
Modelling Support for a Linked Data Approach to Tool Interoperability

Jad El-khoury, Didem Gurdur, Frederic Loiret, Martin
Törngren

Department of Machine Design
KTH Royal Institute of Technology

Stockholm, Sweden
email:{jad, dgurdur, floiret, martint}@kth.se

Da Zhang, Mattias Nyberg
Scania CV AB

Södertälje, Sweden
email: {da.zhang, mattias.nyberg}@scania.com

Abstract— Linked Data is increasingly being adopted for the
integration of software tools, especially with the emergence of
the Open Services for Lifecycle Collaboration (OSLC)
standard on tool interoperability. In this paper, we present a
modelling approach – with accompanying tool support – for
the specification of Linked Data resources, focusing on the
particular needs of tool-chain development. The approach
provides graphical models for the specification of constraints
on resources being shared in the tool-chain. Moreover, it aims
to maintain a centralized understanding and management of
the overall information model being handled in the federated
tool-chain architecture. This is achieved through an integrated
set of modelling views that cover the early phases of tool-chain
development.

Keywords-Linked data modelling; OSLC; resource shapes;
tool integration; information modelling.

I. INTRODUCTION

Over last few decades, the ongoing trend of adopting the
Model-Driven Engineering (MDE) approach to product
development promised an improvement in the quality and
efficient access to product and process information, given
that such information becomes managed through explicitly
defined meta-models. However, the heterogeneity and
complexity of modern industrial products requires the use of
many engineering software tools, needed by the different
engineering disciplines (such as mechanical, electrical,
embedded systems and software engineering), and
throughout the entire development life cycle (requirements
analysis, design, verification and validation, etc.).

So, while MDE is a step in the right direction, unless
interoperability mechanisms are developed to connect
information across the model-based engineering tools, MDE
may lead to isolated “islands of information”, given the
natural distribution of information across the many tools and
data sources involved.

As an example from the automotive industry, the
functional safety standard ISO 26262:2011 [1] mandates that
requirements and design components are developed at
several levels of abstraction; and that a clear traceability
exists between requirements from the different levels, as well
as between requirements and system components. The earlier
practice, in which development artefacts are handled as text-
based documentation, rendered such traceability ineffective –
if not impossible. Even with the adoption of model-driven

engineering, it remains a challenge to trace between the
artefacts being created by the various engineering tools, in
order to comply with the standard.

In summary, current development practices need a faster
shift from the localized document-based handling of
artefacts, towards a Federated Information-based
Development Environment (F-IDE), where the information
from all development artefacts is made accessible, consistent
and correct throughout the development phases, disciplines
and tools.

In this paper, we advocate the use of the Linked Data
principles as a basis for such an F-IDE (See [4] for Tim
Berners-Lee's four principles of Linked Data.). Yet, when
applying these principles for parts of the development
environment at the truck manufacturer Scania AB, certain
challenges were encountered that needed to be addressed.
We here describe our approach on how these challenges
were tackled. In the next section, after a short motivation for
adopting the Linked Data principles, we present a case study
that will be used in the remaining paper. We then further
elaborate on the challenges experienced during our case
study. In Section III, we describe the overall modelling
approach taken to solve these challenges, followed in Section
IV by detailed descriptions of the supporting models.
Reflections on applying the modelling approach on the case
study are then discussed in Section V.

II. PROBLEM FORMULATION

A. Background

One can avoid the need to integrate the information
islands, by adopting a single platform (such as PTC Integrity
[2] or MSR-Backbone [3]) through which product data is
centrally managed. However, large organizations have
specific development needs and approaches (processes,
tools, workflow, in-house tools, etc.), which lead to a wide
landscape of organization-specific and customized
development environments. This landscape moreover needs
to organically evolve over time, in order to adjust to future
unpredictable needs of the industry. Contemporary
platforms, however, offer limited customization capabilities
to tailor for the organization-specific needs, requiring instead
the organization to adjust itself to suite the platform. So,
while they might be suitable at a smaller scale, such
centralized platforms cannot scale to handle the complete

42Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

heterogeneous set of data sources normally found in a large
organization.

A more promising approach to deal with this challenge is
to adopt the concepts of Linked Data to integrate the
information from the different engineering tools - without
relying on a centralized integration platform. To this end,
OASIS OSLC [5] is an emerging interoperability open
standard that adopts the architecture of the Internet to
achieve massive scalability and flexibility. OASIS OSLC is
based on the W3C Linked Data initiative and follows the
Representational State Transfer (REST) architectural pattern.
It provides for tool- and platform-neutral usage of these web
technologies to create high cohesion between tools, while
reducing the need for one tool to understand the deep data of
another (low coupling). This lends itself well to the
distributed and organic nature of the F-IDE being desired.

When developing such a federated OSLC-based F-IDE,
there is however an increased risk that one loses control over
the overall product data structure that is now distributed and
interrelated across the many tools. This risk is particularly
aggravated if one needs to maintain changes in the F-IDE
over time. In this paper, we present a modelling approach to
F-IDE development that tries to deal with this risk. That is,
how can a distributed architecture – as promoted by the
Linked Data approach - be realized, while maintaining a
somewhat centralized understanding and management of the
overall information model handled within the F-IDE?

B. Case Study Description

Typical of many industrial organizations, the
development environment at the truck manufacturer Scania
consists of standard engineering tools, such as Jira and CAD
drawing tools; as well as a range of propriety tools that cater
for specific needs in the organization. Moreover, much
product information is managed as generic content in office
productivity tools, such as Microsoft Word and Excel.

As a subset of a larger case study, five propriety tools and
data sources were to be integrated using OSLC:

1. Code Repository – A version-control system in which
all software code resides, and from which parsers reconstruct
the vehicle software architecture, based on an analysis of
source code.

2. Communication Specifier – A tool that centrally
defines the communication network of all vehicle
architectures.

3. ModArc – A database that defines all hardware entities
and their interfaces.

4. Diagnostics Tool - A tool that specifies the diagnostics
functionality of all vehicle architectures.

5. Requirements Specifier - A propriety tool that allows
for the semi-formal specification of system requirements.

As a first step, the data that needed to be communicated
between the tools was analyzed. This was captured using a
Class Diagram (Figure 1), as is the current state-of-practice
at Scania for specifying a data model. For the purpose of this
paper, it is not necessary to have full understanding of the
data artefacts. It is worth highlighting that color-codes were
used to define which tool managed which data artefact. Also,
it is important to note that the model focuses on the data that

needs to be communicated between the tools, and not
necessarily all data available internally within each tool.

message

name: String
priority: String
sourceAddress : String
destinationAddress : String
period : String
timeout : String
message_type : String

signal

name: String
bit_start : int
bit_length : int
offset : String
factor: String

communication interface

id : int
segment: String

ECUSoftware

family : String
generation : String
version : String ? Nullable
releaseDate: String
changeRequests: ChangeRequest[]

SoftwareComponent

name: String
description: String
hierarchy: String

RtdbVariable

name: String
description: String
dataType: String
unit: String

io_port

 name : String
 type : String

 pin_type : String
 direction : String

CalibrationParameter

name: String
dataType: String

diagnostic communication interface

type : String

Common ID

ID: String
session: String
isOperationalData: Bool
isFreezeFrame: Bool

range

min
max
step

KeyValuePair

name: String
description: String
value: Number

has_signal 0...*

is_gatewayed 0...*

has_message 0...*

has_interface 1...*

hasSubcomponent

hasSoftwareComponent 1...*

owns

owns 0...*

associates_with 0...*has_io_port 1...*

associates_with 0...1

uses_port

Reads/Owns 0..*

Reads/Owns 0..*

has_interface 1...*

has_CID 0...*

associates_with 0...*

allowedRange 0...*

allowedValues 0...*

allowedValues 0...*

Figure 1. a UML class diagram of the resources shared in the F-IDE.

C. Identified Needs and Shortcomings

In this paper, we focus on the initial stages of specifying
and architecting the desired OSLC-based F-IDE. We
elaborate on the needs and shortcomings experienced by an
architect during these stages:

Information specification – there is a need to specify
the information to be communicated between the tools. For
pragmatic reasons, a UML class diagram was adopted to
define the entities being communicated and their
relationships. Clearly, the created model does not comply
with the semantics of the class diagram, since the entities
being models are not objects in the object-oriented paradigm,
but resources according to the Resource Description
Framework (RDF) graph data model. Since the information
model is to be maintained over time, and is also intended for
communication among developers, using a class diagram -
while implying another set of semantics – may lead to
misunderstandings. A specification that is semantically
compatible with the intended implementation technology (of
Linked Data, and specifically the OSLC standard) is
necessary.

Tool ownership – For any given resource being shared
in the F-IDE, it is necessary to clearly identify the data
source (or authoring tool) that is expected to manage that
resource. That is, while representations of a resource may be
freely shared between the tools, changes or creations of such
a resource can only occur via its owning tool. Assuming a
Linked Data approach also implies that a resource is owned

43Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

by a single source, to which other resources link. In practice,
it is not uncommon for data to be duplicated in multiple
sources, and hence mechanisms to synchronize data between
tools are needed. For example, resources of type
Communication Interface may be used in both
Communication Specifier and ModArc, with no explicit
decision on which of the tools defines it. To simplify the case
study, we chose to ignore the ModArc source, but in reality
one needs to synchronize between the two sources, as long as
it is not possible to make one of them redundant.

Domain ownership – Orthogonal to tool ownership, it is
also necessary to group resource definitions into domains
(such as requirements engineering, software, testing, etc.).
Domains can be generic in nature. Alternatively, such
domain grouping can reflect the organization units that are
responsible to manage specific parts of the information
model. For example, the testing department may be
responsible to define and maintain the testing-related
resources, while the requirements department manages the
definition of the requirements resources. Dependencies
between the responsible departments can then be easily
identified through the dependencies in the information
models.

Avoid mega-meta-modelling – Information
specifications originate from various development phases
and/or development units in the organization. The resulting
information models may well overlap, and would hence need
to be harmonized. Hence, there is a need to harmonize the
information models – while avoiding a central information
model. Earlier attempts at information modeling normally
resulted in large models that can easily become harder to
maintain over time. The research project CESAR presents in
[6] a typical interoperability approach in which such a large
common meta-model is proposed. It is anticipated that the
Linked Data approach would reduce the need to have such a
single centralized mega information model. The correct
handling of information through Domain and Tool
Ownership (see above) ought to also help in that direction.

In summary, in architecting an F-IDE, there is a need to
support the data specification using Linked Data semantics,
while covering the two ownership aspects of tools
(ownership from the tool deployment perspective) and
domains (ownership from the organizational perspective).

III. APPROACH

We take an MDE approach to F-IDE development, in
which we define models that support the architect with the
needs identified in the previous section. Concretely, we
present a modelling tool for the graphical definition of
Linked Data resource types, based on the Linked Data
constraint language of Resource Shapes [15]. Resource
Shapes is a mechanism to define the constraints on RDF
resources, whereby a Resource Shape defines the properties
that are allowed and/or required of a type of resource; as well
as each property’s cardinality, range, etc.

We define the model using two views: (1) domain
ownership and (2) tool ownership; with each view covering
the corresponding ownership needs identified in the previous
subsection.

Even though our current case study focuses on the
specification and architectural design phases of F-IDE
development – and in particular on information specification
– we aim for an approach that can be seamlessly extended to
cover the complete F-IDE life cycle, and include additional
integration aspects, such as control and presentation
integration [7]. Towards this, we introduce a third modelling
view that supports the detailed design phase of each tool
interface in the F-IDE. This view definition is made
compliant with an existing code generator of tool interfaces
[8]. Besides being a practical feature for the developers of
tool interfaces, by ensuring that the specification model (with
its three views) can lead to the generation of working code,
one can validate the model’s completeness and correctness
with respect to the Resource Shape constraints.

The Eclipse-based modelling prototype is developed
based on the Ecore meta-model of the EMF [9] project. It is
important to note that adopting the close-world
metamodeling approach of Ecore does not necessarily
contradict the open-world view of Linked Data. The
information being shared across the F-IDE remains loyal to
the open-world view, within the constraints specified
through the Resource Shapes mechanism. Ecore is only
necessary to develop the supporting tool to define these
mechanisms.

IV. THE MODEL

In this section, we present the F-IDE specification model
and its three views.

Domain Specification View From this perspective, the
architect defines the types of resources, their properties and
relationships, using mechanisms compliant with the OSLC
Core Specification [10] and the Resource Shape constraint
language [15].

Figure 2 shows the Domain Specification diagram for the
resources needed in our case study. The top-level container,
Domain Specification, groups related Resources and
Resource Properties. Such grouping can be associated with a
common topic (such as requirements or test management), or
reflects the structure of the organization managing the F-
IDE. This view ought to support standard specifications,
such as Friend of a Friend (FOAF) [11] and RDF Schema
(RDFS) [12], as well as propriety ones. In Figure 2, three
domain specifications are defined: Software, Communication
and Variability, together with a subset of the standard
domains of Dublin Core and RDF.

As required by the OSLC Core, a specification of a
Resource type must provide a name and a Type URI. The
Resource type can then also be associated with its allowed
and/or required properties. These properties could belong to
the same or any other Domain Specification. A Resource
Property is in turn defined by specifying its cardinality,
optionality, value-type, allowed-values, etc. Figure 3
illustrates an example property specification highlighting the
available constraints that can be defined. A Literal Property
is one whose value-type is set to one of the predefined literal
types (such as string or integer); while a Reference Property
is one whose value-type is set to either “resource” or “local
resource”. In the latter case, the range property can then be

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

used to suggest the set of resource types the Property can
refer to.

Figure 2. Domain Specification View

Borrowing from the typical notation used to represent
RDF graphs, Resource types are represented as ellipses,
while Properties are represented as rectangles (A Reference
Property is represented with an ellipse within the rectangle.).
In addition, Resource Properties are represented as first-class
elements in the diagram.

Figure 3. The specification of the rdf:type predicate, in the Domain

Specification View

The association between a Resource type and its
corresponding Properties is represented by arrows.
However, in many cases, it becomes inconvenient to view all
relationships from Resources to Properties. This is
particularly the case for common Literal Properties, such as
dcterms:subject, which can be associated to many resources
across many domains. As a convenience, one can choose to
hide Resource to Literals associations, and instead list
Literal Properties within the Resource ellipse representation.
It is this latter alternative that is being presented in Figure 2.

Resource Allocation View is where architect allocates
resources to data sources. It gives the architect an overview
of where the resources are available in the F-IDE, and where
they are consumed. For each data source, the architect
defines the set of resources it exposes; as well as those it
consumes. These resources are graphically represented as
“provided” (outwards arrows) and “required” (inwards
arrows) ports on the edge of the Tool element, as illustrated
in Figure 4. For example, the Communication Specifier tool
exposes the Message resource, which is then consumed by
the Requirements Specifier tool.

Figure 4. Resource Allocation View

In the Resource Allocation view, the interaction between
a provider and consumer of a given resource is presented as a
solid edge between the corresponding ports. In addition, any
dependencies between resources that are managed by two
different data sources are also represented in this model – as
a dotted edge. For example, the resource ECUSoftware,
managed by the Code Repository, has a property has_io_port
that is a reference to resource IO_port; which is in turn
managed through the data source Modarc. Hence, for a
consumer of ECUSoftware, it is beneficial to identify the
indirect dependency on the Modarc tool, since any
consumption of an ECUSoftware resource, is likely to lead
to the need to communicate with Modarc in order to obtain
further information about the property has_io_port.

Adapter Design View is where the architect (or tool
interface developer) designs the internal details of the tool
interface – according to the OSLC standard. This can be
performed for any of the Tool entities in the Resource
Allocation view. Sufficient information is captured in this

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

view, so that an almost complete interface code, which is
compliant with the OSLC4J software development kit (SDK)
can be generated, based on the Lyo code generator [8].

The OSLC Core Specification defines the set of resource
services that can be offered by a tool. As illustrated in Figure
5, “OSLC Services are accessible via a Service Provider that
describes the Services offered. Each Service can provide
Creation Factories for resource creation, Query Capabilities
for resource query and Delegated UI Dialogs to enable
clients to create and select resources via a web UI.”[10]. The
Adaptor Design view is a realization of the OSLC concepts
in Figure 5. An example from our case study is presented in
Figure 6, in which the Core Repository provides query
capabilities and creation factories on all three resources.

Figure 5. OSLC Core Specification concepts and relationships [10]

The Adaptor Design view also models its consumed
resources (In Figure 6 no consumed resources are defined.).
Note that the provided and required resources - as defined in
this view - remain synchronized with those at the interface of
the Tool entity in the Resource Allocation view.

Figure 6. Adaptor Design View

There is no particular ordering of the above views, and in
practice, the three views can be developed in parallel.
Consistency between the views is maintained since they all
refer to the same model. For example, if the architect
removes a resource from the Adaptor Design view, the same
resource is also removed from the Resource Allocation view.

V. REFLECTIONS

Compared to the original approach of using a UML class
diagram (See Figure 1) to represent the F-IDE resources, the

proposed model may seem to add a level of complexity by
distributing the model information into three views.
However, upon further investigation, it becomes clear that
the class diagram was actually used to superimpose
information for both the Domain Specification and Resource
Allocation views into the same diagram. For example,
classes were initially color-coded to classify them according
to their owning tool. However, the semantics and intentions
behind this classification soon become ambiguous, since the
distinction between tool and domain ownership is not
identified explicitly. In the original approach, different
viewers of the same model could hence draw different
conclusions when analyzing the model, depending on their
implicit understanding of the color codes.

Moreover, the usage of a class diagram is not compatible
with the open-world view of Linked Data, nor is it suitable to
specify all necessary information according to the OSLC
standard. This became apparent when the detailed
specification and design of a tool’s interface needed to be
defined. No complements to the UML class diagram can
provide such support. Instead, a dedicated domain-specific
language (DSL) that follows the expected semantics can be
better used uniformly across the whole organization. We
here illustrate two examples where our DSL helped
communicate the correct semantics, which were previously
misinterpreted or not used:

 A Resource Property is a first-class element that can be
associated with multiple Resource types. For example, the
same allowedValues property (with range KeyValuePair) is a
property used for both the CalibrationParameter &
RtdbVariable resources. Previously, two independent
properties were unnecessarily defined.

 Certain resources (such as Range) can only exist within
the context of another parent resource, and hence ought not
to have their own URI. Our DSL helped communicate the
capability of defining Local Resources.

By breaking the model into two views, and by structuring
each view along the managing domains and tools
respectively, the information model is not expected to be
developed in a top-down and centralized manner. Instead, a
more distributed process is envisaged, in which resources are
defined within a specific domain and/or tool. Only when
necessary, such sub-models can then be integrated, avoiding
the need to manage a single centralized information model.

Finally, the two orthogonal views of the F-IDE allow the
architect to identify dependencies within the F-IDE, form
both the organizational as well as the deployment
perspective:

 In the Resource Allocation View of the model, the
architect can obtain an overview of the coupling/cohesion of
the tools of the F-IDE. One could directly identify the direct
producer/consumer relations, as well as the indirect
dependencies, as detailed in Section IV.

 In the Domain Specification view, the architect views
the dependencies between the different domains (irrespective
of how the resources are deployed across tools). Such
dependencies reveal the relationship between the
organizational entities involved in maintaining the overall
information model. This explicit modelling of domain

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

ownership helps lift important organizational decisions,
which otherwise remain implicit.

While the need for a dedicated DSL is convincing, the
proposed views are not necessarily final, and there remains
room for improvements. For example, while the possibility
to represent Properties as first-class elements was
appreciated, it was experienced that they (The squares in
Figure 2) cluttered the overall model, and did not make
efficient usage of the available modeling space. Similarly,
the relationships between Resources and their associated
Literal Properties (not shown in Figure 2) cluttered the
model. Currently, filtering mechanisms are available to
support different representations that suite different users,
while maintaining the same underlying model. In Figure 2,
the filter that hides the arrows representing relationships
between Resources and Literal Properties is activated.
However, the filter that hides all Property elements is not
activated. This makes the view seem almost similar –
visually - to the class diagram of Figure 1, yet the more
appropriate Linked Data semantics lie behind this view.

VI. RELATED WORK

There exists a large body of research that in various ways
touches upon information modeling and model integration.
(See for example [13] and [14]). Our work - and the related
work of this section - is delimited to the Linked Data
paradigm. The work in this paper builds upon the Resource
Shape constraint language suggested in [15], by providing a
graphical model to specify such constraints on RDF
resources.

The most relevant work found in this area is the
Ontology Definition Metamodel (ODM) [16]. ODM is an
OMG specification that defines a family of Meta-Object
Facility (MOF) metamodels for the modelling of ontologies.
ODM also specifies a UML Profile for RDFS [12] and the
Web Ontology Language (OWL) [17], which can be realized
by UML-based tools, such as Enterprise Architect's ODM
diagrams [18]. However, as argued in [15], OWL and RDFS
are not suitable candidates to define and validate constraints,
given that they are designed for another purpose - namely for
reasoning engines that can infer new knowledge.

Earlier work by the authors has also resulted in a
modelling approach to tool-chain development [19]. In this
earlier work, even though the information was modelled
targeting an OSLC implementation, the models were directly
embedded in the specific tool adaptors, and no overall
information model is readily available. The models did not
support the tool and domain ownership perspectives
identified in this paper.

VII. CONCLUSION

In this paper, an MDE approach to F-IDE development
based on the Linked Data principles is presented. A
prototype modelling tool has been developed that allows for
the modelling of the information model for a complete F-
IDE, based on the Resource Shapes constraint language [15].
The model is defined through three views focusing on the
specification and design stages of F-IDE development. It is

envisaged however that the modelling support will be
extended to cover the complete development life-cycle,
specifically supporting the requirements analysis phase, as
well as automated testing. The current focus on data
integration needs to be also extended to cover others other
aspects of integration, in particular control integration [7].

The Eclipse-based prototype is to be released as an open-
source contribution, yet this has not been done at the time of
writing this article.

REFERENCES
[1] Road vehicles - functional safety, ISO standard 26262:2011,

2011.
[2] (2015, Dec.) PTC Integrity. [Online]. Available:

http://www.mks.com/platform/
[3] B. Weichel, and M. Herrmann, "A backbone in automotive

software development based on XML and ASAM/MSR.",
SAE Technical Papers, 2004, doi:10.4271/2004-01-0295.

[4] T. Berners-Lee. (2015, Dec.) Linked data design issues.
[Online]. Available:
http://www.w3.org/DesignIssues/LinkedData.html

[5] (2015, Dec.) OASIS OSLC. [Online]. Available:
http://www.oasis-oslc.org/

[6] A. Rossignol, "The reference technology platform" in CESAR
- Cost-efficient methods and processes for safety-relevant
embedded systems, A. Rajan and T. Wahl, Eds. Dordrecht:
Springer, pp. 213-236, 2012.

[7] A. I. Wasserman, "Tool integration in software engineering
environments", the international workshop on environments
on Software engineering environments, 1990, pp. 137-149.

[8] (2015, Dec.) Eclipse Lyo Code Generator. [Online].
Available:
http://wiki.eclipse.org/Lyo/AdaptorCodeGeneratorWorkshop

[9] (2015, Dec.) Eclipse EMF. [Online]. Available:
https://eclipse.org/modeling/emf/

[10] OSLC Core Specification, OSLC standard v2.0, 2013.
[11] (2015, Dec.) FOAF Vocabulary Specification. [Online].

Available: http://xmlns.com/foaf/spec/
[12] RDF Schema 1.1, W3C Recommendation, 2014.
[13] M. Törngren, A. Qamar, M. Biehl, F. Loiret, and J. El-khoury,

"Integrating viewpoints in the development of mechatronic
products.", Mechatronics (Oxford), vol. 24, nr. 7, 2014, pp.
745-762.

[14] R. Basole, A. Qamar, H. Park, C. Paredis, and L. Mcginnis,
"Visual analytics for early-phase complex engineered system
design support.", IEEE Computer Graphics and Applications,
vol. 35, nr. 2, 2015, pp. 41-51.

[15] A. G. Ryman, A. Le Hors, and S. Speicher, "OSLC resource
shape: A language for defining constraints on linked data.",
CEUR Workshop Proceedings, Vol.996, 2013.

[16] Ontology Definition Metamodel, OMG standard, document
number: formal/2014-09-02, 2014.

[17] OWL 2 Web Ontology Language, W3C Recommendation,
2012.

[18] (2015, Dec.) Enterprise Architect ODM MDG Technology.
[Online]. Available:
http://www.sparxsystems.com/enterprise_architect_user_guid
e/9.3/domain_based_models/mdg_technology_for_odm.html

[19] M. Biehl, J. El-khoury, F. Loiret, and M. Törngren, "On the
modeling and generation of service-oriented tool chains.",
Software & Systems Modeling, vol. 13, nr 2, 2014, pp. 461-
480.

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

