
Stream Mining Revisited

Sayaka Akioka
School of Interdisciplinary Mathematical Sciences

Meiji University
Tokyo, Japan 164–8525

Email: akioka@meiji.ac.jp

Abstract—Big data applications have become popular in recent
years. Stream mining is one of the major data mining methodolo-
gies, which are frequently used in big data applications. Stream
mining differenciates itself from the other big data applications
for its severe requirement, and is also known for its changing
behaviros according to the characteristics of input data. The
problem is, however, the parameters, or methodologies for data
characterization are not clearly defined yet. There is no study
investigating explicit relationships between the characteristics of
input data, and the behaviors of stream mining applications.
Therefore, the current optimization methodology for stream
mining is basically heuristic. This paper provides comprehensive
survey on modeling stream mining to seek the strategy for this
modeling problem.

Keywords—stream mining; modeling; characterization.

I. INTRODUCTION

Big data applications have become popular in recent years.
These big data applications are supposed to collect gigantic
amount of data from various data sources, analyze these data
from several points of view, uncover new findings, and then
provide totally new values. Compared to the conventional
applications, big data applications need to handle extremely
huge amounts of data, and this situation leads high, and
increasing demand for the computational environment, which
accelerates, and scales out big data applications. The serious
problem here, however, is that the behaviors, or characteristics
of big data applications are not clearly defined yet. There is
no established model for big data applications.

Big data applications can be classified into several cate-
gories depending on the characteristics of data usage. Among
these big data applications, this paper has special focus on
stream mining applications. A stream mining application is
such an application that analyzes data in a line. That is, the
target data arrive one after another in chronological order. A
stream mining application differenciates itself from the other
big data applications for its severe requirement. A stream
mining application needs to finish the analysis on the fly.
In many cases, there is no chance to save the target data
somewhere to revisit the data later. Algorithms specialized
for stream mining applications (stream mining algorithms) are
intensively studied [1]–[30], and Gaber et al. gave an excellent
survey report on these algorithms [31].

High performance computing community has been investi-
gating data intensive applications, which analyze huge amount
of data as well. Raicu et al. pointed out that data intensive
applications, and stream mining applications are fundamentally
different from the viewpoint of data access patterns. Therefore,
the strategies for speed-up of data intensive applications, and

stream mining applications have to be radically different [32].
Many data intensive applications often reuse input data, and the
primary strategy of the speed-up is locating the data close to
the target CPUs. Stream mining applications, however, rarely
reuse input data, and the strategy for data intensive applications
does not work in many cases.

Modern computational environment has been evolving
mainly for speed-up of benchmarks such as Linpack [33], or
SPEC [34]. These benchmarks are relatively scalable according
to the number of CPUs. Stream mining applications are not
scalable to the number of CPUs in many cases. Current compu-
tational environment is not necessarily ideal for stream mining
applications for this reason. Additionally, many researchers
from machine learning domain, or data mining domain point
out that the behavior, or execution time of a stream mining
application varies according to the characteristics, or features
of input data. The problem is, however, the parameters, or
the methodologies for data characterization are not clearly
defined yet. There is no study investigating explicit relation-
ships between characteristics of input data, and behaviors of
stream mining applications. Therefore, the current optimization
methodology for stream mining is basically heuristic.

The major purpose of this paper is to provide a com-
prehensive survey on modeling stream mining applications.
This paper focuses on generic models for stream mining
applications, but does not cover the details of execution models
of existing middlewares, or frameworks for stream mining
applications. The primary purpose of this paper is to find keys
to generalize stream mining applications, and clues to connect
characteristics of input data, and behaviors of stream mining
applications. This paper also tries to give some considerations
on the strategy to address this modeling problem based on the
survey. The rest of this paper is organized as follows. Section
2 introduces conventional proposals for stream mining algo-
rithms. Section 3 discusses possible strategies, or directions
for a stream mining application model. Section 4 concludes
this paper.

II. MODELS OF STREAM MINING ALGORITHMS

A. A Three-layer Model

Junghans et al. proposed a three-layer model, which is
illustrated as the shaded part in Figure 1. They argued that most
stream mining algorithms follow this three-layer model [35].
First, the filter component filters incomping data as necessary
for the purpose of sampling, or load shedding. Secondly, the
online mining component analyzes the original incoming data
stream, or the filtered stream. Thirdly, the results of the online
mining component will be stored in the synopsis, which is the

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

Filter

Online mining

Synopsis

Offline Mining

Data stream

Resource Modeling Observation assessment

Parameter settings

Fig. 1. Extended three-layer model.

second layer of the three-layer model. Here, synopsis indicates
sketches, windows, or other dedicated data structures such
as a pattern tree; those are often utilized in stream mining
algorithms. Finally, the offline mining component answers user
queries by accessing information stored in the synopsis. Here,
the offline mining component does not need to fulfill the one
pass requirement of stream mining.

As Junghans et al. developed their stream mining model
with a background of embedded devices, they put an asu-
umption that stream mining is conducted on limited available
resources, such as limited number of CPUs, or limited amount
of memory. Stream mining algorithms are often optimized for
the better performance even under these constraints. Jung-
hans et al., therefore, extended their three-layer model to
include these optimization functionalities. Junghans et al. also
extended the three-layer model for the better quality of the
results by stream mining. The principle of this extension
is to optimize the influential parameters in stream mining
algorithms. This optimization contributes to the relaxed re-
source requirements, or the better quality of the mining results.
Figure 1 illustrates this extended three-layer model. The shaded
part of the figure is the original three-layer model as already
described above, and the right part of the figure is the exten-
sion. The resource monitoring, and the observation assessment
component collect information about the current system state.
Based on the monitoring by the resource monitoring, and the
observation assessment, the parameters are decided whether
they should be adapted, or not. Then, the new parameters are
set, and the stream mining algorithm run with the updated
parameters.

B. Stream Mining and Data Dependencies

Akioka et al. proposed another stream mining model [36],
and the modeling put the focus on data dependencies. Figure 2
illustrates the overall model of stream mining algorithm. The
model shown in Figure 2 is quite similar to the model by
Junghans et al, while Figure 3 illustrates the detailed model of
stream mining algorithms. Figure 3 depicts data dependencies,
and control dependencies, and these dependencies lie among
threads, or processes in one stream mining algorithm.

In Figure 2, a stream mining algorithm consists of two
parts, stream processing part, and query processing part. The
stream processing part consists of stream processing modules,
sketches, and analysis modules. First, the stream processing
module in the stream processing part picks the target data

Query
Processing

Module

fetch one data packet

d(n+2) d(n+1) d(n)d(n+3)d(n+4)d(n+5)...

Data Stream (e.g. a timeline of Twitter)
n-th arrival data packet
(e.g. n-th arrival tweet)

(e.g. morphological
analysis)Stream Processing

SketchSketchSketch

update sketch(es)
Analysis
Module
Analysis
Module

read sketch(es)
(e.g. noun extraction)

Stream Processing Part

Query
Processing

Module

Query
Processing

Module

Analysis
Module

Query Processing Part

(e.g. frequent pattern analysis,
hot topic extraction, etc.)

Fig. 2. A model of stream mining algorithms.

unit, and executes a quick analysis over the data unit. The
quick analysis can be a preconditioning process such as a
morphological analysis, or a word counting. Second, the stream
processing module in stream processing part updates the data
in one or more sketches. After this update, the data in the
sketch(es) contains the latest results of the execution by the
stream processing part. That is, the sketch(es) keeps the inter-
mediate analysis, and the stream processing module updates
the analysis incrementally as more data units are processed.
Third, the analysis module in stream processing part reads
the intermediate analysis from the sketch(es), and extracts the
essence of the data in order to complete the quick analysis
in the stream processing part. Finally, the query processing
part receives this essence for further analysis, and the whole
process for the target data unit is completed.

Based on the model shown in Figure 2, the major responsi-
bility of the stream processing part is to preprocess each data
unit for the further analysis, and that the stream processing
part has the huge impact over the latency of the whole process.
Therefore, the stream processing part also needs to finish the
preconditioning of the current data unit before the next data
unit arrives. Otherwise, the next data unit will be lost as
there is no storage for buffering the incoming data. The query
processing part takes care of the offline part of the analysis, and
does not suffer from the strict requirement of stream mining.

Figure 3 focuses only on stream processing part as this
is the part which impacts the overall performance. The figure
illustrates data dependencies between two processes analyzing
data units in line, and data dependencies inside each pro-
cess. The assumption is that each process analyzes its own
(different) data unit. The left top flow represents the stream
processing part of the preceding process, and the right bottom
flow represents the stream processing part of the successive
process. Each flow consists of six stages; read from sketch(es),
read from input, stream processing, update sketch(es), read
from sketch(es), and analysis. An arrow represents a control
flow, and a dashed arrow represents a data dependency. There
are three data dependencies in total. These data dependencies
are introduced by control flow for the correct executions, and
the summary for these dependencies is as follows.

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

• The processing module in the preceding process
should finish updating the sketch(es) before the pro-
cessing module in the successive process starts reading
the sketch(es) (Dep.1 in Figure 3).

• The processing module should finish updating the
sketch(es) before the analysis module in the same pro-
cess starts reading the sketch(es) (Dep.2 in Figure 3).

• The analysis module in the preceding process should
finish reading the sketch(es) in the successive process
starts updating the sketch(es) (Dep.3 in Figure 3).

C. Stream Mining with Multiple Data Streams

Wu et al. pointed out that many of the existing researches
on stream mining assume that there is one data stream, and
they proposed formal definition of mining over multiple data
streams [37]. In actual situations, the assumption with multiple
data streams is more realistic than the single data stream.
Therefore, the formal definition of the problems with multiple
data streams is more practical, and reasonable.

Accordng to Wu et al., multiple data stream mining should
be approached in a separate way from the way for the
single data stream mining. First, multiple data streams are
from many local data sources to generate distributed data
streams independently. These data sources are not capable of
processing more than simple data preconditioning, or saving
all the generated data. Second, multiple data stream mining
is supposed to process the mining across the data streams,
not only on one single data stream. Third, these multiple
data streams are not modeled as one single huge data stream
with different attributes. Timestamp on each data is not under
uniform criteria in many cases. Sampling rate of the data is
different. The format of the generated data, or privacy concern
is not controlled. There is no reason to handle these data
streams as if one single data stream.

Wu et al. represent each data in a data flow as a quadruple
of the form (s, t, f, v), where s is the identification of the place,
t is the time or sequence number identifying the event, f is
a function, and v is a value vector of the output. Here, event
refers whether data generation, or some other data processing.
Each flow is a set of the quadruples, and fulfills the following
properties.

• Each source specifies a single function to generate a
single flow;

• For any pair of events, e1 and e2, that occur at the
same source, if the two events have the same function
invocation, and e1 occurs before e2, the value t of e1
is smaller than that of e2;

• For any pair of events, e1 and e2, that occur at different
sources, there is no function or rule between e1 and
e2.

In addition to these properties, flows can have some addi-
tional properties:

• Homogeneous or heterogeneous: A pair of flows is
said to be homogeneous (or heterogeneous) if the
respective sources at which the two flows generate
specify the same (or different) function(s), which are

checked in terms of initial conditions and output
domain;

• Relational: A pair of flows, indicated by f1 and f2,
is said to be relational if the value vectors of f1 and
value vectors of f2 satisfy some relationship r (the
relationship refers to values; events are independent).

Wu et al. also gave some considerations comparing multi-
ple data streams, and other data stream models.

• Single stream with one dimension: This is the simplest
model, and usually generated at a simple data stream
application.

• Single stream with multiple dimensions: This applies
to the applications in which there are multiple pa-
rameters, or attributes to be collected, and observed
for each event occuring at a single source. The
main difference between this model and multiple data
streams is that single stream with multiple dimensions
handles events of the same function invocation at a
single source basically, while multiple data streams
can invoke multiple functions distributed on different
sources.

• Multiple data streams: This model is applicable to
many real applications with multiple sources. These
sources can be the same kind of devices, which
are distributed at geometrically scattered locations.
Basically, the multiple data sources can be viewed as
a set of one or more dimensional single data streams.

III. DISCUSSIONS

A. Comparison of the Three Models

Wu et al. defined multiple data streams, and mining mul-
tiple data mining (we refer to their model as MDS). The
definition itself is beneficial in order to clarify the problem.
Considering multiple data streams is more realistic as well.
The point is, however, multiple data streams are still a set of
single data streams as pointed out in their paper. Therefore,
the priority for addressing this modeling problem should be
the solid methodology for modeling the stream mining with
one single data stream. How to superpose several models of
stream mining models of a single data stream will be the next
step.

Junghans et al. proposed their stream mining model in
the context of embedded devices, such as sensors activated
by batteries, and connected to the network by wireless (we
refer to their model as Three-layer model). On the other
hand, Akioka et al. proposed their stream mining model in
the context of high performance computing (we refer to their
model as DAP). Both of them proposed quite similar generic
models for stream mining algorithms, and the discussions for
the restrictions, and requirements for general stream mining
are also in the same direction. These approximate models,
however, do not deeply contribute for the strategy of scaling
out stream mining algorithms. For the better choice of compu-
tational environment, size, allocations, preliminary estimations
for resource requirements are indispensable. In this context,
Akioka et al. proposed a model with data dependencies, and
control dependencies. This model is quite similar to a task

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

Read
from Sketches

Read
from Input

Stream
Processing

Update
Sketches

Read from
Sketches Analysis

Read
from Sketches

Read
from Input

Stream
Processing

Update
Sketches

Read from
Sketches AnalysisControl Flow

Data Dependency

The Preceding

The Successive

Dep.1

Dep.1

Dep.2

Dep.2
Dep.1 Dep.3

Dep.3

Dep.3

Fig. 3. Data dependencies of the stream processing part in two processes in line.

graph, which often used to solve scheduling problems. The
problem is, however, there is no model for estimations of
resources, or durations.

Junghans et al. put monitoring, and parameter update func-
tionality into their model. They also picked up main memory,
CPU cycles, bandwidth, and battery power as resources, and
discussed stream properties (the stream rate, and characteristics
of its individual elements such as value range, distribution,
and size), input parameters, and query parameters influence
the resource requirements of any stream mining algorithms.
The solid models for these resources, or elements mentioned
above are not proposed, however. The actual estimations are
based on heuristics.

Table I summarizes the discussions in this section com-
paring the three models. As summarized in the table, there is
no solid model proposal to fulfill the requirements for solving
the load balancing problem, or scheduling problem of general
stream mining applications. Here, we would like to remind
you that a stream mining application changes its behavior
according to the characteristics of input data, and that there
is no model for input data. That is, everything is heuristic
now for stream mining applications. Table I clearly shows that
there is no successful project to give a solution on input data
problem, and behavior characterizaion. These left problems
are unavoidable for a direct solution for optimum execution
of stream mining applications. We also need to be careful on
the blanks regarding resource estimation. Currently, all of the
modelings here heavily rely on a heuristic way to estimate
the required resource, including the number of CPUs, or the
duration of each stage of a stream mining application. There is
no model here as well. Of course, as the application changes
its behavior with input data, this problem is heavily connected
to the input data problem. We still need to remember, however,
that we have to prepare task graphs for all the stream mining
applications without resource estimation models.

B. Things to be Considered

We discussed how to understand, and model stream mining
applications above. Here, another option for the optimum
execution of stream mining applications would be a large-
scaled cloud computing environment. If there is a good way to
migrate whole, or some parts of running stream mining appli-
cations from one cloud environment to another environment,
the restriction for the resource environment becomes loose.
The challenges for this option will include the following items.

TABLE I. COMPARISON OF THE THREE MODELS.

MDS Three-layer model DAP
generic model (single stream) no yes yes
data/control dependencies - no yes
resource estimation - no no
input data characterization - no no
input/behavior characterization - no no
generic model (multiple streams) yes no no
data/control dependencies no - -
resource estimation no - -
input data characterization no - -
input/behavior characterization no - -

• Practical cloud computing environment with task mi-
grations: This option requires any part of the imple-
mentation of stream mining to be ready for migration
on the fly. Although there are many researchers, or
products that enable task migrations, however, the
question is how much they are practically usable.
The time when those migration techniques are in-
tensively studied, applications with migrations were
implemented by people with background of computer
architecture, parallel computing, or optimization tech-
niques of programs. On the contrary, the major im-
plementers of big data applications are more various.
They are not necessarily with the detailed background
of computer science. The point is how much those
implementers accept, and happily utilize the migration
techniques.

• Consistency and preservation of the data and results:
As repeated in this paper, stream mining is a con-
tinuous, one-way, one-pass application. There is no
way to save input data, or intermediate output without
stopping the current execution. Once you stop the
execution, you will lose both the input data, and
the expected results while you are suspending the
problem. Even if you resume the program, you will
not be able to acquire intrinsic results for a while, as
many of stream mining algorithms rely on the results
from the previous data input. How to preserve the
whole flow of stream mining should be an inescapable
problem.

• Migration management: Even if a good methodology
for migration is established to solve the problem men-
tioned above, there is another problem. The problem
is the strategy for migration. There should be an

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

algorithm to decide which part of the whole program
should be where, and when. This is basically load
balancing problem, or scheduling problem. Therefore,
we face the same modeling problem again. This time,
we need to model both the behavior of stream mining
applications, and current computational environment.

• Geographical placement: Except the case when the
whole process (collection of input data, analysis with
stream mining algorithms, and acquisition of the re-
sults) is performed in house, data source, and the
actual computational environment are geographically
scattered. Actually, this situation is quite common.
Additionally, many of the current cloud computing
services are employed in one place, or similar. This
situation means that only a few points in the Internet
accept almost all the input data collected all over the
world. The inbound network load will be immeasur-
able, and have serious impact over performance of
each of stream mining applications.

• Data privacy: Data privacy is one of the serious
problems in recent concerns. Once you start migrating
the whole, or some parts of stream mining applica-
tions, they will hop around with the data. One of
the reasons why big data applications have became
attractive rapidly is that many organizations have their
own huge data without significance. The big data
boom suggested that there is possible value in the huge
sleeping data. The story will be different, however,
once the data start moving around in the cloud, and it
is difficult to protect the data from sniffing. People will
become more conscious, and the boom will shrink.

IV. CONCLUSIONS

This paper provided a survey on generic modeling of
stream mining. The results of the survey suggested that there is
no successful solid modeling to address the problems surround-
ing stream mining applications. Even though there are several
research projects sharing the same problem, however, the level
of modeling is more abstract than the level for practical use.
Currently, no project is free from heuristic.

The last half of the discussion in this paper argued another
possible approach for the better environment for stream mining
applications, beside direct modeling of stream mining. Al-
though the discussion part might show some other directions,
however, we could not find a brilliant strategy to solve the
problem. We keep seeking the solution with a broader view.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI, Grant-
in-Aid for Young Scientists (B), and its Grant Number is
15K21423.

REFERENCES

[1] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan, “Maintaining
variance and k-medians over data stream windows,” in Proceedings
of the Twenty-second ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, ser. PODS ’03. New York,
NY, USA: ACM, 2003, pp. 234–243. [Online]. Available: http:
//doi.acm.org/10.1145/773153.773176

[2] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and M. Stonebraker,
“Load shedding in a data stream manager,” in Proceedings of the
29th International Conference on Very Large Data Bases - Volume 29,
ser. VLDB ’03. VLDB Endowment, 2003, pp. 309–320. [Online].
Available: http://dl.acm.org/citation.cfm?id=1315451.1315479

[3] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp.
1–16. [Online]. Available: http://doi.acm.org/10.1145/543613.543615

[4] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss, “Surfing
wavelets on streams: One-pass summaries for approximate aggregate
queries,” in Proceedings of the 27th International Conference on Very
Large Data Bases, ser. VLDB ’01. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2001, pp. 79–88. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645927.672174

[5] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu, “A framework
for clustering evolving data streams,” in Proceedings of the 29th
International Conference on Very Large Data Bases - Volume 29, ser.
VLDB ’03. VLDB Endowment, 2003, pp. 81–92. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1315451.1315460

[6] ——, “A framework for projected clustering of high dimensional data
streams,” in Proceedings of the Thirtieth International Conference
on Very Large Data Bases - Volume 30, ser. VLDB ’04.
VLDB Endowment, 2004, pp. 852–863. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1316689.1316763

[7] ——, “On demand classification of data streams,” in Proceedings
of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’04. New York, NY, USA:
ACM, 2004, pp. 503–508. [Online]. Available: http://doi.acm.org/10.
1145/1014052.1014110

[8] G. Cormode and S. Muthukrishnan, “What’s hot and what’s not:
Tracking most frequent items dynamically,” ACM Trans. Database
Syst., vol. 30, no. 1, pp. 249–278, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1061318.1061325

[9] P. Yu, J. Pei, J. Han, H. Wang, G. Dong, and L. V. Lakshmanan,
“Online mining of changes from data streams: Research problems
and preliminary results,” in Proceedings of the 2003 ACM SIGMOD
Workshop on Management and Prcessing of Data Streams, 2003.

[10] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan,
“Clustering data streams: Theory and practice,” IEEE Trans. on Knowl.
and Data Eng., vol. 15, no. 3, pp. 515–528, Mar. 2003. [Online].
Available: http://dx.doi.org/10.1109/TKDE.2003.1198387

[11] M. Charikar, L. O’Callaghan, and R. Panigrahy, “Better streaming
algorithms for clustering problems,” in Proceedings of the Thirty-fifth
Annual ACM Symposium on Theory of Computing, ser. STOC ’03.
New York, NY, USA: ACM, 2003, pp. 30–39. [Online]. Available:
http://doi.acm.org/10.1145/780542.780548

[12] P. Domingos and G. Hulten, “Mining high-speed data streams,” in
Proceedings of the Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’00. New
York, NY, USA: ACM, 2000, pp. 71–80. [Online]. Available:
http://doi.acm.org/10.1145/347090.347107

[13] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’01.
New York, NY, USA: ACM, 2001, pp. 97–106. [Online]. Available:
http://doi.acm.org/10.1145/502512.502529

[14] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R. Motwani,
“Streaming-data algorithms for high-quality clustering,” in Data Engi-
neering, 2002. Proceedings. 18th International Conference on, 2002,
pp. 685–694.

[15] C. Ordonez, “Clustering binary data streams with k-means,” in
Proceedings of the 8th ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, ser. DMKD ’03.
New York, NY, USA: ACM, 2003, pp. 12–19. [Online]. Available:
http://doi.acm.org/10.1145/882082.882087

[16] E. Keogh and J. Lin, “Clustering of time-series subsequences is
meaningless: Implications for previous and future research,” Knowl.
Inf. Syst., vol. 8, no. 2, pp. 154–177, Aug. 2005. [Online]. Available:
http://dx.doi.org/10.1007/s10115-004-0172-7

22Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

[17] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-drifting data
streams using ensemble classifiers,” in Proceedings of the Ninth ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’03. New York, NY, USA: ACM, 2003, pp. 226–235.
[Online]. Available: http://doi.acm.org/10.1145/956750.956778

[18] V. Ganti, J. Gehrke, and R. Ramakrishnan, “Mining data streams under
block evolution,” SIGKDD Explor. Newsl., vol. 3, no. 2, pp. 1–10, Jan.
2002. [Online]. Available: http://doi.acm.org/10.1145/507515.507517

[19] S. Papadimitriou, A. Brockwell, and C. Faloutsos, “Adaptive,
hands-off stream mining,” in Proceedings of the 29th International
Conference on Very Large Data Bases - Volume 29, ser. VLDB
’03. VLDB Endowment, 2003, pp. 560–571. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1315451.1315500

[20] M. Last, “Online classification of nonstationary data streams,” Intell.
Data Anal., vol. 6, no. 2, pp. 129–147, Apr. 2002. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1293986.1293988

[21] Q. Ding, Q. Ding, and W. Perrizo, “Decision tree classification of
spatial data streams using peano count trees,” in Proceedings of
the 2002 ACM Symposium on Applied Computing, ser. SAC ’02.
New York, NY, USA: ACM, 2002, pp. 413–417. [Online]. Available:
http://doi.acm.org/10.1145/508791.508870

[22] G. S. Manku and R. Motwani, “Approximate frequency counts over
data streams,” in Proceedings of the 28th International Conference
on Very Large Data Bases, ser. VLDB ’02. VLDB Endowment,
2002, pp. 346–357. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1287369.1287400

[23] P. Indyk, N. Koudas, and S. Muthukrishnan, “Identifying representative
trends in massive time series data sets using sketches,” in
Proceedings of the 26th International Conference on Very Large
Data Bases, ser. VLDB ’00. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2000, pp. 363–372. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645926.671699

[24] Y. Zhu and D. Shasha, “Statstream: Statistical monitoring of
thousands of data streams in real time,” in Proceedings of the 28th
International Conference on Very Large Data Bases, ser. VLDB
’02. VLDB Endowment, 2002, pp. 358–369. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1287369.1287401

[25] J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation
of time series, with implications for streaming algorithms,” in
Proceedings of the 8th ACM SIGMOD Workshop on Research
Issues in Data Mining and Knowledge Discovery, ser. DMKD ’03.
New York, NY, USA: ACM, 2003, pp. 2–11. [Online]. Available:
http://doi.acm.org/10.1145/882082.882086

[26] D. Turaga, O. Verscheure, U. V. Chaudhari, and L. Amini, “Resource
management for networked classifiers in distributed stream mining sys-
tems,” in Data Mining, 2006. ICDM ’06. Sixth International Conference
on, Dec 2006, pp. 1102–1107.

[27] D. S. Turaga, B. Foo, O. Verscheure, and R. Yan, “Configuring
topologies of distributed semantic concept classifiers for continuous
multimedia stream processing,” in Proceedings of the 16th ACM
International Conference on Multimedia, ser. MM ’08. New
York, NY, USA: ACM, 2008, pp. 289–298. [Online]. Available:
http://doi.acm.org/10.1145/1459359.1459398

[28] B. Thuraisingham, L. Khan, C. Clifton, J. Maurer, and M. Ceruti,
“Dependable real-time data mining,” in Object-Oriented Real-Time
Distributed Computing, 2005. ISORC 2005. Eighth IEEE International
Symposium on, May 2005, pp. 158–165.

[29] N. K. Govindaraju, N. Raghuvanshi, and D. Manocha, “Fast and
approximate stream mining of quantiles and frequencies using graphics
processors,” in Proceedings of the 2005 ACM SIGMOD international
conference on Management of data. ACM, 2005, pp. 611–622.

[30] K. Chen and L. Liu, “He-tree: a framework for detecting changes
in clustering structure for categorical data streams,” The VLDB
Journal, vol. 18, no. 6, pp. 1241–1260, 2009. [Online]. Available:
http://dx.doi.org/10.1007/s00778-009-0134-5

[31] M. M. Gaber, A. Zaslavsky, and S. Krishnaswamy, “Mining data
streams: A review,” SIGMOD Rec., vol. 34, no. 2, pp. 18–26, Jun.
2005. [Online]. Available: http://doi.acm.org/10.1145/1083784.1083789

[32] I. Raicu, I. T. Foster, Y. Zhao, P. Little, C. M. Moretti, A. Chaud-
hary, and D. Thain, “The quest for scalable support of data-intensive
workloads in distributed systems,” in Proc. the 18th ACM International

Symposium on High Performance Distributed Computing (HPDC’09),
2009.

[33] J. Dongarra, J. Bunch, C. Moler, and G. Stewart, LINPACK Users Guide,
SIAM, 1979.

[34] S. P. E. Corporation. Spec benchmarks. [Online]. Available: http:
//www.spec.org/benchmarks.html

[35] C. Junghans, M. Karnstedt, and M. Gertz, “Quality-driven resource-
adaptive data stream mining?” SIGKDD Explor. Newsl., vol. 13, no. 1,
pp. 72–82, Aug. 2011. [Online]. Available: http://doi.acm.org/10.1145/
2031331.2031342

[36] S. Akioka, H. Yamana, and Y. Muraoka, “Data access pattern analysis
on stream mining algorithms for cloud computation,” in Proc. the Inter-
national Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA2010), 2010.

[37] W. Wu and L. Gruenwald, “Research issues in mining multiple data
streams,” in Proc. the First International Workshop on Novel Data
Stream Pattern Mining Techniques (StreamKDD’10), 2010.

23Copyright (c) IARIA, 2016. ISBN: 978-1-61208-457-2

ALLDATA 2016 : The Second International Conference on Big Data, Small Data, Linked Data and Open Data (includes KESA 2016)

