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Abstract—In this paper, we compare four strategies used in
classification systems. A classification system applies a rule set,
induced from the training data set in order to classify each
testing case as a member of one of the concepts. We assume
that both training and testing data sets are incomplete, i.e.,
some attribute values are missing. In this paper, we discuss two
interpretations of missing attribute values: lost values and “do
not care” conditions. In our experiments rule sets were induced
using probabilistic approximations. Our main results are that
for lost value data sets the strength only strategy is better than
conditional probability without support and that for “do not
care” data sets the conditional probability with support strategy
is better than strength only.

Index Terms—Data mining; rough set theory; probabilistic
approximations; MLEM2 rule induction algorithm; lost values
and “do not care” conditions.

I. INTRODUCTION

In this paper, we investigated the correctness of rule sets
evaluated by the error rate, a result of ten-fold cross validation,
with a focus on the choice of classification strategy. For a given
rule set and testing data set the question is what is the best
strategy for the classification system. In our experiments we
used the Learning from Examples using Rough Sets (LERS)
data mining system [1]–[3] with which we may use four
strategies: strength of a rule combined with support, strength
only, a conditional probability of the concept given the set of
all training cases the rule matches combined with support, and
the conditional probability, without any support.

In Sections 2 and 3, background material on incomplete
data and probabilistic approximations are covered. Section 4
introduces and explains the four classification strategies used
during the experiments described in Section 5. In Section 6,
conclusions are discussed with the main results being that for
the data sets with lost values the strategy based on strength
only is better than conditional probability without support. For
data sets with “do not care” conditions the strategy based on
conditional probability with support is better than the strategy
based on strength only.

TABLE I
TRAINING DATA SET

Attributes Decision

Case Temperature Headache Cough Flu

1 high no no no
2 very-high yes * no
3 normal * no no
4 normal no * no
5 ? ? yes yes
6 very-high yes no yes
7 * yes ? yes
8 high yes * yes

II. INCOMPLETE DATA

We assume that the input data sets are presented in the
form of a decision table. An example of a decision table is
shown in Table I. Rows of the decision table represent cases,
while columns are labeled by variables. The set of all cases
will be denoted by U . In Table I, U = {1, 2, 3, 4, 5, 6, 7,
8}. Independent variables are called attributes and a dependent
variable is called a decision and is denoted by d. The set of all
attributes will be denoted by A. In Table I, A = {Temperature,
Headache, Cough}. The value for a case x and an attribute a
will be denoted by a(x).

In this paper, we distinguish between two interpretations
of missing attribute values: lost values and attribute-concept
values. Lost values, denoted by “?”, mean that the original
attribute value is no longer accessible and that during rule
induction we will only use existing attribute values [4][5].
“Do not care” conditions (denoted by ∗) correspond to a
refusal to answer a question. With a “do not care” condition
interpretation we will replace the missing attribute value by
all possible attribute values. The error rate does not differ
significantly for both interpretations of missing attribute values
[6].

One of the most important ideas of rough set theory [7] is
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Fig. 1. Error rate for the Bankruptcy data set with lost values with lost values

an indiscernibility relation, defined for complete data sets. Let
B be a nonempty subset of A. The indiscernibility relation
R(B) is a relation on U defined for x, y ∈ U as defined in
equation 1.

(x, y) ∈ R(B) if and only if ∀a ∈ B (a(x) = a(y)) (1)

The indiscernibility relation R(B) is an equivalence rela-
tion. Equivalence classes of R(B) are called elementary sets
of B and are denoted by [x]B . A subset of U is called B-
definable if it is a union of elementary sets of B.

The set X of all cases defined by the same value of
the decision d is called a concept. For example, a concept
associated with the value yes of the decision Flu is the set {5,
6, 7, 8}. The largest B-definable set contained in X is called
the B-lower approximation of X , denoted by appr

B
(X), and

defined in equation 2.

∪{[x]B | [x]B ⊆ X} (2)

The smallest B-definable set containing X , denoted by
apprB(X) is called the B-upper approximation of X , and is
defined in equation 3.

∪{[x]B | [x]B ∩X 6= ∅} (3)

For a variable a and its value v, (a, v) is called a variable-
value pair. A block of (a, v), denoted by [(a, v)], is the set
{x ∈ U | a(x) = v} [8].

For incomplete decision tables the definition of a block of
an attribute-value pair is modified in the following way.
• If for an attribute a there exists a case x such that a(x) =

?, i.e., the corresponding value is lost, then the case x
should not be included in any blocks [(a, v)] for all values
v of attribute a,

• If for an attribute a there exists a case x such that the
corresponding value is a “do not care” condition, i.e.,
a(x) = ∗, then the case x should be included in blocks
[(a, v)] for all specified values v of attribute a.

For the data set from Table I the blocks of attribute-value
pairs are:

[(Temperature, normal)] = {3, 4, 7},
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Fig. 2. Error rate for the rule set for the Breast cancer data set with lost
values
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Fig. 3. Error rate for the rule set for the Echocardiogram data set with lost
values
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Fig. 4. Error rate for the rule set for the Hepatitis data set with lost values

[(Temperature, high)] = {1, 7, 8},
[(Temperature, very-high)] = {2, 6, 7},
[(Headache, no)] = {1, 3, 4},
[(Headache, yes)] = {2, 3, 6, 7, 8},
[(Cough, no)] = {1, 2, 3, 4, 6, 8}, and
[(Cough, yes)] = {2, 4, 5, 8}.
For a case x ∈ U and B ⊆ A, the characteristic set KB(x)

is defined as the intersection of the sets K(x, a), for all a ∈ B,
where the set K(x, a) is defined in the following way:
• If a(x) is specified, then K(x, a) is the block [(a, a(x))]

of attribute a and its value a(x),
• If a(x) =? or a(x) = ∗ then the set K(x, a) = U.

For Table I and B = A,
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Fig. 5. Error rate for the rule set for the Image segmentation data set with
lost values

KA(1) = {1},
KA(2) = {2, 6, 7},
KA(3) = {3, 4},
KA(4) = {3, 4},
KA(5) = {2, 4, 5, 8},
KA(6) = {2, 6},
KA(7) = {2, 3, 6, 7, 8}, and
KA(8) = {7, 8}.
Note that for incomplete data there are a few possible ways

to define approximations [9], we used concept approximations
since our previous experiments indicated that such approxima-
tions are most efficient [10]. A B-concept lower approximation
of the concept X is defined in equation 4.

BX = ∪{KB(x) | x ∈ X,KB(x) ⊆ X} (4)

The B-concept upper approximation of the concept X is
defined by the equation 5.

BX = ∪{KB(x) | x ∈ X,KB(x) ∩X 6= ∅}
= ∪{KB(x) | x ∈ X}

(5)

For Table I, A-concept lower and A-concept upper approx-
imations of the concept {5, 6, 7, 8} are
A{5, 6, 7, 8} = {7, 8} and
A{5, 6, 7, 8} = {2, 3, 4, 5, 6, 7, 8}, respectively.

III. PROBABILISTIC APPROXIMATIONS

For completely specified data sets a probabilistic approx-
imation is defined by equation 6, where α is a parameter,
0 < α ≤ 1, see [10]–[15]. Additionally, for simplicity, the
elementary sets [x]A are denoted by [x]. For discussion on how
this definition is related to the variable precision asymmetric
rough sets see [1][10].

apprα(X) = ∪{[x] | x ∈ U,P (X | [x]) ≥ α}. (6)

For incomplete data sets, a B-concept probabilistic approx-
imation is defined by equation 7 [10].

∪{KB(x) | x ∈ X, Pr(X|KB(x)) ≥ α} (7)

Where Pr(X | KB(x)) = |X ∩ KB(x)|
|KB(x)| is the conditional

probability of X given KB(x) and |Y | denotes the cardinality
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Fig. 6. Error rate for the rule set for the Iris data set with lost values

20 

25 

30 

35 

40 

0 0.2 0.4 0.6 0.8 1 

Er
ro

r r
at

e 
(%

) 

Parameter alpha 

?, strength with support 
?, strength only 
?, probability with support 
?, probability only 

Fig. 7. Error rate for the rule set for the Lymphography data set with lost
values
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Fig. 8. Error rate for the rule set for the Wine recognition data set with lost
values

of set Y . Note that if α = 1, the probabilistic approximation
becomes the standard lower approximation and if α is small,
close to 0, in our experiments it was 0.001, the same definition
describes the standard upper approximation.

For simplicity, we will denote KA(x) by K(x) and the
A-concept probabilistic approximation will be called a proba-
bilistic approximation.

For Table I and the concept X = {5, 6, 7, 8}, there exist
three distinct probabilistic approximations:
appr1.0({5, 6, 7, 8}) = {7, 8}
appr0.6({5, 6, 7, 8}) = {2, 3, 6, 7, 8} and
appr0.001({5, 6, 7, 8}) = {2, 3, 4, 5, 6, 7, 8}.
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IV. CLASSIFICATION

Rule sets, induced from data sets, are used most frequently
to classify new, unseen cases. A classification system has two
inputs: a rule set and a data set containing unseen cases. The
classification system classifies every case as being member
of some concept. A classification system used in LERS is
a modification of the well-known bucket brigade algorithm
[16]–[18].

The decision to which concept a case belongs is made on
the basis of two factors: strength and support. Strength is the
total number of cases correctly classified by the rule during
training. The second factor, support, is defined as the sum of
strengths for all matching rules indicating the same concept.
The concept C for which the support, i.e., the following
expression ∑

matching rules r describing C

Strength(r) (8)

is the largest is the winner and the case is classified as being
a member of C. This strategy is called strength with support.
There exist three additional strategies. We may decide to
which concept a case belongs on the basis of the strongest
rule matching the case. This strategy will be called strength
only. In the next strategy for every rule we compute ratios
of the strength to the rule domain equal to the total number
of cases matching the left-hand side of the rule. Such a ratio
is a conditional probability of the concept given rule domain.
A rule with the largest probability decides to which concept
a case belongs. This strategy is called probability only. The
fourth strategy, highly heuristic, in which all probabilities
for rules indicating the same concept are added up is called
probability with support.

In the classification system of LERS, if complete matching
is impossible, all partially matching rules are identified. These
are rules with at least one attribute-value pair matching the
corresponding attribute-value pair of a case. For any partially
matching rule r, the additional factor, called Matching factor
(r), is computed. Matching factor (r) is defined as the ratio of
the number of matched attribute-value pairs of r with a case
to the total number of attribute-value pairs of r. In partial
matching, the concept C for which the following expression

∑
partially matching
rules r describing C

Strength(r) ∗Matching factor(r)

(9)
is the largest is the winner and the case is classified as being
a member of C.

The problem is how to classify unseen cases with missing
attribute values. In the LERS classification system, when an
unseen case x is classified by a rule r, case x is considered
to be not matched by r if for an attribute a, a(x) = ? and
the rule r contained a condition of the type (a, v), where v
was a value of a. If for an attribute a, a(x) = * and if the
rule r contained a condition of the type (a, v), then case x

TABLE II
THE BEST RESULTS FOR ERROR RATES (%)—EXPERIMENTS ON DATA

WITH lost values

Data set Error rate (%) for

strength strength probability probability
with support only with support only

Bankruptcy 13.64 13.64 16.67 16.67
Breast cancer 27.08 26.71 26.35 27.08
Echocardiogram 41.89 37.84 41.89 39.19
Hepatitis 21.94 21.94 18.06 23.87
Image segmentation 42.38 44.29 49.52 57.62
Iris 12.00 12.67 13.33 16.00
Lymphography 24.32 22.30 30.41 34.46
Wine recognition 16.85 17.42 16.85 17.98

is considered to be matched by r, does not matter what v is.
In both cases interpretation of lost values and “do not care”
conditions were strictly adhered to.

Using α = 0.333, the following rule set was induced by
LERS from the data set from Table I

R1. (Headache, no) → (Flu, no), with strength = 3 and
domain rule size = 3,

R2. (Temperature, very-high) → (Flu, no), with strength = 1
and domain rule size = 3,

R3. (Headache, yes) → (Flu, yes), with strength = 3 and
domain rule size = 5, and

R4. (Cough, yes) → (Flu, yes), with strength = 2 and domain
rule size = 4.

V. EXPERIMENTS

Eight real-life data sets taken from the University of Cali-
fornia at Irvine Machine learning Repository were used for
experiments. Three of our data sets: Bankruptcy, Echocar-
diogram and Iris were numerical. All eight data sets were
enhanced by replacing 35% of existing attribute values by
missing attribute values, separately by lost values and by “do
not care” conditions.

For all data sets there was a maximum value for the
percentage of missing attribute values successfully replaced.
In our experiments we chose the largest percentage common
to all datasets, 35%, as it is the maximum percentage for the
bankruptcy and iris data sets. As a result, 16 data sets were
used, eight with 35% lost values and eight with 35% “do not
care” conditions. Using the 16 data sets, experiments with 11
alpha values and four classification strategies were conducted,
resulting in 704 ten-fold cross validation experiments.

Results of our experiments are presented as Figures 1 - 16
and Tables II and III. Results of experiments are presented in
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TABLE III
THE BEST RESULTS FOR ERROR RATES (%)–EXPERIMENTS ON DATA WITH

“do not care” conditions

Data set Error rate (%) for

strength strength probability probability
with support only with support only

Bankruptcy 16.67 22.73 15.15 19.70
Breast cancer 28.16 28.88 27.08 27.80
Echocardiogram 24.32 27.03 27.03 28.38
Hepatitis 19.35 18.71 18.71 19.35
Image segmentation 47.14 51.43 46.19 49.52
Iris 36.00 38.67 28.67 25.33
Lymphography 24.32 26.35 25.00 31.76
Wine recognition 14.04 17.42 14.04 15.73
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Fig. 9. Error rate for the Bankruptcy data set with “do not care” conditions
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Fig. 10. Error rate for the rule set for the Breast cancer data set with “do
not care” conditions

terms of error rate, a percentage of incorrectly classified cases
when run in a 10-fold cross validation system.

In Tables II and III, the best results for all four strategies
are shown. For each data set, strategy and interpretation of
missing attribute values, we selected the smallest error rate
from Figures 1 - 16. It is justified by practice of data mining,
we always pick the value of the parameter α that corresponds
to the smallest error rate. For example, for the bankruptcy data
set, for two strategies, strength with support and strength only,
for lost values, the error rate is 13.64%, so the corresponding
entries in Table II are 13.64 (in this specific situation, the error
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Fig. 11. Error rate for the rule set for the Echocardiogram data set with “do
not care” conditions
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Fig. 12. Error rate for the rule set for the Hepatitis data set with “do not
care” conditions
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Fig. 13. Error rate for the rule set for the Image segmentation data set with
“do not care” conditions

rate does not depend on α).
Surprisingly, the strategy strength only seems to be the best

strategy for data with lost values while the same strategy looks
like the worst strategy for data with “do not care” conditions.

The Friedman test (5% level of significance), ties were taken
into account shows that for both Tables II and III the null
hypothesis that all four strategies do not differ significantly
with respect to error rate must be rejected. For post hoc
analysis we used the distribution-free pairwise comparisons
based on Friedman rank sums (5% level of significance).
The only results are: for data sets with lost values, the
strategy based on strength only is better than the strategy
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Fig. 14. Error rate for the rule set for the Iris data set with “do not care”
conditions
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Fig. 15. Error rate for the rule set for the Lymphography data set with “do
not care” conditions
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Fig. 16. Error rate for the rule set for the Wine recognition data set with “do
not care” conditions

based on probability only, for data sets with “do not care”
conditions, the strategy based on probability and support is
significantly better than the strategy based on strength only.
For other strategies differences are not statistically significant.
For example, as follows from Table II, for data with lost
values, the strategy based on strength with support is in most
cases better than the strategy based on probability only, but
that difference is not statistically significant.

VI. CONCLUSIONS

In this paper we report results of experiments on four
different strategies of classification: strength with support,
strength only, probability with support and probability only

used for classification incomplete data by rule sets induced
from incomplete data using probabilistic approximations.

Our main result is that for the data sets with lost values
the strategy based on strength only is better than conditional
probability without support. For data sets with “do not care”
conditions the strategy based on conditional probability with
support is better than the strategy based on strength only.

Additionally, results of our experiments show that for any
given incomplete data set all four strategies should be applied
and the best strategy should be selected as a result of ten-fold
cross validation.
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