
Small Data: Applications and Architecture

Cheng-Kang Hsieh∗, Faisal Alquaddoomi†, Fabian Okeke‡, John P. Pollak§, Lucky Gunasekara¶ and Deborah Estrin‖
∗ UCLA CSD; Los Angeles, CA, USA (changun@cs.ucla.edu)
† UCLA CSD; Los Angeles, CA, USA (faisal@cs.ucla.edu)

‡ Cornell CSD; Ithaca, NY, USA (fno2@cornell.edu)
§ Cornell Tech; New York, NY, USA (jpp9@cornell.edu)
¶ Cornell Tech; New York, NY, USA (llg24@cornell.edu)
‖ Cornell Tech; New York, NY, USA (destrin@cornell.edu)

Abstract—Small data are the digital traces that individuals gener-
ate as a byproduct of their daily activities, such as: communicat-
ing through email or text; buying groceries or ordering delivery;
or going to work on foot or by car. These traces can empower
individuals to gain insights into their behavior, personalize their
care, improve their relationships, motivate achievement of goals,
and broadly improve their quality of life. As such small data are
both byproducts of today’s and drivers of tomorrow’s ubiquitous
computing applications. The contributions of this paper are
twofold: we motivate the requirements for a small data ecosystem
and supporting architecture, and present a critical component
– Lifestreams Database (DB) – which is evaluated using three
exemplar apps. Lifestreams DB extracts, processes, and models
diverse traces from data silos and enables various small data
applications through simple SPARQL queries. Its soft-state design
provides storage-efficiency, robustness, and query performance
for processing small data.

Keywords–small data; linked data; knowledge representation.

I. INTRODUCTION
Small data are “digital traces”, records of our activities that

are stored as we interact with the world around us. These traces
are passively produced when we use tools and services that
maintain logs: credit cards, grocery receipts, websites and other
streaming content services, browsers themselves, etc. They
can also be intentionally produced and tracked by wearable
sensors, including mobile phone applications. It is well-known
that service providers derive value from this information
– usage metrics and demographic information, all personal
data, are routinely employed to help direct advertisement and
optimize products. We argue that this data can and should
provide value for the producers of this data as well. As a
natural extension of prior ubiquitous computing applications,
small data apps will emerge as an important class of ubicomp
applications that concern themselves with deriving insight from
personal data at the user’s request and with their oversight.

For example, a small data app may promote healthier eating
by coaching users to take the planning actions needed to
prepare meals at home. The app would utilize grocery and
online food delivery history, browser history, and Moves or
Foursquare data to build a model of meal preferences. The
user could then receive prompts at their desired frequency
about which recipes they are likely to enjoy, and suggestions
for additions to their grocery shopping list to enable them to
prepare these meals at home. The app could incentivize this
with informative comparisons of calorie and cost savings, or
could be tied to more intentional gamification. Another small
data app could allow independent living elderly to share how
they are doing without sharing every detail of what they are

doing. The app would make use of passively collected small
data streams such as email, activities, and mobile phone usage
to create a personalized model of the user’s activity, well-
being, and degree of social engagement. Rather than exposing
the model itself, the app would expose deviations from the
model to make family and friends aware of changes to a
person’s state without divulging detailed information. Such an
app can support many types of relationships, including family
and friends separated geographically, or other support-network
relationships such as social workers, caregivers, and coaches.
We describe these concepts in greater detail in section III.

The central role of a small data architecture is to facili-
tate application-level access to a person’s diverse information
sources on their behalf. While individual service providers,
such as Google, Facebook, and Amazon each have information
about many aspects of our behavior, they are limited in how
specifically they personalize by the terms of their end-user
licensing agreements and a need to preserve users’ trust. They
also do not each have access to all data of interest. Because of
this, there is an opportunity in the market for providers to give
users access to their individual data in various forms (applica-
tion programming interfaces, downloads, email receipts), and
for third-party products to emerge that integrate with that user’s
data in the same way that third party mobile apps make use of
mobile-device data. These third party apps would serve the end
user without degrading the large-service provider’s position,
and in fact have the potential to solidify the user’s sense of
the service provider’s utility and trustworthiness. Note that we
are promoting that users be given access to their data and not
making any statement about data ownership. We are also not
addressing the very important policy question regarding service
providers making user data available to third parties directly.

As mentioned, service providers have difficulty providing
apps that cut across multiple data sources or mine too deeply
into their users’ data. In contrast, a small data app leverages
the user as the common denominator, and can take advantage
of the trend for service providers to support application pro-
gramming interfaces (APIs) for individuals to their data. The
user has both the access and authority to collect and aggregate
data across these providers, allowing for powerful and compre-
hensive insights that, by virtue of the fact that they are initiated
and consumed by that same user, can be much more focused in
their oversight and suggestions. We anticipate and favor broad
provision and adoption of systematic programmatic access to
personal data for the end users. However, the need for a small-
data application architecture need not wait for, nor will it be
obviated by, future developments. Already, today, users can

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

obtain access to their data, albeit through idiosyncratic and
sometimes ad-hoc channels: e-receipts, diverse APIs, browser
plug-ins, etc. Even with access to these data, infrastructure is
still required to process these traces into formats that are useful
and actionable to the individual. Since most individual users
do not develop their own software, we are targeting support
for small-data app developers who will implement apps on
the behalf of this growing user base; just as they have driven
the development of third party apps for smartphones [1]. This
approach is aligned with the emerging Social Web activities
in W3C [2].

Our vision is to create a small data ecosystem in which
small data apps can be readily developed and deployed atop
an infrastructure that standardizes their inter-operation and
addresses concerns that are common across apps, such as
helping to ensure security and reducing redundancy in storage
and computational resources, as well as resolving policy/legal
questions that are outside the scope of this paper. The vision
is, again, driven by the individual as the common denominator,
and rightful beneficiary, of access to their data.

We describe the core components of a small data ar-
chitecture using three exemplar applications, and present a
specific system-design for the most central of these compo-
nents – Lifestreams Database (hereafter “Lifestreams DB“).
Lifestreams DB is designed to extract and process diverse
digital traces from various sources and make them available
to the client applications for further analysis or visualization.
Data interoperability is an important requirement for such a
system as it allows one to gain insights from the combination
of data that were originally locked in their own data silos.
Lifestreams DB extracts raw data from these data silos, and
transforms them into a standardized Resource Description
Format (RDF) that allows one to join these digital traces
against each other and with external RDF data sources (e.g.,
fuse nutrition information with users’ online shopping records.)

Unlike many enterprise settings, small data differs in the
fact that most of original sources (e.g., Google, Facebook, etc.)
persist users’ data in their own databases and individually
provide security and access control. Therefore, it may be
wasteful, or even harmful to the users’ security and privacy
for Lifestreams DB to permanently replicate these data in
one place. Motivated by this distinction, we propose a soft-
state design that, while providing client applications with
virtual access to all the data, only caches a part of it locally,
and reproduces the rest on demand. Such a design introduces
two important advantages in the context of small data. First,
our soft-state model discourages our system from becoming
a data “honeypot” that attracts attacks from malicious entities
since only a limited amount of information is cached in the
system at any given time. Second, it requires much less storage
and allows the system to scale to serve a large number of
users or integrate with more diverse information beyond its
storage capacity. We also provide an encryption mechanism
that encrypts the sensitive data to further protect the user.

After introducing related work in section II, we present
three small data applications in III and use them to identify
cross cutting application requirements. We provide a brief
overview of our architecture in section IV, then go into
depth on the main contribution of this work, Lifestreams
Database (DB), in section V. Section VI contains the results of
performance analyses for simulated workloads on a sample of

simple and complex query types. Finally, section VII provides
some observations and outlines future work.

II. RELATED WORK
Small data are fueling a new genre of personalization

technologies. Recommender systems have been some of the
most successful applications in this domain to date as evi-
denced by recommendations for music in Pandora, consumer
goods in Amazon [3], articles in Wikipedia [4], and locations
in Foursquare [5]. These systems rely heavily on the users’
application-specific histories, such as queries, clicks, ratings,
and browsing data that result from interacting with their
product. Small data can enable far more immersive recom-
mender systems that take into account a larger space of user
needs and constraints. In particular, they can benefit from user
models derived from both more diverse and longitudinal data
(e.g., features and dynamic patterns in: daily travel patterns,
consumption from gaming to dining, interests and sentiment
expressed in personal communication, etc.). General-purpose
recommendation frameworks such as MyMediaLite [6] and
LensKit [7] (to name a few) could make use of small data to
learn these kinds of broad user models, but they require a front-
end component to fetch user’s data and drive the framework
with appropriately-formatted inputs.

Small data’s goal of providing individuals with transfor-
mative insights into their behavior is aligned with that of the
Quantified Self (QS) movement [8]. In QS studies, individ-
ual experimenters engage in the self-tracking of biological
or behavioral information using commercial devices such as
Fitbit and myZero sleep trackers, or personal testing services
such as 23AndMe, and many systems have been developed
to help integrate and visualize QS data [9]. Even prior to
QS’s popularity, research projects such as Ubifit and BeWell
demonstrated the potential of making personal data actionable
[10][11]. More recent work, i.e., EmotionCheck [12], has
demonstrated that not only QS data itself, but a user’s trust in
the tool, can serve as effective leverage for behavioral change.
Small data, however, differs from earlier studies in its focus
on harnessing data that are (a) generated as byproducts of
interacting with services and (b) that are readily available,
versus having to be manually collected or otherwise procured.
These data can be complementary to or serve as a proxy for
some of the data that QS studies collect.

Small data are also related to Personal Information Man-
agement (PIM) systems [13]. This line of work covers a broad
range of environments from desktops [14][15], to connected-
devices in the home [16][17], to e-learning [18] and health in-
formation management systems [19]-[22]. Our work is comple-
mentary to these systems’ focus on information organization
and retrieval, by providing support for third party applications
that would generate additional inputs to these systems through
the processing of small data streams that are not yet accessible.

Small data shares similar data input with Personal Au-
tomation Engines. For example, Atomate [23] is a system
that integrates individuals’ social and life-tracking feeds into
a unified RDF database, and automatically carries out simple
tasks (e.g., messaging) when the incoming feeds satisfy user-
defined rules. The service “If-This-Then-That“ (IFTTT) [24],
expanding on the same idea, compiles a large set of feeds that
monitor various online and offline activities and can trigger
a wide set of actions when a user-defined condition on a
feed is satisfied. On a more application-focused and user-local

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

Figure 1. Small Data Architecture: illustrates the flow of data between Data
Storage Units (DSUs), Data Processing Units (DPUs), and Data

Visualizations Units (DVUs, e.g., apps).

level, PrefMiner [25] monitors on-device notifications from
numerous sources to identify which notifications are important
to the user or not. Small data differs from these services
in its emphasis on providing insights that require longer-
term observation, rather than performing transient event-driven
actions. This fundamental distinction results in rather different
system requirements, particularly in resource management and
security as mentioned in the introduction. That said, our small
data application architecture could enable a richer set of inputs
to both of these systems.

Our aims are similar to existing systems that provide a
modular computational infrastructure and mediate the release
of processed personal data, such as openPDS and Virtual
Individual Servers [26][27]. While these systems do provide
personal data acquisition, storage, and release, they do not
explicitly address the problem of normalizing and joining
disparate data streams under a shared ontology. Our work
complements these systems in providing data modeling and
interoperability required to join multiple data streams, as op-
posed to simply providing analysis of individual data streams.

III. SMALL DATA APPLICATIONS
A small data application is an application that operates on

multiple personal data streams, produces some kind of analysis
of these streams, and presents the result to the user via an
interface. Personal data can include static data, for instance the
individual’s genome or family lineage. We focus particularly
on temporal data, either regular or episodic, that must be
continually collected and analyzed. The reason for this focus is
twofold: first, these information-rich data sources will be most
transformative in creating detailed user models and feedback
for diverse applications, and second the temporal data are the
more difficult to manage since it is constantly accumulating.
Of course, our focus on temporal data does not obviate the
value of joining the user’s data with other non-temporal data
sets - e.g., summarizing nutritional exposure using temporal
grocery receipts and relatively-static nutritional databases.

Below, we motivate the requirements of our software
architecture using three exemplar small data apps. These
applications comprise two data access modes – background
and foreground. In the background mode, the application may
periodically access a long history of user data to build or
update the user’s behavioral model. In the foreground, the user
experience tends to be based on a more recent window of time,
interpreted in the context of the behavioral model.

(a) Ora: List (b) Ora: User Details

Figure 2. Ora: User List and Details View

A. Ora
Ora (Figure 2) is a tool for sharing how you are doing –

without sharing the details of what you are doing – with family,
friends, or other people who might be part of your support
network (counselors, coaches, etc.) Users interact with Ora via
a mobile-optimized website, where they authorize the app to
connect to their Gmail and Moves accounts using an OAuth2
grant. Ora extracts descriptive numeric features from these data
sources and uses them to build a baseline model that represents
the user’s usual values for each feature. Deviations from this
model are calculated on a per-day basis and summarized into
a single numeric value, referred to as a pulse, that acts an
opaque indicator of the degree to which the user is deviating
from the model.

Specifically, the pulse is computed from 20 features ex-
tracted from the users’ data, including their geodiameter (the
distance between the furthest two points in their location trace
for the day), exercise duration (the number of minutes the user
was walking or running), time not at home (the amount of
time not spent at their primary location, typically their home),
and the number of emails sent in a day. Then, for a set of
features F , the baseline for each f ∈ F is computed as a
tuple consisting of the sample standard deviation and mean
over a two-month sliding window. For a given day, the pulse
(P) is then computed as the sum of the numbers of standard
deviations from the mean for each feature.

B. Pushcart
Pushcart (Figure 3) uses receipts from services such as

FreshDirect or Peapod to determine the nutritional value of the
food that a household purchases. This information is provided
to a “Wizard of Oz” system in which a clinician, masquerading
as a learning algorithm, reviews the purchasing habits of each
household and suggests substitutions of more nutritional items
during future purchases.

The system’s primary source of input is email – after opting
in, users register the system to automatically receive a copy of
their receipt email, from which the list of items is extracted
and then joined against a database of nutritional information
for each food item. The user interacts with the system through
email as well: the user interface is a weekly “report email”

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

Figure 3. Pushcart: Weekly Email Report

that shows a breakdown of purchases in terms of nutritional
value, and includes the nutritionist’s suggestions.

C. Partner
Partner is an exploratory app designed around the hypoth-

esis that people who spend time together tend to mimic each
others’ language patterns, and that the extent of this mimicry
is an indicator of good relations; this is a phenomenon known
as linguistic style matching [28]. The application uses both
Gmail and Moves as its data source. After users have registered
for the system, it passively collects their email and location
data, building a retrospective view of the time they spend
physically proximate to each other, the degree of linguistic
style matching evidenced by similar values for descriptive
metrics used in authorship identification, and the correlation
of the two aforementioned values.

Partner relies on a few standard metrics used in authorship
attribution, specifically entropy [29], stylometrics such as the
percentage of personal pronouns and ratio of functional words
to non-functional words (the “information density”), and the
index of qualitative variation (IQV, specifically, the Gibbs
M1 index) which serves as a measure of the variability of
the user’s vocabulary. Each of these features is computed
over a categorical distribution of the user’s tokens, which is
produced from the concatenation of a user’s emails into week-
long intervals to compensate for the sparsity issues that email
presents.

IV. ARCHITECTURE
Our architecture is inspired by the concept of a “mashup”,

an application that merges multiple disparate data sources into
a single interface. We started with the typical web mashup,
in which data are acquired, processed, and presented solely
by and at the client. We then factored out the acquisition and
processing into distinct, reusable modules which can be run
in the cloud and potentially consumed by multiple clients.
Common concerns, such as caching, access control, and data
normalization, are provided as system-wide services. While it
would be feasible to implement the acquisition and processing
components as tightly-coupled, one-off solutions for a single
mashup, the redundancy of doing so for each additional app
has lead us toward a centralized and reusable architecture.

Lifestreams DB
DPU Container

Pipeline
Acquire and process small data streams

Triplestore
Soft-state chunk-based graph DB

SPARQL
QueryMoves

AC: Data Acquirer
TR: Data Transformer

Chunk 2

Chunk 3

Chunk 1

Gmail

Purchase
Receipts

Chunk N

...

DSU Layer DPU Layer DVU Layer

AC TR TR

TR

TRTRAC

Figure 4. Lifestreams DB Pipeline: consists of a set of DPU modules that
acquire and process data from various small data DSUs.

The architecture is composed of three layers, as depicted
in Figure 1. There are three main entities: Data Storage
Units (DSUs), Data Processing Units (DPUs), and Data
Visualization Units (DVUs). These terms mirror the open
mHealth standard [30]. DSUs include service provider APIs,
e.g., Google’s numerous service APIs and Facebook’s Graph
API. DSUs can be accessed directly from DPUs/DVUs, but are
often accessed through a “transforming” DPU that converts the
API’s often proprietary data format into the schemas we use
in small data apps. Data flows from DSUs through arbitrary
compositions of DPUs – so long as their input and output types
are compatible – and terminates in the DVUs. Lifestreams
DB acts as a container for DPUs, and provides caching, data
modeling, access control, and a unified query interface. Its
outputs can be directly consumed by DVUs, or by other DPUs
that provide additional data processing capability.

This modular pipeline approach is necessitated by the fact
that our system will never be complete; there will always be
new data sources and means of processing and displaying data,
which the architecture should readily accommodate. Further,
the implementation of its components is a collaborative effort
and we wish to encourage developers to reuse and build upon
existing components.

V. DPU CONTAINERS: LIFESTREAMS DB
Lifestreams DB is an important component in our archi-

tecture. Positioned between data sources and small data apps,
Lifestreams DB is designed to be the “narrow waist” of the
small data ecosystem that provides a unified interface for
querying, combining, and fusing diverse small data streams.

Lifestreams DB contains a pipeline of DPUs that Extract,
Transform and Load (ETL) an individual’s digital traces from
different sources using common software APIs and Schemas
to enable diverse small data applications. Figure 4 illustrates
the architecture of Lifestreams DB. On the left is Lifestreams
Pipeline, a data processing pipeline that contains a set of
reusable DPUs that extract raw data from different small data
sources and transform raw data into structured, readily usable
information. For example, raw actigraphy and geolocation sen-
sor samples from a mobile app are transformed into structured
data that describe the time, location, speed, and distance of
each activity episode. These extracted data are loaded into
Lifestreams Triplestore, an RDF datastore built on top of Jena
TDB [31], that exposes an integrated view of all the diverse
RDF data for apps to query. We made two principal design
decisions when designing Lifestreams DB: 1) to model data
using RDF, and 2) to utilize a soft-state system design. The
rationales behind these design decisions are described in the

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

following.

a) Using RDF for interoperability: Data interoperabil-
ity is key to the success of such a system. Raw data extracted
from different data silos need to be transformed into a com-
patible form to allow one to derive knowledge from them. In
Lifestreams DB, we utilize RDF to enable data interoperability.
Each DPU outputs data in JavaScript Object Notation (JSON),
and the DPUs at the final stage generate RDF data in the
JSON-LD format, which will be transformed into RDF triples
(i.e., subject-predicate-object) before stored in the Triplestore.
The advantages of using RDF are as follow. First, it eliminates
the need to define database schema, unlike, for example, in a
Structured Query Language (SQL) datastore. Data generated
by different DPUs are inherently interoperable if the DPUs
follow the same ontology to model the data. This property
is of significant benefit to a small data ecosystem, since it
allows DPUs developed by different people to be plug-and-
play without the need to modify the system’s database schema.
Also, any client application developer, given the ontology, can
compose queries to filter, join, and aggregate various types
of data generated by different DPUs without knowing specific
implementation details such as table and column names, etc.

b) A Soft-State System Design: Architecturally, one
major difference between an individuals’ digital traces and an
enterprise’s operational data is that an individual’s data are
mostly persisted and protected in each original data source’s
databases (e.g., Google, Facebook). In many cases, there is
no need, and is actually wasteful and harmful to the users’
security and privacy, for Lifestreams DB to replicate all these
data in one place. Thus, we propose a soft-state design that,
while providing the client applications with virtual access to
all the data, only caches a small portion of it in the system.
Data which the user owns (e.g., sensor data from the user’s
phone or wearable) can be considered in the same way, except
that it will reside on a personal DSU instead of in an external
organization.

The advantages of this design are three-fold: First, a soft-
state design requires much less storage to serve the requests,
and thus allows the system to scale more effortlessly to serve
a larger number of users and integrate with more diverse
information beyond its storage capacity. Further, it enables
elastic storage provision, where a service provider can provide
the service with less storage (at consequently lower cost), and
increase the storage provision only when better performance
is needed. Second, it makes the system more robust, since
there are less points where critical data loss can occur. If the
system needs to be brought down, it can be done so without
concern over maintaining important state. Third, a soft-state
design inherently has better security properties. Since only a
small amount of information is cached in the system at any
given time, the exposure of any single data breach is limited.
In addition, the fact that the data can be repopulated into the
database on-the-fly allows us to encrypt sensitive data and only
decrypt them when they are demanded.

These advantages do not come without a price. A soft-
state system tends to incur much overhead in indexing, re-
producing, and reloading data. In Lifestreams DB, we reduce
these overheads by utilizing a chunk-based data management
strategy that generates and manages data in chunks. Our
design is particularly suitable for applications that perform
timeseries-based analysis with temporal locality where subse-

TABLE I. DATA MODELING TYPE ASSIGNMENTS

Data Source Subject Types Object Types

Location/Mobility Moves API [32] Stay/Travel Place

Email Gmail API Send/Receive EmailMessage

Purchase Gmail API Buy Product

Calendar gCal API Join Event

Web Browse Android API Browse WebPage

App Usage Android API Use MobileApp

Phone Call Android API Call/Receive Person

Message Android API Send/Receive SMSMessage

quent accesses tend to access records that are near in time (in
our scheme, in the same chunk.) Within these assumptions,
we have improved Lifestreams DB’s query performance by
multiple factors (compared to the base Jena TDB triplestore)
and made it perform even better than a hard-state system that
stores all the data with only a fraction of storage space.

In the following, we first describe our RDF-based data
modeling approaches and demonstrate its advantages using the
SPARQL queries for the real-world small data applications
we are developing. Then, we describe the chunk-based man-
agement strategy and the techniques we used to realize the
proposed soft-state design.

A. Data Modeling
When modeling data using RDF, one needs to follow a

certain ontology. In small data, the concepts we come across
most often are the various actions performed by users, such as
sending emails, making purchases, etc. We chose schema.org
[33] as the main ontology rather than the other competing
candidates, such as Activity Streams [34], for its semantic
action type system. Schema.org defines a hierarchical type
system that describes different (sub)categories of actions. At
the root is Action, a generic type that describes the common
properties of an action (e.g., agent, time, etc.). It is then
subclassed by more specific types, such as MoveAction,
which, in turn, are subclassed by more specific types, such as
ArriveAction, DepartAction, etc. This hierarchical structure
enables one to write queries to reason across different types
of actions within specific categories. For example, an app that
encourages better sleep hygiene may analyze users’ before-
sleep routines by querying certain action categories (e.g., the
ExerciseAction and all its subclasses) that occurred before the
sleep period.

Table I summarizes eight different kinds of data we have
extracted and modeled from four different data sources, based
on schema.org’s ontology. The purchase records are derived
from email receipts on an opt-in basis. The phone-based
data are uploaded to ohmage, a mobile sensing DSU. In the
following, we demonstrate how our data modeling approaches
can satisfy the requirements of the small data applications
described previously with simple SPARQL queries.

Ora: Listing 5 shows a snippet of Ora Query that computes
the geodiameter and the number of emails sent in a day. For
brevity, the snippet omits the part that limits the time range
to a single day. The first part of the snippet computes the
geodiameter by selecting the maximum distance between any
pairs of places at which the user stayed. The second part
of the query counts the number of SendAction’s of which
the targeted object is an email. This example is intended to

5Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

PREFIX schema: <http://schema.org/>
SELECT * {
SELECT (MAX(?dist) AS ?geodiameter)
{ ?stay_x a schema:StayAction;

schema:location ?loc_x.
?stay_y a schema:StayAction;

schema:location ?loc_y.
BIND (

fn:distanceInMeter(?loc_x, loc_y) AS ?dist
).}

SELECT (COUNT(?send) AS ?mail_count)
{ ?send a schema:SendAction;

schema:object ?object.
?object a schema:EmailMessage.}

}

Figure 5. A short snippet from Ora query that computes the geodiameter and
the number of emails sent.

PREFIX text: <http://jena.apache.org/text#>
PREFIX usda: <http://data-gov.tw.rpi.edu/vocab/p/1458/>
SELECT *
{ ?action a schema:BuyAction.

?action schema:object ?product.
?product schema:name ?product_name.
SERVICE <http://localhost/usda/endpoint> {
?food_item text:query

(usda:shrt_desc ?product_name 1).
?food_item usda:carbohydrt ?carbon;

usda:protein ?protein.
}

}

Figure 6. Pushcart Query joins an individual’s food purchase records with
the corresponding nutritional information contained in the USDA nutrient

database.

demonstrate how much an application developer can achieve
with Lifestreams DB using a succinct and easy to understand
query. Also, this example demonstrates how heterogeneous
data streams (i.e., Location/Mobility and Email) are modeled
and queried in an interoperable and standardized way.

Pushcart: Listing 6 shows a snippet of the Pushcart
query. It demonstrates Lifestreams DB’s interoperability with
an external food nutrition database. A RDF dump of the
United States Department of Agriculture (USDA) nutrient
database is pre-loaded into a separate triplestore [35]. The
query joins the individuals’ grocery purchase records with
the entries contained in the USDA database using a free-text
matching based on the product names, and select the amount of
carbohydrates and protein contained in each of the purchased
items.

Partner: Partner is an example of an app which, in
addition to Lifestreams DB, requires a more domain-specific
DPU. It relies on Lifestreams DB to compute the amount of
time two participants spent together based on the distance
between where two users stay (see Listing 7) and uses the
Email Analysis Framework (EAF), a DPU for email language
analysis [36], to evaluate language style matching. It is also
an example where an application can query from not only one
but across multiple users’ data with RDF named graphs that
refer to each user.

PREFIX fn: <http://lifestreams.example.org/customFn#>
PREFIX users: <http://lifestreams.example.org/users#>
SELECT (SUM(?overlap) AS ?co_present_time)
{ GRAPH <users:Bob> {

?stay_x a schema:StayAction;
schema:location ?loc_x.}

GRAPH <users:Alice> {
?stay_y a schema:StayAction;
schema:location ?loc_y.}

FILTER(fn:distanceInMeter(?loc_x, ?loc_y) < 50)
BIND (
fn:overlappingTime(?stay_x, ?stay_y) AS ?overlap
)

}

Figure 7. Partner Query computes the time two users spent together based
on their location data. Each user’s data are referred to by their named graph.

B. Chunk-based Data Management
As mentioned, Lifestreams DB’s soft-state design is made

possible by a chunk-based strategy. The basic idea behind this
strategy is as follows: The DPUs in Lifestreams Pipeline gener-
ate data in chunks and load them into Lifestreams Triplestore,
which maintains an index to all the chunks (including the ones
that are not cached in the system). When a client application
submits a query, it will additionally submit a meta-query that
selects the chunks it desires. If a chunk selected by the meta-
query is not currently available in the system, Lifestreams
Pipeline will re-run the corresponding DPUs and reproduce
the chunk on the fly from the source. The chunks that contain
sensitive data (determined from the data source and the user’s
preferences) will be encrypted and decrypted on the fly when
requested by a query. The chunks are encrypted with 256-bit
Advanced Encryption Standard (AES).

Our strategy allows a system to maintain only a small
amount of information (i.e., the chunk index) while providing
access to much larger amount of data that is beyond the
system’s storage capacity. In the following, we describe three
major designs that realize this strategy and discuss several
query optimization techniques enabled with chunking that can
be utilized to provide a better user experience.

1) Chunk Index Design: The chunk index needs to be
carefully designed to avoid unnecessary chunk reproduction.
For each chunk of data, we extract the following features as
its index:
• Distinct object types in the chunk.
• Start time and end time of the aggregate timespan.
• Geo-coordinates of a convex hull that covers all the

spatial features in the chunk.
The rationales behind these choices are as follow. First, most
of our applications are interested in certain types of actions or
objects (e.g., CommunicationActions or ExerciseActions) so
object types are a natural choice for indexing. Also, most of
small data are time-tagged, and the applications we focus on
tend to involve analysis of time series and aggregation based
on time or location. Therefore, it is important for us to make
chunk index satisfy these requirements.

2) Lifestreams Pipeline: a reproducible pipeline: We adopt
a functional approach to allow Lifestreams Pipeline to repro-
duce arbitrary chunks of data from the original sources. The
Lifestreams Pipeline consists of two types of DPUs: Acquir-
ers acquire raw data from the sources while Transformers

6Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

transform data from one form to another. These DPUs are
treated as passive functions invoked by the system. Consider
a simple pipeline where one Acquirer and one Transformer
linked in sequence. In each iteration, the system invokes the
Acquirer with a state variable that indicates the chunk we want
the Acquirer to fetch. After fetching the corresponding chunk,
the Acquirer will return the chunk along with a new state
variable that indicates the subsequent chunk to be acquired in
the next iteration. The system then invokes the Transformer
to transform the chunk, and stores the output chunk along
with the state variable. When the chunk is removed, the state
variable will be preserved in the system. Therefore, when we
need to reproduce the chunk, we just need to re-run the pipeline
with the preserved state variable.

An assumption we make here is that the raw data are
permanently persisted in the original data sources (i.e., DSUs),
and can be re-acquired by the Acquirer anytime. If this is not
the case, a shim can be implemented to transfer the data to
a DSU with such properties (such as Amazon S3). Unlike
some chunk-based systems where the chunk sizes are pre-
determined, Lifestreams DB allows each Acquirer to decide
the chunk sizes according to the characteristics of the APIs
it acquires data from. A typical chunk size is daily as it is
supported by most data sources. However, as the state variable
is updated by the Acquirers themselves, Acquirers can have
state variables with different formats or granularity (e.g., hours,
weeks.). This feature is important for small data where one
usually needs to work with a large variety of external data
sources whose APIs it has no control over.

3) Two-Level GDS Chunk Replacement Policy: Similar to
many cache systems, Lifestreams DB requires a replacement
policy to select chunks for replacement when the available
space is low. Our replacement policy minimizes the overall
expected query latency by selecting the chunks that are of
larger size and less likely to be used again, and can be
reproduced in shorter time. There are two ways to make space
in Lifestreams DB: (1) compress the chunk, or (2) evict the
chunk entirely. Compression on average results in 7.2x size
reduction and can be restored more efficiently than reproducing
a chunk from the source. Considering this difference, as well
as, the varying chunk sizes and cost in reproducing different
kinds of chunks (see Table II), we develop a Two-level
Greedy-Dual-Size (Two-Level GDS) replacement policy that
is both cost- and size-aware and appropriately choose between
two space reduction methods. The basic Greedy-Dual (GD)
algorithm assigns each chunk a cost value H . Every time
when a replacement needs to be made, the chunk with the
lowest H value Hmin will be replaced first, and all the other
chunks reduce their H values by Hmin. Only when a chunk is
accessed again will its H value be restored to its initial value.
Greedy-Dual-Size (GDS) incorporates the different chunk sizes
by assigning H as cost/size of the chunk [37]. On top of
that, our Two-Level GDS algorithm additionally considers the
different characteristics of compression and eviction. When a
chunk is first inserted into the cache, its cost is set to the
estimated decompression latency, and the size is the estimated
space reduction after compression. When this chunk is selected
for replacement, it will be compressed and re-inserted into
the cache with its cost increased to the estimated latency
to reproduce it from the source, and the size decreased to
its size after compression. Only when this chunk is selected

TABLE II. GMAIL AND MOVES DATA-SIZE AND REPRODUCTION-TIME
CHARACTERISTICS

Avg. Values of 180 Chunks Gmail Moves

Chunk Size (KB) 20.32 392.44

Compressed Chunk Size (KB) 3.08 54.12

Required HTTP Requests 14.24 1

Reproduction Time (msec) 1423.63 182.17

again will it be completely evicted. Similarly, after a chunk
is reproduced, it will be first stored in its compressed form.
When it is accessed again, it will have a certain probability to
be promoted to its decompressed form. The default probability
for a compressed chunk to be restored is 0.2. In this way, our
algorithm uses compression as the default to make space for its
efficiency, but still removes the compressed chunks to reduce
cache clutter if they have not been used for long.

4) Chunk-Assisted RDF Query Evaluation: The flexibility
of RDF is not without its drawbacks: compared to many
SQL datastores, a RDF datastore tends to be slower in query
evaluation due mainly to the difficulty of constructing an
effective data index [38]. Our chunk-based strategy has several
desirable side benefits that mitigate this problem. First, chunk
indexes can be utilized as a multi-column index that allows the
query engine to take a short path by skipping those data that do
not belong to the requested chunks. Second, chunking enables
a more effective result cache, which caches the query results
and returns the result when the same query is given. Unlike a
record-based system, where any modification can potentially
invalidate a cached result [38], a chunk-based system only
needs to track the modifications of the chunks that generate
a cached result to ensure the result’s validity. This technique
is particularly effective in our system, as most chunks won’t
change after they have been generated.

VI. PERFORMANCE EVALUATION
In this section, we evaluate the feasibility and performance

of our system using Gmail and Moves data. Using Jena TDB as
a baseline, we first evaluate the system performance in different
scenarios and with different kinds of data. Then, we evaluate
the overall system performance with a real-world query with a
workload simulation based on an assumed application usage.
The experiment was conducted on an Amazon Web Services
(AWS) instance with 8 Intel Xeon E5-2680 processors and
15GB of memory.

A. Dataset
A dataset of 180 days worth of Gmail and Moves data is

used to evaluate the system performance. The data are from
three authors of this paper who are regular users of these
services. There are in total 360 chunks in the dataset, each
of which contains a single day’s Gmail or Moves data. Table
II summarizes the different characteristic of Gmail and Moves
data. For example, while smaller in size, a Gmail chunk re-
quires many more HTTP requests to be issued thus has longer
(re)production time. A Moves chunk, on the other hand, can
be (re)produced in a much shorter time, but usually is much
larger in size due to the high-resolution location traces. These
differences will result in different performance characteristics
as shown in the following. These differences must be taken
into account to achieve efficient resource utilization.

7Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

0

2000

4000

6000

2 4 6 8
Number of Chunks Demanded By Query

M
ea

n
Q

ue
ry

 E
va

lu
at

io
n

Ti
m

e
(m

se
c)

Scenario

Reproduce
Decompress
Decompress & Decrypt
Readily Available Chunks
Jena TDB (No Chunking)

(a) Gmail Data

0

2000

4000

6000

2 4 6 8
Number of Chunks Demanded By Query

M
ea

n
Q

ue
ry

 E
va

lu
at

io
n

Ti
m

e
(m

se
c)

Scenario

Reproduce
Decompress
Decompress & Decrypt
Readily Available Chunks
Jena TDB (No Chunking)

(b) Moves Data

Figure 8. Query Performance of Different Scenarios: our approach outperforms the Jena TDB by up to 14x when the chunks are readily available.
Decompressing is much faster than reproducing a chunk, while decryption adds only negligible overhead. Gmail data requires more time to reproduce since

more HTTP requests need to be made. The varying performance in different scenarios evidence the need of an cost- and size-aware chunk replacement policy.

B. Query Performance
We compare the query performance of our system with our

baseline, Jena TDB, based on the following scenarios:
1) The demanded chunks are readily available.
2) The chunks need to be decompressed.
3) The chunks need to be decompressed and decrypted.
4) The chunks need to be reproduced from the data

source.
The results suggest up to 14x performance improvement over
Jena TDB for a both a simple query and a complex real-world
query. The experiment was conducted with all 360 chunks pre-
loaded into the triple store. Each data point presented below
is an average of 30 runs of the experiment. The error bars in
the figures are the 95% confidence interval.

1) Simple Query Performance: We first evaluate the perfor-
mance with a simple query that counts the number of distinct
Action subjects. Figure 8a and Figure 8b show the results
for Gmail and Moves data respectively, where the x-axis is
the number of chunks demanded in the query, and the y-
axis is the mean query evaluation time. When the demanded
chunks are cached in the system, our system outperforms
Jena TDB by up to 14x and 10x for Gmail and Moves
respectively. This performance gain is mainly attributed to
the chunk-skipping optimization mentioned in the Chunk-
Assisted Evaluation section. For Gmail data, decompressing
shows up to 36x better performance than reproducing, and
decryption adds only negligible overhead (less than 1.3%).
This difference is not that significant for Moves, since Moves
data can be reproduced in a relatively shorter time, but incurs
larger overhead to be inserted into the triplestore in either
scenario.

2) Real-World Query Performance: Next, we use a real-
world query to demonstrate the system performance in a
more realistic setting. A query from one of our small data
applications, Ora, is used. It consists of 211 lines of SPARQL
script, extracting 20 features from Gmail and Moves data (See
Application section). Since this more complex query requires
a larger number of scans to be made over the search space, as

0

3000

6000

9000

2 4 6 8
Number of Days Demanded By Query

M
ea

n
Q

ue
ry

 E
va

lu
at

io
n

T
im

e
(m

se
c)

Scenario

Reproduce

Decompress

Decompress & Decrypt

Readily Available Chunks

Jena TDB (No Chunking)

Figure 9. Real-World Query Performance: the performance gain of our
chunk-skipping technique becomes more evident (up to 14x) for a complex
real-world query where more scans need to be made over the search space.

shown in Figure 9, the performance gain of our chunk-skipping
technique becomes more evident (up to 14x improvement over
Jena TDB). In addition, due to the longer overall query time,
the overhead in decompression and decryption becomes less
significant. Reproducing is still the slowest among the four
scenarios, but it still outperforms Jena TDB by up to 1.8x.

C. Performance with Simulated Workload
The varying performance for different types of data and

scenarios stresses the need for a chunk replacement policy
that is able to incorporate these discrepancies. We evaluate
the effectiveness of the proposed Two-Level GDS algorithm
using a simulated workload of Ora. Based on the UI of Ora,
we assume a binomial process usage pattern where each page
shows one-week worth of data and can be browsed in a reverse
chronological order. We assume the user will use the app daily,
and after viewing a page, the user has a probability p to browse
the next page or a probability of 1−p to leave the app. We set
p = 0.7 and compare our approach with well-known Least-
Recently-Used (LRU) policy, as well as the Jena TDB that

8Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

0

500

1000

5 10 15 20
Cache Size (MB)

M
ea

n
Q

ue
ry

 E
va

lu
at

io
n

T
im

e
(m

se
c)

Cache Policy

Jena TDB
(retain all data)

Two−Level LRU

Two−Level GDS

Two−Level GDS
(0.5MB Result Cache)

Figure 10. Query Performance with Simulated Workload: our Two-Level
GDS approach shows superior performance over LRU, and outperforms Jena
TDB that retains all 50.44MB of data, by up to 4.7x using only about 1/10th

the storage.

retains all the data. The results suggest that overall, our system
outperforms LRU and Jena TDB by up to 4.7x using only a
fraction of storage.

We generate 120 days worth of data for the workload based
on an assumed usage pattern of Ora. We only consider the
performance of the last 60 days when the cache space has
become saturated. To allow a fair comparison, we modify the
traditional LRU in a way that the chunk chosen for replacement
will be first compressed and re-inserted into the LRU list. Only
if it is chosen again will it be entirely evicted. We refer to this
variant of LRU as Two-Level LRU. In addition, for the baseline,
Jena TDB, we assume it retains all the 120-day worth of data
in the system, which is 50.44MB in size.

Figure 10 shows the performance of different approaches
with cache sizes varying from 5MB to 20MB. Our Two-
Level GDS shows superior performance over Two-Level LRU
especially with a smaller cache size. This advantage comes
from the fact the our approach takes the cost of different space
reduction methods, and the size of each individual chunk into
account. For example, our approach tends to evict a Moves
chunk for its shorter reproduction time and larger size. On
top of that, if we use 0.5MB of the cache space to cache the
query results, we see another 2x of performance improvement.
Overall, our approach achieves up to 4.7x performance im-
provement over Jena TDB, using only about 1/10th the storage.
Such a performance improvement is important for small data
services to be provided effectively and affordably.

VII. CONCLUSION AND FUTURE WORK
In this work, we introduce the notion of small data apps,

and the increasing opportunity of these apps to produce
deeper and more comprehensive insights across the union of
a user’s available data, and across a wide range of ubiquitous
computing applications. By virtue of the fact that these apps
leverage the user as the common denominator and benefactor,
there is both the potential for deeper, more personal insights,
as well as the need for a robust infrastructure for accessing
such intimate data. We present an architecture to support these
small data apps that decouples the data sources from the pro-
cessing and visualization layers, and accounts for the unique
challenges presented by contending with sensitive streaming
spatio-temporal data from multiple providers. We describe our
implementation of a critical component of this architecture,
Lifestreams DB, and several candidate applications built on

top of it.
Lifestreams DB includes several improvements over ex-

isting RDF datastores in terms of storage requirements and
query latency, which are likely attributable to the constraints
of our domain (i.e., streaming spatio-temporal data which can
be reproduced at a cost in latency from an external source.) The
application of chunking to the datastore, and a cache eviction
policy that leverages both the cost of reproduction/compression
and the size of the data, is demonstrated to improve query
latency for both a few candidate queries and in a simulated
experiment modeling a user’s long-term interaction with Ora,
an SDA application.

While this work proposes a soft-state architecture to ame-
liorate the impact of a breach, there is still much work to be
done in secure data storage and distribution so that breaches
are diminished or, preferably, eliminated in the first place. On
a related note, there are many improvements that can be made
to ensure that the processed data does not compromise the
raw data source, and to selectively control who can consume
processed data in the case that it is sensitive.

Small data apps address the converse of the big data
problem: rather than drawing insights about populations across
broad swaths of data for purposes of similar scale (e.g.,
corporate, governmental, etc.), they draw insights about the
individual across their own small data for personal growth and
understanding. This work aspires to foster the growth of the
small data ecosystem and the role of small data in fueling
ubiquitous computing applications.

REFERENCES

[1] S. Perez, “Mobile Application Stores State of Play,” 2010.
[Online]. Available: http://readwrite.com/2010/02/22/the_truth_about_
mobile_application_stores (accessed on 2018.03.19).

[2] H. Halpin, “Social Web Working Group Charter,” 2014. [On-
line]. Available: http://www.w3.org/2013/socialweb/social-wg-charter
(accessed on 2018.03.19).

[3] G. Linden, B. Smith, and J. York, “Amazon.Com Recommendations:
Item-to-Item Collaborative Filtering,” IEEE Internet Computing, vol. 7,
no. 1, Jan. 2003, pp. 76–80.

[4] D. Cosley, D. Frankowski, L. Terveen, and J. Riedl, “SuggestBot: Using
Intelligent Task Routing to Help People Find Work in Wikipedia,” in
Proceedings of the 12th International Conference on Intelligent User
Interfaces, ser. IUI ’07. New York, NY, USA: ACM, 2007, pp. 32–41.

[5] “Foursquare.” [Online]. Available: https://foursquare.com/ (accessed on
2018.03.19).

[6] Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme,
“Mymedialite: A free recommender system library,” in Proceedings of
the fifth ACM conference on Recommender systems. ACM, 2011, pp.
305–308.

[7] M. D. Ekstrand, M. Ludwig, J. Kolb, and J. T. Riedl, “Lenskit: a
modular recommender framework,” in Proceedings of the fifth ACM
conference on Recommender systems. ACM, 2011, pp. 349–350.

[8] M. Swan, “The Quantified Self: Fundamental Disruption in Big Data
Science and Biological Discovery,” Big Data, vol. 1, no. 2, Jun. 2013,
pp. 85–99.

[9] FitnessKeeper, Inc., “Health Graph API,” 2014. [Online]. Available:
http://developer.runkeeper.com/healthgraph/ (accessed on 2018.03.19).

[10] S. Consolvo, D. W. McDonald, T. Toscos, M. Y. Chen, J. Froehlich,
B. Harrison, P. Klasnja, A. LaMarca, L. LeGrand, R. Libby, I. Smith,
and J. A. Landay, “Activity Sensing in the Wild: A Field Trial of Ubifit
Garden,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’08. New York, NY, USA: ACM,
2008, pp. 1797–1806.

[11] M. Lin, N. D. Lane, M. Mohammod, X. Yang, H. Lu, G. Cardone,
S. Ali, A. Doryab, E. Berke, A. T. Campbell, and T. Choudhury,

9Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

http://readwrite.com/2010/02/22/the_truth_about_mobile_application_stores
http://readwrite.com/2010/02/22/the_truth_about_mobile_application_stores
http://www.w3.org/2013/socialweb/social-wg-charter
https://foursquare.com/
http://developer.runkeeper.com/healthgraph/

“BeWell+: Multi-dimensional Wellbeing Monitoring with Community-
guided User Feedback and Energy Optimization,” in Proceedings of the
Conference on Wireless Health, ser. WH ’12. New York, NY, USA:
ACM, 2012, pp. 10:1–10:8.

[12] J. Costa, A. T. Adams, M. F. Jung, F. Guimbetiere, and T. Choudhury,
“Emotioncheck: leveraging bodily signals and false feedback to regulate
our emotions,” in Proceedings of the 2016 ACM International Joint
Conference on Pervasive and Ubiquitous Computing. ACM, 2016, pp.
758–769.

[13] W. Jones, “Personal information management,” Annual review of infor-
mation science and technology, vol. 41, no. 1, 2007, pp. 453–504.

[14] L. Sauermann, G. A. Grimnes, M. Kiesel, C. Fluit, H. Maus, D. Heim,
D. Nadeem, B. Horak, and A. Dengel, “Semantic Desktop 2.0: The
Gnowsis Experience,” in The Semantic Web - ISWC 2006, ser. Lecture
Notes in Computer Science, I. Cruz, S. Decker, D. Allemang, C. Preist,
D. Schwabe, P. Mika, M. Uschold, and L. M. Aroyo, Eds. Springer
Berlin Heidelberg, Jan. 2006, no. 4273, pp. 887–900.

[15] Y. Cai, X. L. Dong, A. Halevy, J. M. Liu, and J. Madhavan, “Personal
Information Management with SEMEX,” in Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’05. New York, NY, USA: ACM, 2005, pp. 921–923.

[16] B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R. Ganger, “Per-
spective: Semantic Data Management for the Home,” in Proccedings of
the 7th Conference on File and Storage Technologies, ser. FAST ’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 167–182.

[17] T. Gupta, R. P. Singh, A. Phanishayee, J. Jung, and R. Mahajan, “Bolt:
Data Management for Connected Homes,” in Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementa-
tion, ser. NSDI’14. Berkeley, CA, USA: USENIX Association, 2014,
pp. 243–256.

[18] Rustici Software, “xAPI.” [Online]. Available: https://xapi.com/
(accessed on 2018.03.19).

[19] Apple Inc., “HealthKit.” [Online]. Available: https://developer.apple.
com/healthkit/ (accessed on 2018.03.19).

[20] Microsoft, “HealthVault.” [Online]. Available: https://www.healthvault.
com/ (accessed on 2018.03.19).

[21] Epic System Corp., “MyChart.” [Online]. Available: https://mychart.
deancare.com/mychart/ (accessed on 2018.03.19).

[22] “Google Fit.” [Online]. Available: https://fit.google.com/ (accessed on
2018.03.19).

[23] M. Van Kleek, B. Moore, D. R. Karger, P. André et al., “Atomate it!
end-user context-sensitive automation using heterogeneous information
sources on the web,” in Proceedings of the 19th international conference
on World wide web. ACM, 2010, pp. 951–960.

[24] IFTTT, “IFTTT: Put the internet to work for you.” 2014. [Online].
Available: https://ifttt.com/ (accessed on 2018.03.19).

[25] A. Mehrotra, R. Hendley, and M. Musolesi, “Prefminer: mining user’s
preferences for intelligent mobile notification management,” in Proceed-
ings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing. ACM, 2016, pp. 1223–1234.

[26] Y.-A. de Montjoye, E. Shmueli, S. S. Wang, and A. S. Pentland,
“openpds: Protecting the privacy of metadata through safeanswers,”
PloS one, vol. 9, no. 7, 2014.

[27] A. Shakimov, H. Lim, R. Cáceres, L. P. Cox, K. Li, D. Liu, and A. Var-
shavsky, “Vis-a-vis: Privacy-preserving online social networking via
virtual individual servers,” in Communication Systems and Networks
(COMSNETS), 2011 Third International Conference on. IEEE, 2011,
pp. 1–10.

[28] K. G. Niederhoffer and J. W. Pennebaker, “Linguistic Style Matching in
Social Interaction,” Journal of Language and Social Psychology, vol. 21,
no. 4, Dec. 2002, pp. 337–360.

[29] M. Grabchak, Z. Zhang, and D. T. Zhang, “Authorship Attribution Using
Entropy,” Journal of Quantitative Linguistics, vol. 20, no. 4, Nov. 2013,
pp. 301–313.

[30] Open mhealth developer wiki. (accessed on 2018.03.19). [Online].
Available: https://github.com/openmhealth/developer/wiki [retrieved:
April, 2014, accessed on 2018-03-18]

[31] The Apache Software Foundation, “Apache Jena,” 2014. [Online].
Available: http://jena.apache.org/ (accessed on 2018.03.19).

[32] “Moves API.” [Online]. Available: https://dev.moves-app.com/
(accessed on 2018.03.19).

[33] Schema.org Community Group, “Schema.org core schema,” 2018.
[Online]. Available: http://schema.org/docs/schema_org_rdfa.html
(accessed on 2018.03.19).

[34] J. M. Snell, “Activity Streams 2.0,” 2015. [Online]. Available:
http://www.w3.org/TR/activitystreams-core/ (accessed on 2018.03.19).

[35] USDA, “National Nutrient Database for Standard Reference.” [Online].
Available: http://data-gov.tw.rpi.edu/wiki/Dataset_1458 (accessed on
2018.03.19).

[36] F. Alquaddoomi, C. Ketcham, and D. Estrin, “The Email Analysis
Framework: Aiding the Analysis of Personal Natural Language Texts,”
in Hypertext 2014 Extended Proceedings, ser. CEUR Workshop Pro-
ceedings, F. Cena, A. S. d. Silva, and C. Trattner, Eds., vol. 1210.
CEUR-WS.org, 2014.

[37] P. Cao and S. Irani, “Cost-Aware WWW Proxy Caching Algorithms,”
in Proceedings of the USENIX Symposium on Internet Technologies
and SystemsMonterey, California, December 1997, 1997, pp. 193–206.

[38] M. Martin, J. Unbehauen, and S. Auer, “Improving the Performance
of Semantic Web Applications with SPARQL Query Caching,” in
The Semantic Web: Research and Applications, ser. Lecture Notes in
Computer Science, L. Aroyo, G. Antoniou, E. HyvÃűnen, A. t. Teije,
H. Stuckenschmidt, L. Cabral, and T. Tudorache, Eds. Springer Berlin
Heidelberg, Jan. 2010, no. 6089, pp. 304–318.

10Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

ALLDATA 2018 : The Fourth International Conference on Big Data, Small Data, Linked Data and Open Data

https://xapi.com/
https://developer.apple.com/healthkit/
https://developer.apple.com/healthkit/
https://www.healthvault.com/
https://www.healthvault.com/
https://mychart.deancare.com/mychart/
https://mychart.deancare.com/mychart/
https://fit.google.com/
https://ifttt.com/
https://github.com/openmhealth/developer/wiki
http://jena.apache.org/
https://dev.moves-app.com/
http://schema.org/docs/schema_org_rdfa.html
http://www.w3.org/TR/activitystreams-core/
http://data-gov.tw.rpi.edu/wiki/Dataset_1458

	I Introduction
	II Related Work
	III Small Data Applications
	III-A Ora
	III-B Pushcart
	III-C Partner

	IV Architecture
	V DPU Containers: Lifestreams DB
	V-A Data Modeling
	V-B Chunk-based Data Management
	V-B1 Chunk Index Design
	V-B2 Lifestreams Pipeline: a reproducible pipeline
	V-B3 Two-Level GDS Chunk Replacement Policy
	V-B4 Chunk-Assisted RDF Query Evaluation

	VI Performance Evaluation
	VI-A Dataset
	VI-B Query Performance
	VI-B1 Simple Query Performance
	VI-B2 Real-World Query Performance

	VI-C Performance with Simulated Workload

	VII Conclusion and Future Work
	References

