
A Simple Precoding Scheme for Multi-User MIMO Transmission Over a Shared

Channel in a TDD Cellular Network

Abheek Saha

Hughes Systique Corporation,

Gurgaon, India

Email: abheek.saha@hsc.com

Abstract—Multi-User Multiple-Input Multiple-Output
(MIMO) transmission is one of the key technologies for
achieving the ambitious targets for coverage and throughput
in modern cellular networks. It allows us to take advantage
of the large number of transmission elements possible in the
radio-heads or eNodeB and allow users to share a channel.
A key challenge in the deployment of multi-user MIMO is
the problem of cross-user interference due to mutual non-
orthogonality within the shared channel. The transmitter must
select an optimal transmit precoding so as to eliminate this
cross-user interference, since the receivers cannot coordinate
and jointly decode the transmission. In this paper, we propose
a novel algorithm for multi-user MIMO precoding over a
shared channel. Our algorithm is a combination of ideas
both from Dirty Paper Coding as well as the more recent
Interference Alignment techniques. We demonstrate that we
can achieve better performance than zero-forcing and that
our algorithm is practical to implement within the framework
of existing 4th and upcoming 5th generation systems, being
realizable in linear time.

Keywords—Multi-user MIMO; Dirty Paper Coding; Interfer-
ence Alignment; Shared channel; Block Cholesky decomposition.

I. INTRODUCTION

Fourth and fifth generation cellular networks are distin-

guished by the rapid and widespread deployment of mul-

tiple antenna systems. These systems can be deployed in

various ways; multiple antenna deployed at a single tower,

multiple distributed antenna installations under the control

of a single centralized Radio Access Node (cRAN), or

even multiple cooperating eNodeBs (this is known as a

Coordinated Multipoint or CoMP deployment). The initial

deployment of multiple antenna transmission was in the

single user MIMO systems [1], where a single eNodeB and

a single User Terminal (UT) communicate over a dedicated

channel using multiple receive and transmit elements. These

have been commercially deployed for about a decade, with

mixed results ; in practical environments, achieving more

than 2 simultaneous streams per channel has proven to be

difficult. Advances in radio technology are pushing multi-

user MIMO (MuMIMO) as a replacement to single user

MIMO. MuMIMO [2] consists of a single eNodeB with

a large number of antennas to simultaneously transmit to

multiple MIMO-capable UTs each equipped with a smaller

number of antennas, over a common shared channel (Figure

1). The promise of MuMIMO is in the increase of the number

of simultaneous streams per channel, hence increasing both

Figure 1. Deployment of MuMIMO

the throughput and coverage at both cell-center and cell-

edge. The primary advantage is that it is easier to put

larger numbers of antenna elements on an eNodeB than on

a UT (due to the form factor) and independent UTs with

geographical separation have a higher spatial diversity than

that of large number of antennas on a single receiver. This

spatial diversity leads to a corresponding independence in

channel matrices which is the basis of the gains of MIMO

transmission.

MuMIMO has been supported in 4th generation cellular

networks (Long Term Evolution (LTE)) standards since Re-

lease 10 and is increasingly seeing commercial deployment.

As we move towards the fifth generation, the number of

antenna on the wireless network nodes (Remote Radio Heads

or eNodeBs) is also increasing manifold (Massive MIMO).

More complex modes of deployment, such as cooperative

MuMIMO and multi-user CoMP are being proposed, es-

pecially to support the cell-edge (Figure 2) [3]. Over the

last few years, the 3rd Generation Partnership Project has

rapidly pushed the MuMIMO transmission modes into the

mainstream of cellular access networks [4], standardizing the

relevant operating modes, associated sounding and dedicated

reference signals etc. The 5G New Radio standard (5G-NR)

recognizes the importance of MuMIMO and has introduced

further enhancements to the existing LTE standards to support

more complex and efficient deployments [5]. This includes

the use of comb-structures and cyclic shifts to support a

higher number of orthogonal training signals, to support up

to 32 simultaneous layers. The specifications also allow for

flexible deployment of training signals, so as to support

very low-latency decoding and adaptation for high-doppler

environments.
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Figure 2. Cooperative MuMIMO

In contrast to the single-user MIMO, where the com-

putation of optimal precoding matrix is well understood,

optimal/near-optimal precoding/decoding for MuMIMO is

relatively complex and has been the subject of much recent

research. MuMIMO performance is limited by co-user inter-

ference over a complex shared medium; the individual chan-

nels of the individual UTs cause interference between each

other in a manner which is tied to the mutual information in

the channel. While the network can fully anticipate the cross-

user interference, the UTs have only knowledge of their own

channel and cannot coordinate with each other. This creates

an interesting problem of optimal multi-user encoding at the

network, which is the subject of this paper.

The contribution of this paper is as follows. We propose a

novel MuMIMO transmit precoding scheme for a transmitter

with N ∗K,N,K > 1 antenna transmitting to N receivers,

each with K antenna elements. In the existing literature

(Section III) there are two main approaches to the MuMIMO

precoding problem. The earlier research was based on the

technique of Dirty Paper Coding (DPC) [6], which is an

elegant approach to solving the known interference issue, but

is however, difficult to scale to a large number of users due

to the need to solve a difficult joint optimization problem.

On the other hand, in recent years, much work has taken

place using the technique of Interference Alignment(IA) [7],

which was primarily designed for the shared cross-channel

environment, i.e., K transmitters and K receivers on a

single channel. Our Successive interference Compensation

(SiC) algorithm is a mixture of both approaches. We use

the block diagonalization approach of DPC and join it with

the sub-space reduction technique of interference alignment.

We show that the resultant algorithm is fast, easy to im-

plement and provides an intuitive outer bound of the K
user MuMIMO bounds. We note that the K user MIMO

case is relatively less addressed in the interference alignment

literature as well as the older DPC literature, in terms of

theoretical upper bounds for achievable rate. This shall be

described in more detail in Subsection II-B.

The rest of this paper is organized as follows. In Section

II, we describe the problem in context of the generic theory

of interference channels and provide a survey of previous

work, organized in terms of the two main approaches, Dirty

Paper Coding (II-A) and Interference Alignment (II-B). In

Section III, we give a detailed mathematical framework for

our problem, followed by the description of the algorithm in

Subsection III-A. In Section IV, we provide some simulation

results comparing our approach against the baseline Zero-

Forcing approach. Finally, in Section V, we conclude the

paper by proposing future directions in our research.

II. MULTI-USER INTERFERENCE CHANNELS - THEORY

AND PREVIOUS WORK

Our problem involves the multi-user shared channel in a

generic LTE Time Division Duplex (TDD) cellular network.

A single eNodeB with N ×K antennas is controlling a cell

in which there are N UTs with K receive antennas each. The

eNodeB has to transmit simultaneously to all N UTs during

each transmission frame over a shared good quality (high

Signal to Noise Ratio (SNR)) Gaussian channel, varying

stochastically from frame to frame. The eNodeB has perfect

Channel State Information (CSI) for all UTs because it is a

TDD network. It can also control the exact decoding matrix

to be used by each UT, by embedding appropriate reference

signals in each frame. The UTs have knowledge only of their

own channels. Our aim is to design an algorithm by which

the single eNodeB, given the knowledge of the complete set

of channels for all N receivers, can near-optimally choose

the transmission precoding matrix, so as to maximize the

aggregate capacity for the channel. The aggregate capacity is

a function of the number of layers transmitted, the number of

UTs transmitted to and the Bit Error Rate (BER) for each UT.

Because the system is operating in a high SNR environment,

the system performance i.e. BER is constrained by the cross-

user interference rather than the external noise.

The most generic case of a shared channel is the cross-

channel case, which supports K transceiver pairs over a

common channel. The broadcast channel case, on the other

hand, has a single transmitter with K receivers. The common

thread among both these cases is that the system performance

(aggregate rate capacity) is limited by co-channel interference

and the individual agents are cooperative, as pointed out

by the authors in [8]. The problem of rate maximizing for

selfish users is an open problem. In the most generic model

of the distributed cross channel, neither the receivers nor

the transmitters can coordinate with each other in realtime

[9]. In other words, the individual receivers and transmitters

have to individually process their own signals for precoding/

decoding. In such a system, the individual transmitters and

receivers may agree on common parameters such as the

precoding/decoding matrices and the operating codebook,

but cannot share their processing in real-time; each will

have to work on their own copy of the signal (transmit

or receive) once the system is activated. Clearly, MuMIMO

and Coordinated Multipoint systems are both special cases

of the shared channel. MuMIMO is a broadcast channel

case where there is a single transmitter, but multiple non-
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communicating users. The CoMP case is a variant of the

cross-channel, as there are multiple transmitters with limited

ability to coordinate with each other.

Interest in the problem of shared channel transmission

dates back at least 15 years starting from the two-user

broadcast channel. The theoretical background is much older,

dating back to the 1970s. The research question is as follows;

how do we configure the transmitters and receivers in a

shared channel so as to maximize the aggregate transmission

rate. There are at least four parameters for optimization. The

obvious ones are the transmit and receive filters (precod-

ing/decoding matrices in MIMO terms). Alternately, one can

design appropriate code-books, or decompose the code-book

into separate subsets and reserve one for each transceiver pair.

Finally, there exists user selection/scheduling. An associated

problem is the need is to estimate the theoretical achievable

rate capacity of such a channel in terms of the covariance

between the channel matrices of individual users [10].

Over the years, there have been two major approaches to

the shared channel rate optimization problem. The first is the

DPC approach [6] as applied to the wireless channel, as is

seen in the works of [11] and others. This approach works on

the theory of pre-compensation; how to adjust the transmit

signal so as to null out the effect of the known interference

at the receiver. The second, which has garnered enormous

interest of late, is the technique of interference alignment

[12]. This technique (and its predecessor, Zero-Forcing(ZF))

works on the basis of one-time optimal precoding.

A. Dirty Paper Coding

Dirty Paper Coding originated in the work of Costa [6].

It solves the problem of transmitting a signal s to a receiver

on top of a known (to the transmitter) interference vector

z and a random noise term n. The problem is to construct

an encoding operation T (z, n) based on the knowledge of

z and r and a corresponding decoding operation R, which

can be used without knowledge of the interference term z.

The original paper shows that the problem is solvable by

proving the existence of an alphabet to encode s, z jointly

and a corresponding pair of operations T ,R, which can

be used independently at either end of the channel for

the encoding/decoding operations. A simple realization of

DPC is Tomlinson Harashima Precoding (THP) [13][14], first

introduced to solve a problem of self-interference due to

cross-talk in cabled environments. In this work, T and R
are modulo operations on the transmit symbol.

In the context of wireless and broadband MIMO, the early

research in DPC focussed on the two receiver broadcast

channel [15].The achievable rate for a two user broadcast

channel have been extensively studied [16]–[18], culminating

in the Marton’s upper bound for two user broadcast channels.

In [15, Slepian Wolf Theorem], it is shown that the rate-

capacity of the two user channel is limited only by the

mutual information between the two signal-spaces and hence,

achievable using a DPC method. The same result has been

proven in different contexts by [19] and others.

Yu and Cioffi propose an alternate technique to achieve

Marton’s rate capacity in a two user broadcast system,

using a decision feedback equalizer from the precoder output

[11][20]. Published literature on practical DPC techniques for

the shared wireless channel is relatively sparse, especially

in the multiple user (N > 2) case. Much of the available

literature uses Tomlinson Harashima precoding (or similar

techniques) as a means of constrained interference suppres-

sion [21]. In [22], the authors pair the THP approach with

a decision feedback filter to meet the power constraints on

a per symbol basis. In [23], the authors implement a robust

form of the THP for a decision feedback structure. Similar

work is presented in [24]–[26].

B. Interference alignment

Interference alignment(IA) [9][12][27] works by decom-

posing a single channel into multiple sub-spaces, each corre-

sponding to one of the degrees of freedom of each individual

user. The key idea is that of trading degrees of freedom

for interference [28]. In a standard IA realization, one of

the subspaces is selected as the designated ’interference’

subspace and all transmitters have to select an encoding

such that the interference vector generated by that transmitter

lies in the designated interference sub-space. This makes the

other sub-spaces available for use for interference-free signal

transmission. IA is a more efficient successor for the earlier

zero-forcing (ZF) approach [29][30], as ZF requires each user

to choose a separate interference sub-space, which is the null-

space of the complement channel. The simplest case of IA

is a K-user Multiple Input Single Output (MISO) interfer-

ence channel [8], where K pairs of users sacrifice half the

available degrees of freedom for interference free operation.

Over the last ten years, an enormous corpus of literature

has been created for interference alignment as a interference

nulling technique in multiple contexts [7]. The theoretical

work on interference alignment addresses the cross-channel

case in two modes. In [12][27] we have two transmitters

and two receivers sharing a single channel and both the

transmitter and the receiver has multiple antenna. A specific

subcase of the cross channel case is given in Section 10 of

[12], which is the cognitive transmitter case; here, the two

transmitters are able to share the transmit message that each

intends to transmit to the other. In these enviroments, IA has

been proposed as a distributed optimization problem [8][28]

extended to the generic multi-antenna case in [31]. The

other application of IA is in the K-user MISO cross-channel

case [8], where we have a single transmitter transmitting to

N users, each equipped with a single antenna. These IA

techniques maybe adapted to the K user MuMIMO broadcast

channel but are very complex to implement. This is both due

to the full CSI requirement as well as the need to implement

multiple matrix optimization passes for each frame. Practical

algorithms mostly involve some version of ZF using rank-

reduction technique [32][33]. Alternately, the somewhat more

realizable alternating minimization algorithm in [34] can be

used iteratively.
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III. SUCCESSIVE INTERFERENCE COMPENSATION WITH

BLOCK DIAGONALIZATION

In this section, we present a simple to implement algo-

rithm for precoding a MuMIMO transmission over a known

broadcast channel with N receivers (UTs). The novelty of

our solution is in that approaches interference compensation

as in the DPC approach, using diagonalization to linearize

the problem. It then uses the rank-reduction technique of in-

terference alignment in order to compensate the interference

vector without violating the transmit power norm. This idea

of trading off between power and degrees of freedom is an

adaptation of the theoretical work in [10].

As is standard in LTE cellular networks, the UTs are not

aware that they are part of a MuMIMO cohort. They simply

obey the eNodeB instructions as encoded in the reference

signals to decode the transmitted symbols. In LTE Release

12 and onwards, this is achieved by an appropriately encoded

Demodulation Reference Signals (DMRS) embedded in the

transmission frame, which can be used both to control both

the decoding matrix the UT will use and the number of

streams each UT should decode. The UTs can only act as

per the subset of information they have and cannot anticipate

what the eNodeB is going to do. The eNodeB, however,

requires full CSI information for all UTs. In a TDD network,

this is directly available from the uplink. In an Frequency

Division Duplex (FDD) network, this has to be signaled and

has the additional complexity of quantization error. For the

purpose of this paper, we assume that the CSI information for

all user channels are available at the eNodeB with arbitrarily

small error, as is achievable in a standard TDD network.

The SiC algorithm is computationally simple as it is single-

pass and only involves matrix operations of size K × K .

The inversion of a Hermitian matrix required in the first

block diagonalization stage is easily computed from the

singular value decomposition. In contrast, the ZF approach

requires us to implement Gram-Schmidt orthogonolization of

an assymetric N.(K−1)×N.K matrix, this operation being

repeated N times per frame. Standard IA algorithms are even

more complex, because the optimal matrix search requires

multiple iterative passes, each of which require quadratic

operations on the entire N.K ×N.K transmission matrix.

In the rest of the paper, we use the following conven-

tions. We number matrix/vector rows and columns from 1
to N . Variables denoted by capital letters, i.e., A,B,C...
are considered to be elements of MN.K×N.K the set of

matrices of N.K rows and columns. Variables of the form

Ãm,n, B̃m,n, C̃m,n represent the sub-matrix of size K×K of

the corresponding matrix A,B,C etc, starting from the row

position (m−1)×K and column position (n−1)×K . Vectors

are denoted by lower case letters x, y, etc. Uppercase greek

letters (Υ,Γ, etc.) are used exclusively to denote diagonal or

block-diagonal matrices and Υ̃m,n, Γ̃m,n their K × K size

submatrices as defined above. Vector norms are denoted by

|x|. For the equuivalent matrix norms, we utilize the trace

function, which is given by |X | = Tr(X) . x∗ and X∗

represent the complex transpose of the vector x and the

conjugate transpose of the matrix X respectively. The square

root of a Hermitian semidefinite matrix S is obtained by

taking the Singular Value Decomposition S = V ΣV ∗ and

then constructing the root S1/2 = V Σ1/2V ∗. S−1 is the

matrix inverse.

A. Algorithm description

The SiC algorithm is implemented in two steps. In the first

step (Subsection III-B), we block diagonalize the channel and

hence separate the interference and signal space for each user.

In the second step (Subsection III-C), we add a compensating

vector for each user to cancel the effect of the causal noise

and simultaneously reduce the number of transmitted streams

so as to normalize the transmit power.

The interference compensation step can be interpreted both

in the DPC sense and in the IA sense. In the DPC sense, we

are successively modifying the space of code-words for each

user to take into account the code-word transmitted by the

previous user. If we see this in the sense of the formulation

provided in [10], we are essentially choosing a transmit code-

word from a modified dictionary W , which maps to a sub-

set of valid receiver code-words, but can cancel interference

without violating the power transmit norm. In the IA sense,

we can view the rank reduction step as a tradeoff between

the degrees of freedom in the spatial sense to reduce the

overlap between the users, without fully orthonormalizing

them. This trade-off frees up some power so that we can add

the additional compensating vector to cancel out interference.

Thus, we are considering the combination of power and

MIMO spatial sub-channels as a joint resource within which

the optimal operating configuration has to be found.

Our algorithm improves upon the performance of standard

MIMO IA algorithms, which are completely driven by the

condition number of the aggregate channel matrix. If the

condition number is large, i.e., the individual channel ma-

trices are strongly correlated, IA algorithms provide poor

results for all the UTs. This is because the act of subspace

decomposition forces each user into a very poor channel,

in order to achieve orthogonalization with respect to the

common channel. Consider the worst case where there are

two users, both with the exact same channel. The nullspace

of one is the nullspace of the other, and neither will achieve

any transmission in the IA case. In the SiC algorithm, at

least one of the users will get through with no interference

whatsover (the one which is encoded first), at the cost of the

subsequent users.

B. Block Decomposition of a Composite Channel Matrix

The Block Cholesky decomposition (BLDL) technique has

been used for DPC of the MuMIMO channel because it

converts a multi-variate optimization problem to an stepwise

optimization problem [35][36]. It allows us to decompose

each UT’s channel into a simple K × K effective channel,

independent of the other UTs. For a symmetric matrix,

the K ×K block decomposition is computationally simple,
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because the diagonal matrices can be easily inverted. We let

the channel matrix between the eNodeB and the M UTs, each

with K antenna be written as a composite H ∈ MMK×MK

as in (1).

H =









H̃1

H̃2

. . .

H̃M









=









H̃1,1 H̃1,2 . . . H̃1,M

H̃2,1 H̃2,2 . . . H̃2,M

. . . . . . . . . . . .

H̃M,1 H̃M,2 . . . H̃M,M









(1)

The matrix H̃j represents the channel between the j UT

and the eNodeB. Each H̃j,k is a K × K matrix within the

composite matrix, where the diagonal terms represent the

interference free channel and the off-diagonal terms represent

the covariance between the different UTs. In the first step, we

carry out Block Cholesky decomposition composite matrix

HH∗ in the form given in (2), where the size of each sub-

matrix is K ×K .

HH∗= GΣG∗

Σ= diag[S̃1, S̃2, . . . , S̃M ]

G=









I 0 0 . . . 0

G̃2,1 I 0 . . . 0
. . . . . . . . . 0 0

G̃M,1 G̃M,2 . . . I









H̃k,k=
∑

p<k

G̃k,pS̃pG̃
∗
k,p + Sk,k

H̃j,k<j=
∑

p<k

G̃j,pS̃pG̃
∗
k,p + G̃j,kSk,k

(2)

Note that Sk, 1 ≤ k ≤ N is a sequence of symmetric

positive semi-definite matrices. We can write the singular

value decomposition of Sk as in (3), where U is once again

a unitary matrix of size K ×K

S̃k = Ũk∆̃kŨ
∗
k (3)

The eNodeB precodes the transmission by the precoding

matrix given in (4) choosing λk so as to meet the transmit

norm ||P || = 1.

P = H∗G









Ũ1λ1 0 . . . 0

0 Ũ2λ2 0 . . .

. . . . . . ŨM−1λM−1 0

. . . . . . 0 ŨMλM









(4)

The precoding is implemented on an appropriately chosen

transmit vector z comprising of a block of K size transmit

vectors z̃k, each k-th block targetted to the k-th receiver (5).

λk is the power loading term.

z =
[

z̃1 z̃2 . . . z̃M
]

(5)

In the rest of this paper, we have assumed that λk = ∆
−1/2
k

which essentially ensures that the eNodeB has a fixed power

output (NK)2|z|. The composite signal after passing through

the channel is given as the vector r in (8).

A particularly useful feature of the BLDL decomposition

is that the amount of interference at each stage (the power

norm of the interference vector) is computable step-wise

from the sub-matrices of the block diagonalized channel

matrix. Further, the total co-channel interference in the Block

Diagonalization is upper bounded by
∑

p |H̃p,p − S̃p,p|. We

can verify this as follows. Assume that the individual transmit

blocks z̃k are of unit norm. The interference vector for the

k-th user is given as ik from (7). By triangle inequality, we

get upper bound of ik as in (6).

|ik| ≤
∑

p≤k

|Gk,p−1∆
1/2
p−1z̃p| ≤

∑

p≤k

|Gk,p−1Sp−1G
∗
k,p−1|

|
∑

p≤k

Gp,p−1Sp−1Gp,p−1| = |H̃k,k − S̃k,k|

⇒ |ik| ≤ |H̃k,k − S̃k,k| (6)

Intuitively, we can check the result from the fact that each

receiver has K antennas and can thus coherently decode

K streams. This means that the energy of the K streams

can be removed from the interference seen by the system

as a whole. Each submatrix Gk,j , k 6= j then captures the

mutual information between the k-th and the j-th user. If the

sum of the off-diagonal terms of HH∗ were negligible, (i.e.,
∑

p H̃j,pH̃p,j ≡ 0) in (2), then the inter-receiver co-channel

interference terms would also vanish.

C. Cancelling the co-channel interference vector

Because of the nature of the precoding, the co-channel

interference also takes a particular form, in that each i-th
user is only affected by the interference generated by the

previous users. We can verify this by formally deriving the

interference vector ik from the structure of the receive vector

given in (7).

y1= ∆
1/2
1 z̃1

y2= U∗
2G2,1U1∆

1/2
1 z̃1 +∆

1/2
2 z̃2

. . .

yk= Ũ∗
k

∑

j<k

Gk,j∆̃
1/2
j Ũj z̃j + ∆̃k

1/2
z̃k

= ik + ∆̃k
1/2

z̃k (7)

We will now compensate for this interference. To each

transmit vector zm, we shall add an additional compensating

vector ζm, so that the combination, after precoding will

counteract the effect of im, the known interference vector

for this, the m-th user. While this step will cancel the

interference vector completely, it may cause the combined

output vector zm + ζm to exceed the power norm. To take

care of this, we shall truncate the transmit block as shown

in (9). The output vector will have zero co-user interference,

but some of the streams will be nulled out. We interpret this

as a reduction in the degrees of freedom available for this

particular channel. The only impact on the receiver is that

it has to discard the last Lk symbols it receives. We repeat
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r= HP ẑ = HH∗G











Ũ1∆
−1/2
1 0 . . . 0

0 Ũ2∆
−1/2
2 0 . . .

. . . . . . ŨM−1∆
−1/2
M−1

λM−1 0

. . . . . . 0 ŨM∆
−1/2
M λM



















z̃1
z̃2
. . .
z̃M









= λ









1 0 . . . 0

G̃2,1 1 0 . . .
. . . 1 0 . . .

G̃M,1 G̃M−1,1 1 . . .



















Ũ1∆̃
1/2
1 0 . . . 0

0 Ũ2∆̃
1/2
2 0 . . .

. . . . . . ŨM−1∆̃
1/2
M−1 0

. . . . . . 0 ŨM ∆̃
1/2
M



















z̃1
z̃2
. . .
z̃M









(8)

this step successively for the (k+1)-th and then the (k+2)-
th user, as long as the impact of the interference is more

than the reduction of throughput due to truncation. We note

that the interference vector (i)k has to be updated after the

compensation is completed for the (k − 1)-th user, because

it is dependent on the compensated output as well. For each

user, the crucial task, hence, is to minimize the value of Lk,

the number of streams that the k-th user has to reduce.

















zk,1
zk,2
· · ·

zk,K−Lk

· · ·
zk,K

















→

















zk,1
zk,2 + ζk,2

· · ·
zk,K−Lk

+ ζk,K−Lk

· · ·
0

















(9)

1) Truncation step: We consider the problem of transmis-

sion of a vector z̃k through a channel with matrix Hk ∈ MK

with a known interference vector ik with norm εk. We can

find an interference compensating vector ζk which we can

add to z̃k to get ẑk with K−L non-zero spatial streams, such

that T (z̃k,K − L) = T (ẑk + ik),K − L), where T (A, n) is

the truncation operator. The receive vector y is given by the

equation (10), where the eNodeB uses the precoding matrix

V ∆̃−1, where V comes from the SVD of H , H = U∆V ∗.

y = U∗
ik∆̃

−1 + (x+ ζ) (10)

We know that U is a unitary matrix, so |U∗
ik| = εk. If we

set ζ =
(

−U∗
ik∆̃

−1

)

then y = x. However, by triangle

inequality

|x+ ζ| ≤ |x|+
εk

|∆̃|
(11)

Hence, our modified transmit vector x + ζ may violate the

transmit power norm by an amount up to εk
|∆̃|

. To solve this

problem, we reduce the number of spatial streams from K to

K−L. Hence we only wish to find a ζ whereby the first K−L
entries in y match K−L entries in x. The remaining entries

in ζ are set to zero. The equation in (10) is then modified to

that of (12), where T (S, k) is the truncation operator when

truncates the matrix S to its first k rows and columns.

ζ= −U∗η∆̃−1

y= U∗
ik∆̃

−1 +





















x1

x2

. . .
xK−L

0
. . .
0





















+





















ζ1
ζ2
. . .

ζK−L

0
. . .
0





















(12)

D. Aggregate Rate

We now come to the problem of estimating the aggregate

rate we achieve by the SiC algorithm. We recall that for a

MIMO transmission, the aggregate rate for a given user is

the sum of the eigen-values of the effective channel matrix

for that user, corresponding to each stream or layer chosen

for transmission. In our case, we have deliberately truncated

the effective precoding matrix; this is the cost incurred for

mitigating cross-user interference. From the expression in

(12) we can estimate the number of streams Lk which the k-

th user has to sacrifice in order to achieve the null interference

condition. The aggregate simply becomes the throughput of

remaining streams, as in (13)
∑

i∈K

log2 (1 + αλi/ ρ) (13)

K is the set of streams which are retained for transmission

and ρ is the wide-band Gaussian (non-causal) noise in the

system. For a given k-th user facing the interference vector

ik as given in (6), the number of streams which have to

be reduced is given by L in the equation (14). Note that if

|i| ≈ |∆̃k
1/2

|, we get L = K/2 which is the MISO case.

L = K
|i|

|Σk|+ |i|
(14)

Consider the vector zk with known interference vector k. For

each stream that we reduce, we reduce the norm of the inter-

ference vector by at least 1/K . We also allow for the addition

of a compensating vector ζk of norm 1/K . To achieve null

interference condition, we have to allow the norm of the

compensating vector to match the worst case norm of the
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interference vector. Hence, we get |i|(K − L/K) = L/K .

Simplifying for L we get the result above.

From the above result and the overall upper bound on the

interference given in (7), we get an upper bound on the total

number of streams that have to be sacrificed to achieve the

null interference condition. The total number of streams to

be reduced over the entire cohort of M receivers is given by

M
∑

k=2

Lk =
∑

k

˜|Hk − S̃k|

|H̃k − S̃k|+ |S̃k|
(15)

E. Optimal ordering

The expression in (2) also gives us a useful heuristic

for ordering the UTs prior to the block-diagonalization

stage. Let us assume that we are scheduling a set of UTs

whose indices are given in U . If we compute the relative

orthogonality of the k-th channel to the rest in terms of

R(k, U) = mink 6=j,j∈U |Hj,kH
∗
j,k|, then ordering the UTs

in descending order of R(k, U) improves the aggregate

capacity. The initial UTs get the best transmission rate, since

their interference vectors are relatively low. The UTs which

may interfere with the others are further down the list. We

can demonstrate this by a simple example. Consider a 3 UT

system, where the UTs have channel matrices H1, H2 and

αH1+(1−α)H2, where H1 and H2 are perfectly orthogonal

to each other. If we organize the composite channel matrix is

H̃ =
[

H1 H2 αH1 + (1− α)H2

]

, then the cross user

interference vectors are 0, 0 and α2+(1−α)2. On the other

hand, if we flip the positions of the 2nd and the 3rd UTs,

i.e., H̃ =
[

H1 αH1 + (1− α)H2 H2

]

, then the cross

user interference vectors are 0, α2 and 1 respectively. As we

can see, the second ordering has lower rate capacity though

the first one is less fair. In general, we find the ordering in

terms of descending R(k, u) gives good results as we shall

see in Section IV below.

A scheduling algorithm to balance ordering and capacity

is currently under study.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we present some simulation results. We

have simulated a system comprising of a single eNodeB

with 64 transmit antenna (an 8x8 antenna configuration) and

multiple UTs; only the basic downlink shared channel is

implemented and the DMRS and other reference signals are

communicated directly to the UTs. The entire simulation

code is written in C and the key elements of the transmit

and receive chain are implemented using the Gnu Scientific

Library (GSL). The channel matrices are randomly generated

(using the GSL random number generator) with full rank

and condition number 0.5. At each frame, the eNodeB

creates a transmit vector for transmission to the N users

simultaneously, with K symbols per UT, from a standard

16-QAM constellation. All transmit vectors are normalized

to a unit norm; hence, the power saved by decimating any

of the spatial streams is distributed over the rest of the

spatial streams. The channel matrices are then randomly
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Figure 3. Relative performance of the successive interference cancellation
algorithm vs full coordination

generated and then the algorithm given in is implemented

at the simulated eNodeB. The resultant precoded transmit

vector is passed through the random composite channel with

AWGN noise added to it and handed over to the UTs. At each

UT, the decoding chain is implemented using the signaled

decoding matrix and SNR computed individually. Figure 3

show the combined bit-rate achieved for four cases; 2 UTs

of 32 antenna each, 4 UTs of 16 antenna each, 8 UTs of

8 antenna each, 16 UTs of 4 antenna each and finally, 32

UTs of 2 antenna each. For each configuration, we have run

the simulation 500 times. As we can see in Figure 3, as the

number of antenna increase, the total bitrate asymptotically

approaches the best case performance. The gap in between

is equivalent to the coordination penalty described by [37].

In Figure 4, we compare the performance of the system

against a reference case. The reference for us is the zero-

forcing algorithm as implemented in [29]. Zero-forcing worsk

by setting the precoding matrix for each user to Pi = HiiṼii,

where Ṽi,i lies in the nullspace of the complementary vector

((16).

H̃i,i=
[

Hi,1 Hi,2 . . . Hi,i−1 Hi,i+1 . . .
]

(16)

We chose ZF as the baseline algorithm, because as of now it

remains the most practical algorithm in the N >> 1,K > 2
case, being implementable in approximately linear time. As

mentioned earlier, MuMIMO implementations of existing

IA or DPC algorithms, or more sophisticated lattice cod-

ing algorithms remain prohibitively expensive to implement

since they scale super-linearly in N for large values of K .

Further, multi-pass algorithms as suggested in literature are

not realizable in current cellular networks, given that the

corresponding signaling mechanisms don’t exist. As we have

previously indicated, the SiC algorithm should substantially

outperform the ZF algorithm when the condition number of

the aggregate channel matrix is high. The chart in Figure

5 shows the relative performance of the two algorithms for

different channel condition numbers.
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Our first Figure 3 shows the expected performance of the

SIC as the number of users reduce and the number of antenna

per user goes up. As the users have larger and larger numbers

of receive antenna, the amount of signal energy which gets

converted to interference drops off asymptotically. Further,

the interference per user is now spread over a larger number

of streams and hence is easier to eliminate. Figure 4 shows

that there is a substantial gain of the Successive Interference

Compensation algorithm versus the standard zero-forcing

case. As argued earlier, this is because of the very large

penalty in the zero-forcing case due to full orthonormaliza-

tion of all channels, whereas the SiC algorithm trades off

transmit power for overlap. In the last chart, we can see that

performance in the ZF case flat-lines at low

V. CONCLUSION

In this paper, we have proposed an algorithm for Mu-

MIMO transmission over the shared channel from a single

transmitter (eNodeB) to multiple UTs. The SiC algorithm

is implementable at the eNodeB of a standard LTE cellular

network, operating in TDD mode, using standard linear

operations. We have implemented it in cloud RAN settings

relatively easily, because the matrix operations are straight-

forward to implement and all the algorithms are linear, with

no requirement for complex iterative optimization proce-

dures. We have demonstrated its performance with respect to

the existing standards of zero-forcing. The future extension

of the SiC algorithm is to the CoMP case, which has to

take into account the limitations of how much information

can be shared between the cooperating eNodeBs. We have

considered one case where we have two eNodeBs (configured

in master-slave mode) and N UTs, where the slave eNodeB is

dedicated to generating the interference compensation vector

for the block diagonalized transmission of the master . In this

case, we have to share just the interference vector (as known

to the master) between the two eNodeBs. The slave, based on

its own knowledge of the channel can use the interference

vector can do interference cancellation. This allows us to

extend the successive interference compensation to multiple

eNodeBs, without requiring full CSI. This will be further

explored in the future. Another area which we are pursuing

is the optimal scheduling algorithm for all users, so as to

guarantee minimum guaranteed QoS rates, while maintaining

maximum aggregate rate capacity. This shall be published in

future work.
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