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Abstract— Linked Data is increasingly being adopted for the 
integration of software tools, especially with the emergence of 
the Open Services for Lifecycle Collaboration (OSLC) 
standard on tool interoperability. In this paper, we present a 
modelling approach – with accompanying tool support – for 
the specification of Linked Data resources, focusing on the 
particular needs of tool-chain development. The approach 
provides graphical models for the specification of constraints 
on resources being shared in the tool-chain. Moreover, it aims 
to maintain a centralized understanding and management of 
the overall information model being handled in the federated 
tool-chain architecture. This is achieved through an integrated 
set of modelling views that cover the early phases of tool-chain 
development.  

Keywords-Linked data modelling; OSLC; resource shapes; 
tool integration; information modelling. 

I.  INTRODUCTION 

Over last few decades, the ongoing trend of adopting the 
Model-Driven Engineering (MDE) approach to product 
development promised an improvement in the quality and 
efficient access to product and process information, given 
that such information becomes managed through explicitly 
defined meta-models. However, the heterogeneity and 
complexity of modern industrial products requires the use of 
many engineering software tools, needed by the different 
engineering disciplines (such as mechanical, electrical, 
embedded systems and software engineering), and 
throughout the entire development life cycle (requirements 
analysis, design, verification and validation, etc.). 

So, while MDE is a step in the right direction, unless 
interoperability mechanisms are developed to connect 
information across the model-based engineering tools, MDE 
may lead to isolated “islands of information”, given the 
natural distribution of information across the many tools and 
data sources involved.  

As an example from the automotive industry, the 
functional safety standard ISO 26262:2011 [1] mandates that 
requirements and design components are developed at 
several levels of abstraction; and that a clear traceability 
exists between requirements from the different levels, as well 
as between requirements and system components. The earlier 
practice, in which development artefacts are handled as text-
based documentation, rendered such traceability ineffective – 
if not impossible. Even with the adoption of model-driven 

engineering, it remains a challenge to trace between the 
artefacts being created by the various engineering tools, in 
order to comply with the standard. 

In summary, current development practices need a faster 
shift from the localized document-based handling of 
artefacts, towards a Federated Information-based 
Development Environment (F-IDE), where the information 
from all development artefacts is made accessible, consistent 
and correct throughout the development phases, disciplines 
and tools. 

In this paper, we advocate the use of the Linked Data 
principles as a basis for such an F-IDE (See [4] for Tim 
Berners-Lee's four principles of Linked Data.). Yet, when 
applying these principles for parts of the development 
environment at the truck manufacturer Scania AB, certain 
challenges were encountered that needed to be addressed. 
We here describe our approach on how these challenges 
were tackled. In the next section, after a short motivation for 
adopting the Linked Data principles, we present a case study 
that will be used in the remaining paper. We then further 
elaborate on the challenges experienced during our case 
study. In Section III, we describe the overall modelling 
approach taken to solve these challenges, followed in Section 
IV by detailed descriptions of the supporting models. 
Reflections on applying the modelling approach on the case 
study are then discussed in Section V.  

II. PROBLEM FORMULATION 

A. Background 

One can avoid the need to integrate the information 
islands, by adopting a single platform (such as PTC Integrity 
[2] or MSR-Backbone [3]) through which product data is 
centrally managed. However, large organizations have 
specific development needs and approaches (processes, 
tools, workflow, in-house tools, etc.), which lead to a wide 
landscape of organization-specific and customized 
development environments. This landscape moreover needs 
to organically evolve over time, in order to adjust to future 
unpredictable needs of the industry. Contemporary 
platforms, however, offer limited customization capabilities 
to tailor for the organization-specific needs, requiring instead 
the organization to adjust itself to suite the platform. So, 
while they might be suitable at a smaller scale, such 
centralized platforms cannot scale to handle the complete 
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heterogeneous set of data sources normally found in a large 
organization.  

A more promising approach to deal with this challenge is 
to adopt the concepts of Linked Data to integrate the 
information from the different engineering tools - without 
relying on a centralized integration platform. To this end, 
OASIS OSLC [5] is an emerging interoperability open 
standard that adopts the architecture of the Internet to 
achieve massive scalability and flexibility. OASIS OSLC is 
based on the W3C Linked Data initiative and follows the 
Representational State Transfer (REST) architectural pattern. 
It provides for tool- and platform-neutral usage of these web 
technologies to create high cohesion between tools, while 
reducing the need for one tool to understand the deep data of 
another (low coupling). This lends itself well to the 
distributed and organic nature of the F-IDE being desired. 

When developing such a federated OSLC-based F-IDE, 
there is however an increased risk that one loses control over 
the overall product data structure that is now distributed and 
interrelated across the many tools. This risk is particularly 
aggravated if one needs to maintain changes in the F-IDE 
over time. In this paper, we present a modelling approach to 
F-IDE development that tries to deal with this risk. That is, 
how can a distributed architecture – as promoted by the 
Linked Data approach - be realized, while maintaining a 
somewhat centralized understanding and management of the 
overall information model handled within the F-IDE? 

B. Case Study Description 

Typical of many industrial organizations, the 
development environment at the truck manufacturer Scania 
consists of standard engineering tools, such as Jira and CAD 
drawing tools; as well as a range of propriety tools that cater 
for specific needs in the organization. Moreover, much 
product information is managed as generic content in office 
productivity tools, such as Microsoft Word and Excel. 

As a subset of a larger case study, five propriety tools and 
data sources were to be integrated using OSLC: 

1. Code Repository – A version-control system in which 
all software code resides, and from which parsers reconstruct 
the vehicle software architecture, based on an analysis of 
source code. 

2. Communication Specifier – A tool that centrally 
defines the communication network of all vehicle 
architectures. 

3. ModArc – A database that defines all hardware entities 
and their interfaces. 

4. Diagnostics Tool - A tool that specifies the diagnostics 
functionality of all vehicle architectures. 

5. Requirements Specifier - A propriety tool that allows 
for the semi-formal specification of system requirements.  

As a first step, the data that needed to be communicated 
between the tools was analyzed. This was captured using a 
Class Diagram (Figure 1), as is the current state-of-practice 
at Scania for specifying a data model. For the purpose of this 
paper, it is not necessary to have full understanding of the 
data artefacts. It is worth highlighting that color-codes were 
used to define which tool managed which data artefact. Also, 
it is important to note that the model focuses on the data that 

needs to be communicated between the tools, and not 
necessarily all data available internally within each tool. 

message

name: String
priority: String
sourceAddress : String
destinationAddress : String
period : String
timeout : String
message_type : String

signal

name: String
bit_start : int
bit_length : int
offset : String
factor: String

communication interface

id : int
segment: String

ECUSoftware

family : String
generation  : String
version : String ? Nullable
releaseDate: String
changeRequests: ChangeRequest[]

SoftwareComponent

name: String
description: String
hierarchy: String

RtdbVariable

name: String
description: String
dataType: String
unit: String

io_port

         name : String
 type : String 

    pin_type : String
      direction : String 

CalibrationParameter

name: String
dataType: String

diagnostic communication interface

type : String

Common ID

ID: String
session: String
isOperationalData: Bool
isFreezeFrame: Bool

range

min
max
step

KeyValuePair

name: String
description: String
value: Number

has_signal 0...*

is_gatewayed 0...*

has_message 0...*

has_interface 1...*

hasSubcomponent

hasSoftwareComponent 1...*

owns

owns 0...*

associates_with 0...*has_io_port 1...*

associates_with 0...1

uses_port

Reads/Owns 0..*

Reads/Owns 0..*

has_interface 1...*

has_CID 0...*

associates_with 0...*

allowedRange 0...*

allowedValues 0...*

allowedValues 0...*

 
Figure 1.  a UML class diagram of the resources shared in the F-IDE. 

C. Identified Needs and Shortcomings 

In this paper, we focus on the initial stages of specifying 
and architecting the desired OSLC-based F-IDE. We 
elaborate on the needs and shortcomings experienced by an 
architect during these stages:  

Information specification – there is a need to specify 
the information to be communicated between the tools. For 
pragmatic reasons, a UML class diagram was adopted to 
define the entities being communicated and their 
relationships. Clearly, the created model does not comply 
with the semantics of the class diagram, since the entities 
being models are not objects in the object-oriented paradigm, 
but resources according to the Resource Description 
Framework (RDF) graph data model. Since the information 
model is to be maintained over time, and is also intended for 
communication among developers, using a class diagram - 
while implying another set of semantics – may lead to 
misunderstandings. A specification that is semantically 
compatible with the intended implementation technology (of 
Linked Data, and specifically the OSLC standard) is 
necessary. 

Tool ownership – For any given resource being shared 
in the F-IDE, it is necessary to clearly identify the data 
source (or authoring tool) that is expected to manage that 
resource. That is, while representations of a resource may be 
freely shared between the tools, changes or creations of such 
a resource can only occur via its owning tool. Assuming a 
Linked Data approach also implies that a resource is owned 
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by a single source, to which other resources link. In practice, 
it is not uncommon for data to be duplicated in multiple 
sources, and hence mechanisms to synchronize data between 
tools are needed. For example, resources of type 
Communication Interface may be used in both 
Communication Specifier and ModArc, with no explicit 
decision on which of the tools defines it. To simplify the case 
study, we chose to ignore the ModArc source, but in reality 
one needs to synchronize between the two sources, as long as 
it is not possible to make one of them redundant.  

Domain ownership – Orthogonal to tool ownership, it is 
also necessary to group resource definitions into domains 
(such as requirements engineering, software, testing, etc.). 
Domains can be generic in nature. Alternatively, such 
domain grouping can reflect the organization units that are 
responsible to manage specific parts of the information 
model. For example, the testing department may be 
responsible to define and maintain the testing-related 
resources, while the requirements department manages the 
definition of the requirements resources. Dependencies 
between the responsible departments can then be easily 
identified through the dependencies in the information 
models. 

Avoid mega-meta-modelling – Information 
specifications originate from various development phases 
and/or development units in the organization. The resulting 
information models may well overlap, and would hence need 
to be harmonized. Hence, there is a need to harmonize the 
information models – while avoiding a central information 
model. Earlier attempts at information modeling normally 
resulted in large models that can easily become harder to 
maintain over time. The research project CESAR presents in 
[6] a typical interoperability approach in which such a large 
common meta-model is proposed. It is anticipated that the 
Linked Data approach would reduce the need to have such a 
single centralized mega information model. The correct 
handling of information through Domain and Tool 
Ownership (see above) ought to also help in that direction. 

In summary, in architecting an F-IDE, there is a need to 
support the data specification using Linked Data semantics, 
while covering the two ownership aspects of tools 
(ownership from the tool deployment perspective) and 
domains (ownership from the organizational perspective). 

III. APPROACH 

We take an MDE approach to F-IDE development, in 
which we define models that support the architect with the 
needs identified in the previous section. Concretely, we 
present a modelling tool for the graphical definition of 
Linked Data resource types, based on the Linked Data 
constraint language of Resource Shapes [15]. Resource 
Shapes is a mechanism to define the constraints on RDF 
resources, whereby a Resource Shape defines the properties 
that are allowed and/or required of a type of resource; as well 
as each property’s cardinality, range, etc. 

We define the model using two views: (1) domain 
ownership and (2) tool ownership; with each view covering 
the corresponding ownership needs identified in the previous 
subsection. 

Even though our current case study focuses on the 
specification and architectural design phases of F-IDE 
development – and in particular on information specification 
– we aim for an approach that can be seamlessly extended to 
cover the complete F-IDE life cycle, and include additional 
integration aspects, such as control and presentation 
integration [7]. Towards this, we introduce a third modelling 
view that supports the detailed design phase of each tool 
interface in the F-IDE. This view definition is made 
compliant with an existing code generator of tool interfaces 
[8]. Besides being a practical feature for the developers of 
tool interfaces, by ensuring that the specification model (with 
its three views) can lead to the generation of working code, 
one can validate the model’s completeness and correctness 
with respect to the Resource Shape constraints.  

The Eclipse-based modelling prototype is developed 
based on the Ecore meta-model of the EMF [9] project. It is 
important to note that adopting the close-world 
metamodeling approach of Ecore does not necessarily 
contradict the open-world view of Linked Data. The 
information being shared across the F-IDE remains loyal to 
the open-world view, within the constraints specified 
through the Resource Shapes mechanism.  Ecore is only 
necessary to develop the supporting tool to define these 
mechanisms. 

IV. THE MODEL 

In this section, we present the F-IDE specification model 
and its three views. 

Domain Specification View From this perspective, the 
architect defines the types of resources, their properties and 
relationships, using mechanisms compliant with the OSLC 
Core Specification [10] and the Resource Shape constraint 
language [15].  

Figure 2 shows the Domain Specification diagram for the 
resources needed in our case study. The top-level container, 
Domain Specification, groups related Resources and 
Resource Properties. Such grouping can be associated with a 
common topic (such as requirements or test management), or 
reflects the structure of the organization managing the F-
IDE. This view ought to support standard specifications, 
such as Friend of a Friend (FOAF) [11] and RDF Schema 
(RDFS) [12], as well as propriety ones. In Figure 2, three 
domain specifications are defined: Software, Communication 
and Variability, together with a subset of the standard 
domains of Dublin Core and RDF. 

As required by the OSLC Core, a specification of a 
Resource type must provide a name and a Type URI. The 
Resource type can then also be associated with its allowed 
and/or required properties. These properties could belong to 
the same or any other Domain Specification. A Resource 
Property is in turn defined by specifying its cardinality, 
optionality, value-type, allowed-values, etc. Figure 3 
illustrates an example property specification highlighting the 
available constraints that can be defined. A Literal Property 
is one whose value-type is set to one of the predefined literal 
types (such as string or integer); while a Reference Property 
is one whose value-type is set to either “resource” or “local 
resource”. In the latter case, the range property can then be 
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used to suggest the set of resource types the Property can 
refer to. 

 
Figure 2.  Domain Specification View 

Borrowing from the typical notation used to represent 
RDF graphs, Resource types are represented as ellipses, 
while Properties are represented as rectangles (A Reference 
Property is represented with an ellipse within the rectangle.). 
In addition, Resource Properties are represented as first-class 
elements in the diagram.  

 
Figure 3.  The specification of the rdf:type predicate, in the Domain 

Specification View  

The association between a Resource type and its 
corresponding Properties is represented by arrows. 
However, in many cases, it becomes inconvenient to view all 
relationships from Resources to Properties. This is 
particularly the case for common Literal Properties, such as 
dcterms:subject, which can be associated to many resources 
across many domains. As a convenience, one can choose to 
hide Resource to Literals associations, and instead list 
Literal Properties within the Resource ellipse representation. 
It is this latter alternative that is being presented in Figure 2. 

Resource Allocation View is where architect allocates 
resources to data sources. It gives the architect an overview 
of where the resources are available in the F-IDE, and where 
they are consumed. For each data source, the architect 
defines the set of resources it exposes; as well as those it 
consumes. These resources are graphically represented as 
“provided” (outwards arrows) and “required” (inwards 
arrows) ports on the edge of the Tool element, as illustrated 
in Figure 4. For example, the Communication Specifier tool 
exposes the Message resource, which is then consumed by 
the Requirements Specifier tool. 

 
Figure 4.  Resource Allocation View 

In the Resource Allocation view, the interaction between 
a provider and consumer of a given resource is presented as a 
solid edge between the corresponding ports. In addition, any 
dependencies between resources that are managed by two 
different data sources are also represented in this model – as 
a dotted edge. For example, the resource ECUSoftware, 
managed by the Code Repository, has a property has_io_port 
that is a reference to resource IO_port; which is in turn 
managed through the data source Modarc. Hence, for a 
consumer of ECUSoftware, it is beneficial to identify the 
indirect dependency on the Modarc tool, since any 
consumption of an ECUSoftware resource, is likely to lead 
to the need to communicate with Modarc in order to obtain 
further information about the property has_io_port. 

Adapter Design View is where the architect (or tool 
interface developer) designs the internal details of the tool 
interface – according to the OSLC standard. This can be 
performed for any of the Tool entities in the Resource 
Allocation view. Sufficient information is captured in this 
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view, so that an almost complete interface code, which is 
compliant with the OSLC4J software development kit (SDK) 
can be generated, based on the Lyo code generator [8]. 

The OSLC Core Specification defines the set of resource 
services that can be offered by a tool. As illustrated in Figure 
5, “OSLC Services are accessible via a Service Provider that 
describes the Services offered. Each Service can provide 
Creation Factories for resource creation, Query Capabilities 
for resource query and Delegated UI Dialogs to enable 
clients to create and select resources via a web UI.”[10]. The 
Adaptor Design view is a realization of the OSLC concepts 
in Figure 5. An example from our case study is presented in 
Figure 6, in which the Core Repository provides query 
capabilities and creation factories on all three resources. 

 
Figure 5.  OSLC Core Specification concepts and relationships [10] 

The Adaptor Design view also models its consumed 
resources (In Figure 6 no consumed resources are defined.). 
Note that the provided and required resources - as defined in 
this view - remain synchronized with those at the interface of 
the Tool entity in the Resource Allocation view. 

 
Figure 6.  Adaptor Design View 

There is no particular ordering of the above views, and in 
practice, the three views can be developed in parallel. 
Consistency between the views is maintained since they all 
refer to the same model. For example, if the architect 
removes a resource from the Adaptor Design view, the same 
resource is also removed from the Resource Allocation view.  

V. REFLECTIONS 

Compared to the original approach of using a UML class 
diagram (See Figure 1) to represent the F-IDE resources, the 

proposed model may seem to add a level of complexity by 
distributing the model information into three views. 
However, upon further investigation, it becomes clear that 
the class diagram was actually used to superimpose 
information for both the Domain Specification and Resource 
Allocation views into the same diagram. For example, 
classes were initially color-coded to classify them according 
to their owning tool. However, the semantics and intentions 
behind this classification soon become ambiguous, since the 
distinction between tool and domain ownership is not 
identified explicitly. In the original approach, different 
viewers of the same model could hence draw different 
conclusions when analyzing the model, depending on their 
implicit understanding of the color codes. 

Moreover, the usage of a class diagram is not compatible 
with the open-world view of Linked Data, nor is it suitable to 
specify all necessary information according to the OSLC 
standard. This became apparent when the detailed 
specification and design of a tool’s interface needed to be 
defined. No complements to the UML class diagram can 
provide such support. Instead, a dedicated domain-specific 
language (DSL) that follows the expected semantics can be 
better used uniformly across the whole organization.  We 
here illustrate two examples where our DSL helped 
communicate the correct semantics, which were previously 
misinterpreted or not used: 

 A Resource Property is a first-class element that can be 
associated with multiple Resource types. For example, the 
same allowedValues property (with range KeyValuePair) is a 
property used for both the CalibrationParameter & 
RtdbVariable resources. Previously, two independent 
properties were unnecessarily defined.  

 Certain resources (such as Range) can only exist within 
the context of another parent resource, and hence ought not 
to have their own URI. Our DSL helped communicate the 
capability of defining Local Resources.  

By breaking the model into two views, and by structuring 
each view along the managing domains and tools 
respectively, the information  model is not expected to be 
developed in a top-down and centralized manner. Instead, a 
more distributed process is envisaged, in which resources are 
defined within a specific domain and/or tool. Only when 
necessary, such sub-models can then be integrated, avoiding 
the need to manage a single centralized information model. 

Finally, the two orthogonal views of the F-IDE allow the 
architect to identify dependencies within the F-IDE, form 
both the organizational as well as the deployment 
perspective:  

 In the Resource Allocation View of the model, the 
architect can obtain an overview of the coupling/cohesion of 
the tools of the F-IDE. One could directly identify the direct 
producer/consumer relations, as well as the indirect 
dependencies, as detailed in Section IV. 

 In the Domain Specification view, the architect views 
the dependencies between the different domains (irrespective 
of how the resources are deployed across tools). Such 
dependencies reveal the relationship between the 
organizational entities involved in maintaining the overall 
information model. This explicit modelling of domain 
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ownership helps lift important organizational decisions, 
which otherwise remain implicit.  

While the need for a dedicated DSL is convincing, the 
proposed views are not necessarily final, and there remains 
room for improvements. For example, while the possibility 
to represent Properties as first-class elements was 
appreciated, it was experienced that they (The squares in 
Figure 2) cluttered the overall model, and did not make 
efficient usage of the available modeling space. Similarly, 
the relationships between Resources and their associated 
Literal Properties (not shown in Figure 2) cluttered the 
model. Currently, filtering mechanisms are available to 
support different representations that suite different users, 
while maintaining the same underlying model. In Figure 2, 
the filter that hides the arrows representing relationships 
between Resources and Literal Properties is activated. 
However, the filter that hides all Property elements is not 
activated. This makes the view seem almost similar – 
visually - to the class diagram of Figure 1, yet the more 
appropriate Linked Data semantics lie behind this view. 

VI. RELATED WORK 

There exists a large body of research that in various ways 
touches upon information modeling and model integration. 
(See for example [13] and [14]). Our work - and the related 
work of this section - is delimited to the Linked Data 
paradigm. The work in this paper builds upon the Resource 
Shape constraint language suggested in [15], by providing a 
graphical model to specify such constraints on RDF 
resources. 

The most relevant work found in this area is the 
Ontology Definition Metamodel (ODM) [16]. ODM is an 
OMG specification that defines a family of Meta-Object 
Facility (MOF) metamodels for the modelling of ontologies. 
ODM also specifies a UML Profile for RDFS [12] and the 
Web Ontology Language (OWL) [17], which can be realized 
by UML-based tools, such as Enterprise Architect's ODM 
diagrams [18]. However, as argued in [15], OWL and RDFS 
are not suitable candidates to define and validate constraints, 
given that they are designed for another purpose - namely for 
reasoning engines that can infer new knowledge. 

Earlier work by the authors has also resulted in a 
modelling approach to tool-chain development [19]. In this 
earlier work, even though the information was modelled 
targeting an OSLC implementation, the models were directly 
embedded in the specific tool adaptors, and no overall 
information model is readily available. The models did not 
support the tool and domain ownership perspectives 
identified in this paper. 

VII. CONCLUSION 

In this paper, an MDE approach to F-IDE development 
based on the Linked Data principles is presented. A 
prototype modelling tool has been developed that allows for 
the modelling of the information model for a complete F-
IDE, based on the Resource Shapes constraint language [15]. 
The model is defined through three views focusing on the 
specification and design stages of F-IDE development. It is 

envisaged however that the modelling support will be 
extended to cover the complete development life-cycle, 
specifically supporting the requirements analysis phase, as 
well as automated testing. The current focus on data 
integration needs to be also extended to cover others other 
aspects of integration, in particular control integration [7]. 

The Eclipse-based prototype is to be released as an open-
source contribution, yet this has not been done at the time of 
writing this article. 
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