Inferred not rode but actually rode.
We consider two indicators to evaluate the accuracy of the

ride detection based on the number of each case above.

rFP =
NFP

NTN +NFP
(3)

rFN =
NFN

NTP +NFN
(4)

where rFP is the false positive rate, rFN is the false negative
rate, and NTP , NTF , NFP , NFN are the numbers of true
positives, true negatives, false positives, and false negatives
respectively.

The false positive rate can be used to evaluate the pos-
sibility that users need to pay fare unreasonably and the
false negative rate can be used to evaluate the possibility that
railway operators will fail to collect the estimated fare. Of
the two indicators, the false negative rate can be adjusted by
changing the distance threshold θd, which is used for judging
the presumed ride state. Thus, in this simulation, we evaluate
the false positive rate by using the cases that can be misjudged
as virtually rode.

TABLE I. RAILWAY OPERATORS
AND EXAMPLES OF RAILWAY LINES

Railway operators Number of lines
in the evaluation Examples

Odakyu 1 Odawara Line
Keio 7 Keio Line, Inokashira Line

Keikyu 1 Main Line
Seibu 2 Shinjuku Line, Ikebukuro Line
Tokyu 2 Toyoko Line, Denentoshi Line
TWR 1 Rinkai Line
Tobu 2 Isesaki Line, Tojo Line

JR East 34 Yamanote Line, Tokaido Line

2) Train Location: For the simulation, we use pseudo
location information based on the railway trajectory data and
the timetable data instead of the actual GPS location. MLIT in
Japan provides GIS data, such as railway trajectories. Using
the railway trajectories provided by MILT and the duration in
timetables, we calculate the location of the train at a certain
time. Specifically, assuming the train moves with a constant
speed, we evenly divide the trajectory curve between stations
by the distance moved at a fixed time interval (10 seconds in
this evaluation).

3) User Location: We assume that a user travels between
the target stations by car and unintentionally causes the mis-
judgment because the roadway often runs parallel nearby the
railway line in urban areas of Japan. Specifically, we use
the trajectory curve of the recommended drive route and its
duration obtained by Google Maps Application Programming
Interface (API). When calculating the location of the user, we
assume that the car runs at a constant speed, for the simplicity.

4) Railway Lines: The targets are 50 lines and total 858
sections in the suburbs of Tokyo, Japan, which are operated
by 8 railway operators. These 8 operators and example railway
lines are shown in Table I. Note that we use one of the lines
for the evaluation if an operator runs multiple lines in the same
section. In addition, we exclude subway due to the difficulty
of obtaining GPS locations but its detail will be discussed in
Section VI.

B. Results
First, we compare the false positive rate between the

railway-trajectory-based approach and our proposal while
varying the threshold of the presumed ride rate and the distance
(θd) in order to evaluate how the rate will be improved when
considering the train position.

As shown in Table II, the proposed method provides a
highly accurate false positive rate (about 1%) when lowering
the presumed ride rate to 0.8 and raising the threshold of the
distance to 150m.

On the other hand, in the railway-trajectory-based ap-
proach, misjudgments occurs in 5% of the sections even if the
threshold of the distance is set to 50m. The false positive rate
of the railway-trajectory-based approach may increase further
in the real world situation since the length of the train is about
150-300m in general and railway operators would like to raise
the threshold of the distance based on it in order to improve
the false negative rate.

Next, we compare the false positive rate between the
timetable-based approach and our proposal in order to evaluate
how the rate will be improved when judging the position of
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TABLE II. COMPARISON OF FALSE POSITIVE RATE
WHETHER TRAIN POSITION IS CONSIDERED OR NOT

Threshold of
presumed ride rate

Threshold of
distance (m)

Railway-
trajectory-based Proposal

0.8 50 5.4% 0.0%
100 17.0% 0.3%
150 30.3% 1.0%

0.9 50 2.8% 0.0%
100 10.8% 0.2%
150 21.8% 0.8%

1.0 50 0.6% 0.0%
100 5.2% 0.2%
150 14.5% 0.6%

TABLE III. COMPARISON OF FALSE POSITIVE RATE
WITH CONSIDERING TRAIN DELAY

(THRESHOLD OF PRESUMED RIDE RATE ≥ 0.8)

Delay (sec) Threshold of distance (m) Timetable-based Proposal
30 50 0.9% 0.1%

100 0.6%
150 2.4%

60 50 2.4% 0.0%
100 1.2%
150 4.1%

120 50 7.5% 0.0%
100 1.9%
150 5.6%

users and trains between stations in a fine-grained manner.
Table III shows the results.

In this evaluation, since we assume the distance between
the user and the departure/arrival station is zero, the timetable-
based approach practically infers based on only the difference
of the time duration between the user and the train. In other
words, the false positive rate will vary only according to the
tolerance for the time difference. For example, when using the
low threshold of the time difference, the false positive rate will
be improved but many false negative cases occur in the case of
train delay. Thus, we vary the threshold of the time difference
with 30, 60 and 120 seconds and we show the false positive
rate of each case in Table III. Note that the rate in the case of
the train delayed by 30, 60 and 120 seconds is shown for the
proposed approach.

As shown in Table III, the proposed method can achieve
good accuracy as a whole though it falls into a higher false
positive rate than the timetable-based approach when using the
large threshold of the distance.

VI. DISCUSSION
In this paper, we propose a ride detection method based

on the GPS locations in the gateless railway service. However,
there are many challenges to be overcome in the production
system.

A. Radio Wave Dead Zones
Applying our GPS-location-based approach to radio wave

dead zones, such as subways and tunnels is a challenge.
However, nowadays, mobile devices can receive radio waves
even if they are in subways or tunnels and can infer the location
according to the cellar base stations and WiFi access points.
The accuracy is not high (e.g., a few kilometers), but we
believe that it is possible to detect the ride section based on not
only the GPS locations but also the data from other sensors,
such as an accelerometer.

B. Countermeasures for Fare Evasion
Investigating the countermeasures for the fare evasion is

also a challenge. As a simple way of the fare evasion, just
turning off the power of the smartphone can be considered.
Using faked GPS locations is also possible in some way.
The former type of cheat can be reduced by introducing a
fare control based on the degree of contribution for recording
GPS locations. For example, offering some incentives by
applying a higher fare if the GPS locations are intermittently
lost may reduce the fare evasion. The latter type of cheat
can be excluded by checking whether the operating system
and/or the application is faked or not using API, such as
SafetyNet in Android. However, the fare evasion cannot be
detected if always turning off the power from the begining.
Therefore, manual approaches, such as random control by
service personnel and the expensive fine will be necessary.

VII. CONCLUSION
In this paper, we study ride detection based on GPS

location as a new approach for implementing gateless railway
service. Unlike the transportation mode detection, it is neces-
sary for fare charging to detect the ride correctly even if the
GPS trajectory is short. In order to achieve this, we proposed
a ride detection method that uses criteria to evaluate how far
the user and train were moving between two stations. In our
simulation using railway line open data provided by MLIT
in Japan, we show that our proposed method reduced false
positives by 25%-100% in most cases.

We plan to develop a prototype and evaluate the proposed
method with overall criteria including false negative error rate
and efficacy of countermeasure for fraud prevention, such as
incentive management by fare control.
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