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Abstract—With the raise of smart sensors and of the Internet
of Things paradigm, there is an increasing demand for
performing Data Mining tasks (classification, clustering,
outlier detection, etc.) on data stream produced by these inter-
connected devices. In particular, Data Mining for time series
has gained a relevant importance in the last decade. For these
temporal data, feature extraction can be performed using
various algorithms and decomposition techniques for time
series analysis. In addition, features can also be obtained by
sequence comparison techniques, such as dynamic time
warping or other measures of similarity. For these reasons, we
have designed and implemented a multipurpose and
extendable tool for window-based feature extraction from time
series data. This paper describes the architecture of the
designed tool, named Training Builder, and the current
version of its multi-language implementation, which focuses on
time series feature extraction, parametric windowing task and
data pre-processing. The framework has been applied in the
neurological domain where very good results have been
achieved for epileptic seizures detection; the case study shows
how the Training Builder tool may be very helpful for the next
Data Mining tasks.

Keywords-data mining; time series analysis; feature
extraction; sliding window; similarity measures; pre-processing.

I. INTRODUCTION

In many application fields, such as production lines in
factories or stock quotes analysis, it is quite usual to create
and process high amounts of data at high rates. Such
continuous data flows with unknown size and end are called
data streams [1]. When elements of a data stream have a
temporal ordering, we talk about time series data. Today, the
primary source of data streams are smart sensors that are
ubiquitous devices crucial for a multitude of monitoring
applications. Important examples are weather observation
and environment monitoring in general, health monitoring,
Radio-Frequency IDentification (RFID) monitoring, or road
monitoring. There are several important tasks that have to be
considered when dealing with time series data; among these
are: signal pre-processing transformation, time-based
windowing and feature extraction process. All these different
tasks are usually separately implemented in the freely
available tools, see Section II, and it is often hard to combine
them to achieve the desired workflow. Being motivated by
this observation, we have designed and developed a
multipurpose and extensible tool called Training Builder,

with the aim of supporting Data Mining process on time
series data, implementing data representations, similarity
measures and pre-processing modules. It also makes possible
to easily change some existing or to add new concrete
implementation of any module or algorithm. We have
implemented many features and similarity measures, and we
have performed a set of experiments to validate their
advantages.

In Section II, we examine some time series data analysis
tools that exist in the literature. In Section III, we present
time series analysis general outlines, including main
definitions, its scope and its role in Data Mining (DM). In
Section IV, the Training Builder Tool is presented, including
the main definitions, feature extraction process, and
Graphical User Interface (GUI). In Section V, we show how
the application has been applied to a case study in
neurological domain. Finally, in Section VI, our general
considerations and future works are shown.

II. RELATED WORK

Many tools and applications deal with time series data,
each of which differs by the type of approach.

There is a category of tools specialized in the
implementation of DM algorithms, such as Waikato
Environment for Knowledge Analysis (WEKA) [2] and
RapidMiner [3]. WEKA tool supports a great number of DM
and machine learning techniques, including data pre-
processing, classification, regression and visualization.
However, WEKA is a general-purpose DM library, not
specialised for time series. Instead, the time series support
within WEKA is based on Massive Online Analysis (MOA)
[3] tool, which is an open source framework for data stream
mining, with a very active growing community. It includes a
collection of machine learning algorithms (classification,
regression, clustering, outlier detection, etc.) and tools for
evaluation. Another system similar to WEKA is RapidMiner.
It is also an open source (only the Community Edition)
collection of data-mining and machine-learning techniques.
RapidMiner has a very sophisticated graphical user interface,
and it is also extensible with the user’s implementations.
Time series support is demanded to the Time Series
Extension package that is in alpha version at this moment.

In addition, there are several tools specialised for
monitoring and visualisation of time series. Kibana [5] is an
open source analytics and visualization platform designed to
work with Elasticsearch [6]. It enables near real-time
analysis and visualization of streaming data. It allows
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interactive data exploration, supports cross filtering and
provides multiple chart types, such as bar chart, line and
scatter plots, histograms, pie charts, and maps. It is open
source and has a number of plug-in extensions that can
further enhance its functionality. Grafana [6] is another open
source visualization tool that can be used on the top of a
variety of different data stores, especially on the top of Time
Series DataBases (TSDB), such as OpenTSDB [8] and
KairosDB [9].

Lastly, there are several massive data stream processing
frameworks specialized in manipulation of time series data
produced at high rate and with a large volume, such as
Apache Spark [10] and Apache Flink [11]. Apache Spark is a
batch-processing framework with stream processing
capabilities. Built using many of the same principles of
Hadoop’s MapReduce engine, Spark focuses primarily on
speeding up batch processing workloads by offering full in-
memory computation and processing optimization. Spark has
a specific module, Spark Streaming, which supplies stream
processing capabilities, making use of the so-called micro-
batches. Apache Flink is a stream processing framework that
can also handle batch tasks. It considers batches as data
streams with finite boundaries, and thus treats batch
processing as a subset of stream processing. This stream-first
approach has been called the Kappa architecture [12], in
contrast to the more widely known Lambda architecture [13].

Currently, however, there is no freely available
standalone system or framework that, at the same time,
provides efficient implementations of features extraction
process and data pre-processing techniques for time series
data and supports the necessary concepts of data
representation, similarity measures and signal filtering tasks.
In this paper, we propose a software application that tries to
combine all the different aforementioned approaches
(algorithms, visualization, storage, and parallel/distributed
computation) in order to facilitate the user in the DM step.

The implemented tool, called Training Builder, covers all
the data preparation tasks, ranging from the signal pre-
processing step to the data labeling one, by using the sliding
window paradigm and the features calculation algorithms,
enriched by functionalities of data storage and data
visualization. Training Builder has also been developed to be
as extensible as possible, allowing to easily add algorithms
for feature calculation to the existing core implementation,
thanks to an extremely flexible and modular architecture, and
the algorithms can be developed with different programming
languages. Lastly, a user-friendly and Web-oriented GUI
allows the user to select the temporal parameters and the
features to be extracted from the input time series and,
showing the charts of features over time, it allows to quickly
evaluate and optimize the temporal parameters by mutual
comparisons.

III. TIME SERIES ANALYSIS & MINING

Time series analysis is composed of methods that attempt
to extract meaningful statistics and other characteristics from
data points, to understand the underlying context, and to
make forecasts. Time series data are popular in many
applications, such as stock market analysis, process control,

observation of natural phenomena, scientific and engineering
experiments, medical treatments, etc. Therefore, in the last
decade, there has been increased interest in querying and
mining such data. The purpose of time series mining is to try
to extract all meaningful knowledge from the shape of the
data. Even if humans have a natural capacity to perform
these tasks, it remains a complex problem for computers. In
recent years, many efforts have been made to find new
methodologies for different time series mining [14] task
types including indexing, classification, clustering,
prediction, segmentation, anomaly detection, motif
discovery, etc.

There are several important concepts that should be taken
into account when dealing with time series: pre-processing
transformation, time-based parametric windowing, feature
extraction, and visualization.

A. Pre-Processing Transformation

“Raw” time series usually contain some distortions,
which could be consequences of bad measurements or just a
property of the underlying process that generated the time
series. The presence of distortions can seriously deteriorate
the indexing problem because the distance between two
“raw” time series could be very large even though their
overall shape is very similar.

The task of the pre-processing transformations is to
remove different kinds of distortions. Some of the most
common pre-processing tasks are: offset translation,
amplitude scaling, removing linear trend, removing noise,
etc. [15].

Pre-processing transformations can greatly improve the
performance of time series applications by removing
different kinds of distortions.

B. Parametric Windowing Technique

Windowing is one of the most frequently used processing
methods for data streams. An unbounded stream of data
(events) is split into finite sets, or windows, based on
specified criteria, such as time. A window can be
conceptualized as an in-memory table in which events are
added and removed based on a set of policies.

This subsection describes how sliding and tumbling
windows work. Both types of windows move across
continuous streaming data, splitting the data into finite sets.
Finite windows are helpful for operations, such as
aggregations, joins, feature extraction, and pattern matching.

1) Tumbling Window
In a tumbling window, tuples are grouped in a single

window based on time or count. A tuple belongs to only one
window.

For example, consider a time-based tumbling window
like the one shown in Fig. 1 with a length of five seconds.
The first window (w1) contains events that arrived between
the zeroth and fifth seconds. The second window (w2)
contains events that arrived between the fifth and tenth
seconds, the third window (w3) contains events that arrived
between tenth and fifteenth seconds, and finally the fourth
window (w4) contains events that arrived between fifteenth
and twentieth seconds. The tumbling window is evaluated
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every five seconds, with no overlap between different time
windows; each segment represents a distinct time segment.

Figure 1. A tumbling windowing process.

This method can be applied, for example, for the
computation of the average of a price of a stock over the last
five minutes, repeated every five minutes.

2) Sliding Window
In a sliding window, tuples are packed within a window

that moves across the stream of data according to a fixed
interval. A time-based sliding window with a length of x
seconds and a sliding interval of y seconds contains tuples
that arrive within an x-second window. The tuples within the
window are evaluated every y seconds. Sliding windows can
contain overlapping data and the same event can belong to
more than one sliding window.

An example is shown in Fig. 2. The first window (w1, the
green box) contains events occurring between the zeroth and
tenth seconds. The second window (w2, the orange box)
contains events between the fifth and fifteenth seconds. Note
that events e4 through e5 are in both windows. When
window w2 is evaluated at time t = 15 seconds, events e1,
e2, and e3 are dropped from the event queue.

Figure 2. A sliding windowing process.

The time windows w1, w2, w3 contain overlapping data.

C. Features Extraction Task

Feature extraction aims to explain the underlying
phenomena of interest from a set of raw data by simplifying
the amount of resources required to accurately describe it. In
various fields, such as image processing or bio-informatics,
raw data are corrupted with undesired variations, or noise,
that should be discarded. Thus, feature extraction methods
usually consist of a combination of noise removal algorithms
(also called de-noising), structure detection, and
dimensionality reduction techniques. Generally, an optimal
balance is required to be found between fineness and
complexity of the extracted features. The desired output
should use a minimal amount of resources while being able
to accurately describe the underlying phenomena of interest

of the data. Once the relevant part of the signal has been
extracted, detailed analysis may be conducted, hypotheses
may be drawn, and further applications may be considered
by the end-user.

Features could be extracted either from one signal
(univariate) or from two or more signals (multivariate). In
particular, bivariate features are based on a similarity
measure that compares two time series objects and returns a
value that encodes how similar they are. Distance metrics
represent a kind of similarity measures commonly used to
define if two time series are similar. Many algorithms are
used to compute these metrics, such as Lp distance (Lp) [16],
Dynamic Time Warping (DTW) [17], distance based on
Longest Common Subsequence (LCSS) [18], Edit Distance
(ED) [19], also known as Levenshtein Distance, etc.

D. Data Visualization

Data visualization is a general term that describes any
effort to help people understand the significance of data by
placing it in a visual context. A graphical visualization of
time series could help Data Analyst to better understand time
series evolution and to find patterns, correlations or trends.

Usually, a time series is represented by a line graph or a
stacked area chart, where the observations are plotted against
the corresponding sampling time. A line graph is the
simplest way to represent time series data and it uses points
connected by lines (also called trend lines). For temporal
time series, it represents how the signal changes across time,
so how the dependent variable (the signal) changes
according to the independent variable (the time).

Figure 3. A line graph chart reporting ten seconds of an EEG recording.

The graph in Fig. 3 shows the first ten seconds of an
ElectroEncephaloGram (EEG) that measures human brain’s
electrical activity; along the y-axis is plotted the amplitude of
the measured signal in microvolt, while the x-axis has the
time in seconds.

IV. TRAINING BUILDER TOOL

The Training Builder is a modular software application
for the massive extraction of features from time series,
provided as input, by changing of the temporal analysis
parameters and the band-pass filters.

The final output of the tool is to create the training sets
that will be used as input for the DM techniques. Therefore,
each set of training varies depending on:
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 Time series (or better the recording of them).
 Temporal analysis parameters: L, R, and S.
 Band-pass filters: [8][12], [13][20], etc.
 Features to be computed (Hjorth Parameters,

Statistical Moments, etc.).
 Bivariate calculation method: bivariate algorithms

can be used to compute similarity distance between
the under examination signal and a “reference”
signal.

Each training set consists of a comma-separated values
(csv) file, where features are recorded as vectors.

A. Software Architecture and GUI

The software application architecture has been designed
following the Client / Server architectural model, in which
the Server part is composed of the algorithm for massively
extracting features, pre-processing functions, and other
support utilities, while the Client part is composed of a
browser-based application, responsible for visualizing output
results and submitting a form for input selection and
validation.

Fig. 4 shows the high-level diagram of the designed
software architecture, including the input data sources and
the outputs delivered; accordingly, two possible time series
data sources are provided:

 Recorded in text format (txt or csv).
 Stored in a TSDB (OpenTSDB or KairosDB).

Figure 4. Application logic scheme.

The use of a time series database, instead of formatted
files, allows an optimization in the management of time
series, as regards their storage and recovery, while ensuring
high reliability and availability.

Currently, the application can store and retrieve time
series data from the OpenTSDB and KairosDB time series
databases, which in turn store data on the NoSQL databases
Apache HBase [21] and Apache Cassandra [22],
respectively. This double possibility allows the Training
Builder to adapt to different software configurations.

In output, instead, the results of the application of
features to these time series are provided in csv format. The
csv file can be saved by the client or stored on a distributed
file system.

Figure 5. Training Builder GUI.
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By using the responsive Web-oriented GUI, shown in
Fig. 5, the input sources, all the temporal parameters, the
bandwidths, and the features can be chosen and selected by
the user. A direct interface to the time series visualization
browser, provided by the above-mentioned TSDB, is also
provided.

The GUI can be divided into four functional blocks, as
highlighted by numbered circles in Fig. 5. The first block
enables user to select the time series that has to be analysed,
selecting a local csv file or choosing a stored time series in
the TSDB. In the second block, the user can specify the time
series sampling rate and can select the bandwidth intervals.
In the third block, the temporal analysis parameters are listed
(see Section IV.D). In the fourth block, the user can select
the univariate and bivariate features to be computed from the
selected time series data (see Section IV.E) and the
calculation methods useful to extract the bivariate ones (see
Section IV.F for deeper details). Lastly, a set of buttons
allows the following operations:

 Process: starts data analysis process.
 Stop: stops the running computation.
 Show Graph Charts: shows the plot charts of the raw

data and filtered time series (an example is reported
in Fig. 7) in a separate browser window.

This client component was developed using the jQuery
JavaScript library [20]; in particular, it was used to
manipulate the Document Object Model (DOM) interface of
the Hyper Text Markup Language (HTML) page and for
asynchronous communications with the Server part, by using
Asynchronous JavaScript and XML (AJAX) technology.

The Server component is instead divided into two layers:
 The Application Layer, which includes the logic that

implements the analysis algorithms and how they are
used for the massive extraction of the features,
according to the chosen temporal parameters and
other user selected inputs.

 The Data Layer, which is represented by the time
series database chosen (OpenTSDB and KairosDB)
or text/csv files.

Each of these layers could be instantiated on a dedicated
workstation improving the overall performances of the
software application.

Furthermore, Training Builder has been developed to be
as extensible as possible, with the aim of being able to
execute algorithms for feature computation developed with
different programming languages; currently Java, C/C++ and
Matlab are natively supported, but compatibility with other
languages like R and Python, which are widely used for time
series analysis tasks, can be easily configured. This
capability is achieved thanks to Java Native Interface (JNI)
and Service Provider Interface technologies (SPI) offered by
Java Virtual Machine (JVM).

B. Core System Funcionalities

The core of the system consists of a set of algorithms for
features implementation and routines for the definition of
temporal analysis parameters. The choice of which
parameters and which features to apply to the input files is

delegated to the user and is simplified through a Web-
oriented graphical user interface. The application is also
compliant with the architectural pattern Representational
State Transfer (REST) [23]: using a stateless protocol and
standard operations, REST systems provide high
performance, reliability, and scalability, reusing components
that can be managed and updated without affecting the
system as a whole, even while it is running. The REST APIs,
which act as wrappers for the developed algorithms, can be
called as services from external applications; in this way, for
example, the application can be integrated into existing
software platforms or recalled by other remote Web services.
The Web application can be run on any standard Java
Application Server; for our tests Apache Tomcat [24] has
been used, because it is the most widespread and used in the
Open Source community.

The algorithmic component (that is, the component that
contains the features algorithms) has been coded using Java,
Matlab and C programming languages. The choice of the
language to be used is related to the complexity of the
algorithm (for example, in Matlab it is much easier to work
on matrices and vectors) and the availability of built-in
functions that can simplify the coding of the algorithm itself.
Consider, for example, the Log-Energy Entropy feature,
which requires the wavelet transform of the input signal: its
implementation is easier in Matlab environment as it
provides a series of utility functions to obtain the wavelet
transform of a signal (both discrete and continuous).

Figure 6. Application components scheme.

In order to execute algorithms implemented in Matlab
environment, a series of utility classes were developed in
Java (using the Matlab Compiler SDK tool), which are able
to interoperate with the Matlab environment through the
Matlab Runtime [25]. The Matlab Runtime is a standalone
set of shared libraries that allows running applications
compiled by Matlab or Matlab components on computers
where Matlab is not installed. The Matlab Runtime behaves
very similar to a JVM, allowing code portability on
Windows, Linux and Mac machines. Where possible, the
equivalent C code of the algorithm developed in Matlab was
generated automatically using the Matlab Coder toolbox.
This eliminates the dependency on the Matlab Runtime, but
the corresponding library must be generated according to the
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host Operating System (DLL for Windows, Shared Object
for Linux). Unfortunately, this operation is not always
supported; in fact, in the case of Log-Energy Entropy this
was not possible because the wavelet functions cannot be
generated in C, so the code requires the Matlab Runtime to
be installed on the host machine. The Multithreaded Data
Splitter component, shown in purple in Fig. 6, is responsible
of splitting the dataset to be analysed, into sub-blocks of
data, in order to exploit the multithreading capabilities of
modern processors, parallelizing the execution of the
program and consequently increasing its performance. The
input to the component can be one or more files to be
analysed or even one or more streams retrieved from the
time series database; both types of input are converted into a
standard internal format so, for simplicity, we will now use
the generic term source to indicate one of the two input
types. The component implements an algorithm to define the
number of threads to be used and then calculates how to split
the data provided by the source between the different
threads. Indicating with MaxNumThread the number of
threads manageable by the processor and NumSources the
number of sources to be analysed, the algorithm follows
these steps:

1. One thread is reserved for each source to be analysed
(at most equal to MaxNumThread).

2. Each of the threads of the ith source can in turn launch
a number of secondary threads equal to:

NumThreadi = MaxNumThread / NumSources (1)

3. For each jth thread of the ith source, a block of data is
assigned equal to:

DataBlockji = SourceDataLength / NumThreadi (2)

For example, suppose you have an IntelTM processor with
8 cores and each core can handle 2 threads using Hyper-
Threading technology, obtaining a total number of 16 threads
that can be managed simultaneously (MaxNumThread); if we
wanted to process 4 sources in parallel (NumSources) of data
length equal to 10000 values, we would have a thread for
each single source (1). Each source is then associated with a
number of threads (NumThreadi) equal to 16/4 = 4. Each of
these four threads is assigned a portion of data equal to
10000/4 = 2500 values (2).

The Java implementation of this component makes use of
the concurrency APIs, where the Executor framework as a
layer of higher level in thread management has been
implemented. Executors replace the direct execution mode of
threads, allowing the implementation of asynchronous tasks
and thread pools. Each thread inside the pool is reusable: an
Executor does not autonomously terminate its execution but
waits for the execution of new tasks. In our tests, we have
seen an almost linear performance speedup, by increasing the
number of threads used.

C. Signal Pre-Processing

Data pre-processing is made up of a set of techniques
able to transform the raw data into some meaningful and

understandable format. It is advisable to identify the main
frequency components of a signal in order to eliminate the
so-called out-of-band noise. The choice of the frequency
bands to be used for processing the signals under
examination also depends on the type of the signal and on
the frequency at which it was acquired. The upper limit is
dictated by the sampling frequency (as stated by the
Nyquist–Shannon sampling theorem). The bandpass filters,
encapsulated in the yellow block of Fig. 6, have been
implemented in the Matlab environment by using the Fast
Fourier Transform (FFT) function.

D. Parametric Windowing

Parametric Windowing in Training Builder is achieved
by using three temporal analysis parameters:

 L: it represents the length of the signal to be analysed,
expressed in seconds [s].

 S: it represents the slippage of the signal to be
analysed (i.e., how often the algorithm is applied),
expressed in seconds [s].

 R: it represents the forecast radius, expressed in
seconds [s].

If the sliding step size S is smaller than the window size
L, the windows overlap, while if S = L we get a tumbling
window. R parameter is helpful to tag each computed feature
with a target class (this is helpful for the next DM).

E. Implemented Features

The Algorithms green block, in Fig. 6, is the component
responsible of features algorithms computation.

TABLE I. COMPUTED FEATURES ALGORITHMS

Id Feature Name Code UB Coding
1 Mean SM1 U Java
2 Standard Deviation SM2 U Java
3 Variance SM3 U Java
4 Skewness SM4 U Java
5 Kurtosis SM5 U Java
6 Hjorth Mobility HP1 U Java
7 Hjorth Complexity HP2 U Java
8 Shannon Entropy EB1 U Java
9 Log-Energy Entropy EB2 U Matlab

10 Kolmogorov Complexity CB1 U Matlab/C
11 Upper Limit Lempel-Ziv Complexity CB2 U Matlab/C
12 Lower Limit Lempel-Ziv Complexity CB3 U Matlab/C
13 Peak Displacement SE1 U Java
14 Predominant Period SE2 U Java
15 Averaged Period SE3 U Java
16 Squared Grade SE4 U Java
17 Squared Time to Peak SE5 U Java
18 Inverted Time to Peak SE6 U Java
19 Conditional Entropy MC1 B Java
20 Joint Entropy MC2 B Java
21 Mutual Information MC3 B Java
22 Cross Correlation Index MC4 B Java
23 Euclidean Distance DB1 B Java
24 Levenshtein Distance DB2 B Java
25 Dynamic Time Warping DB3 B Java
26 Longest Common Sub-Sequence DB4 B Java
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Currently, 26 algorithms have been implemented, that
could be divided into 7 classes and can be of Univariate (U)
or Bivariate type (B):

 SM: Statistical Moments.
 HP: Hjorth Parameters.
 EB: Entropy Based.
 CB: Complexity Based.
 SE: Seismic Evaluators.
 MC: Mutual Conditioned.
 DB: Distance Based.

In Table I, a list of all implemented features is reported,
and it is also specified with which programming language
the algorithm has been coded.

A description of the more relevant implemented features
is reported below.

1) Statistical Moments

In mathematics, a moment is a specific quantitative
measure of the shape of a function. In our framework, the
first four statistical moments have been calculated, plus
standard deviation measure. All algorithms where developed
in Java by using the Apache Commons Math library [26].

2) Hjorth’s parameters

Hjorth’s parameters (normalized slope descriptors) of
mobility and complexity [27] quantify the root-mean-square
frequency and the root-mean-square frequency spread of a
given signal, respectively.

3) Shannon Entropy

In Information Theory, the Shannon’s Entropy represents
the average amount of information produced by a stochastic
source of data. Formally, it is defined as the expected value
of self-information. The latter represents the information
contained in a given event x, emitted by the source X and it
is defined as follows:
 I(x) =  log2P(x) 

Thus, the entropy of a source X turns out to be:

 H(X) = E[I(X)] = E[log2 P(x)] 

where P(X) is a probability mass function for a discrete
random variable X.

4) Log-Energy Entropy

The Log-Energy Entropy is a feature closely related to
Shannon’s Entropy and to Wavelet Transform. In fact, after
an appropriate wavelet decomposition, it is possible to
calculate the Log-Energy Entropy by using the following
relation:
 E(s) = ∑i=1 log2 (si

2) 
where si are the N coefficients of the wavelet transform

for the signal s emitted.

5) Kolmogorov Complexity

In Algorithmic Information Theory, the Kolmogorov
Complexity of an object, such as a piece of text, is the length
of the shortest computer program (in a predetermined

programming language) that produces the object as output. It
is a measure of the computational resources needed to
specify the object and it is also known as descriptive
complexity.

6) Lempel-Ziv Complexity

The Lempel-Ziv Complexity of a given finite binary
sequence is an index associated with the number of sub-
sequences that can be identified. In particular, this process
can take place through methods that tend to highlight the
greater or lesser complexity of the given sequence.
Therefore, taking into account the two extremes, it is
possible to calculate those that are interpreted as the upper
and lower limit of this index.

7) Seismic Evaluators

The seismic evaluators have been calculated by
considering [28] and [29] because there is an analogy
between earthquakes and epileptic seizures.

8) Dynamic Time Warping

Dynamic Time Warping is a technique that uses dynamic
programming to compare two sequences of different lengths
and allows non-linear alignments, one-to-many, or vice
versa, thanks to a temporal distortion. A nonlinear (elastic)
alignment produces a more intuitive measure of similarity
and favours those cases in which the sequences are similar
but locally out of phase.

F. Bivariate Features Calculation Methods

Bivariate algorithms have been used to compute
similarity distance between the under examination signal and
a “reference” signal. This reference signal could be of three
different types:

 W.r.t. Previous L: with respect to the same signal
taken at a previous L interval.

 W.r.t. Zero: with respect to the zero constant signal.
 W.r.t. Different Synchronous Signal: with respect to a

synchronous signal happening in the same instant but
originated from a different positioning.

V. CASE STUDY IN NEUROLOGICAL DOMAIN

Epilepsy is a neurological disorder characterized by
recurrent seizures caused by abnormal electrical discharges
from the brain cells, which extremely affect patient quality of
life. The worldwide recognized standard for epilepsy
monitoring and diagnosing is ElectroEncephaloGram (EEG)
recorded from scalp or intracranially (iEEG). The former is
the most commonly used ambulatory method, mainly due to
its low invasiveness, while the latter is mainly used to help
patients in which classical EEG monitoring is not able to
identify epileptic area. A lot of interest there is in finding
automated seizure detection methods from EEG/iEEG, to
help clinicians to identify seizures on EEG/iEEG recordings
and also to embed them in closed-loop systems for epilepsy
control. Feature extraction method for epileptic EEG/iEEG
plays a crucial role in detection algorithms, since it seriously
affects the performance of these algorithms.
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A. Training Builder on Working

We used Training Builder to analyse iEEG signals for the
detection of epileptic seizures. In particular, by analysing the
fraction of the iEEG recordings immediately preceding the
beginning of the epileptic seizure (PreIctal recordings) and
the ones belonging to the seizure itself (Ictal recordings), a
classifier is trained in order to determine the anomalous
signals, using the numerous computed predictive features.

A public iEEG dataset, the Freiburg Seizure Prediction
EEG database (FSPEEG) [30], was used for evaluating the
classification performance of extracted features. The
database contains iEEG recordings from 21 patients with
medically intractable epilepsy. Recordings were made by
means of grids, strips, and depth electrodes, and acquired
with a 128 channel system at 256 Hz sampling rate. Six
iEEG channels were selected by certified epileptologists,
three from focal electrodes (InFokus channels), located near
to the region where the seizures occurred and three from
extra focal electrodes (OutFokus channels), located in areas
far from the seizure focus. In our test, we examined twelve
recordings of one patient (number 16): five containing
seizures (Ictal) and seven without seizures (PreIctal), were
observed.

In order to detect the beginning of the epileptic seizure
within the iEEG signals, a binary classifier can be trained
starting from the training set formed by the computed
features and whose target class is ActualYN, which assumes
the values {YES, NO}: YES if we are in Ictal phase, NO
otherwise.

B. iEEG Pre-Processing

The iEEG signal from each InFokus/OutFokus electrode
was filtered through six different frequency bands, 8-12 Hz,
13-20 Hz, 21-30 Hz, 30-45 Hz, 40-70 Hz and 70-120 Hz
using band-pass filter, thus obtaining six signals. The upper
limit of 120 Hz is dictated by the sampling frequency with
which the iEEG signal was acquired at 256 Hz. Moreover, a
notch filter at 50 Hz, to minimize power line interferences,
has been used.

C. Feature Extraction Process

The first step before feature extraction is the selection of
the window size L and the sliding step S for the sliding
window calculation task. R parameter is used to select the
value of the ActualYN target class.

TABLE II. TEMPORAL PARAMETER VALUES

L R S
5 [s] 0 [s] 1 [s]

For this case study, we selected temporal parameter
values (in seconds) as listed in Table II; with S < L we had
choose an overlapped window and we set R = 0 because we
wanted to detect the onset of the epileptic seizure.

For this case study, we decided to compute all features
provided by the Training Builder tool for all possible
combination of electrodes, bandwidths and type of reference
signal; the size of the final feature dataset is then:

(a + b * c + b * d) * e * f 
where a are the univariate features, b the bivariate

features, c bivariate modality calculation, d the type of
reference signal, e the bandwidths and f the electrodes.

TABLE III. FEATURE DATASET VARIABLES VALUE

a b c d e f
18 8 3 3 6 6

In this case study, we have 2376 variables, as reported in
Table III.

Training Builder tool tags every extracted vector of
features with the corresponding value of the target class
ActualYN.

D. iEEG Data Visualization

Training Builder tool provides also a graphical user
interface to visualize and analyse the input time series. This
is achieved using the time series visual editors that both
OpenTSDB and KairosDB provide. Otherwise, Grafana can
be used, which deals well with the two TSDB. In this case
study, the GUI made available by KairosDB has been used.

In Fig. 7, the first 30 seconds of the patient’s registration
001 have been displayed, recorded from the electrode 1 and
filtered in the band [13,20] Hz, for a total of 7680 samples
(considering the sampling freq. of 256 Hz).

These charts are also very useful for visually detecting
the various seizures phases.

E. Modeling

In the classification step, we hypothesized that the
different features extracted over time can be separated into
two classes corresponding to two different cerebral states
(Ictal and PreIctal).

By analysing the fraction of PreIctal and Ictal recordings,
a classifier model has been trained in order to determine the
anomalous signals, using the calculated features. We chose
as classifier a multilayer neural network (Multilayer
Perceptron) with 20 hidden layers (H = 20). From our tests, it
is able to correctly classify the 99.27% of records, including
95% of records of the YES class.

Figure 7. iEEG time series visualization.
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To get further details of the Modeling phase of DM
process and additional interesting methods and results, you
can see [31], where Support Vector Machines have been
trained in order to detect epileptic seizures in the iEEG
signals.

VI. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a time-based windowed
framework for time series analysis that allows Data Analysts
to easily set all different combination of temporal parametric
values, bandwidth intervals, and features to extract from a
time series. By using a user-friendly software application, we
tested a case study in the neurological domain, in order to
understand how this approach helps to analyse the dataset, to
optimize the feature extraction task and to help the following
modelling task of the target dataset, by applying the sliding
window paradigm.

As future works, we are going to integrate in our tool
some representation techniques that can reduce the
dimensionality of time series. These techniques have been
proven to limit time and memory consuming, especially
when there is a need to compute a similarity distance
between time series. Moreover, in the future studies, we are
going to use one of the massive data stream processing
frameworks, mentioned in Section II.
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