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Abstract—Battery consumption is a general problem in any
portable wireless device and it depends directly on the
transmission technology (cellular, Wi-Fi or short-range wireless
networks) that is used to send and receive data. When various
networks are available, mobile devices should be able to choose
which network interface to use based on a variety of factors, such
as required bandwidth or energy efficiency. This work proposes a
dynamic wireless network interface-selection mechanism focused
on minimizing the energy consumption of the mobile device,
allowing an increase in battery life. In doing so, Machine
Learning (ML) regression-based algorithms are used to predict
the energy cost per transferred byte for each type of available
network interface using field data. A comparison of the energy
consumptions for both the proposed mechanism and the Android
native method is performed. Numerical results show that our
proposal helps save energy.

Keywords–Network selection; energy consumption; wireless
interface; machine learning; regression.

I. INTRODUCTION

In the last decades, mobile communications have evolved
from a level of expensive technology used by a few individuals
to the condition of ubiquitous systems used by the majority of
the world population. The number of mobile subscriptions in
2016 was around 7.5 billion, surpassing the world inhabitants.
By 2020, it is expected that about 90% of people above six
years old will have a mobile phone and that the global IP
traffic will reach 2.7 zettabytes [1].

These forecasting scenarios are related to the evolution of
the smartphones that today are equipped with a wide range of
sensing, computational, storage and communication resources,
functionalities that have allowed mobile devices to perform
activities previously restricted only to computers [2]. All these
new functionalities presented by the recent mobile devices
require better components, such as faster Central Processing
Unit (CPU) and larger storage, which have turned smartphones
into energy-hungry battery-powered devices.

It is a well-known fact that battery consumption is a general
problem in any portable wireless device and it depends directly
on the transmission technology (cellular, Wi-Fi, or short-range
wireless networks) that is used to send and receive data (see
[3] and references therein). Kellokoski et. al. [4] analyze the
effect of making vertical handoffs on the energy consumption
of the smartphones. Since disconnecting from one network
to connect to another is an energy consuming activity, the
energy consumption related to the vertical handoff process is

Figure 1. Representation of cellular and Wi-Fi network integration: full line
circle – coverage area of a cellular network cell; dashed line circles –

coverage areas of the Wi-Fi hot spots.

reasonable as long as the new network to connect to is more
efficient than the original one. In [5], a quantitative analysis
on how the network quality affects the energy consumption in
smartphones for both 3G and Wi-Fi networks is presented. The
results show that poor wireless signal strength may increase
the energy consumption eight times on Wi-Fi and 50% on 3G.

In face of this, the 3rd Generation Partnership Project
(3GPP) started to investigate the possibility of integrating
cellular networks (3G or 4G) with Wi-Fi networks [6].
Figure 1 illustrates an example of cellular and Wi-Fi network
integration, where the larger circle (with full line) represents
the coverage area of a cell of the cellular network, while
smaller circles (dashed lines) represent the coverage area of
Wi-Fi access points. When various networks are available,
mobile devices should be able to choose which network
interface to use based on a variety of factors, such as required
bandwidth or energy efficiency.

In case of wireless network interface selection, there are
two possible approaches: one focused on the mobile device
and another focused on the wireless network infrastructure.
Most of the network interface selection algorithms proposed in
the literature focus on choosing the wireless network interface
that delivers the best quality of service, as can be seen, for
example, in [7]-[9]. In [7], Abbas et. al. propose a decision
tree to define the best network interface based on criteria such
as locality (at home or away from home), device speed and
signal strength. In [8], a fuzzy logic scheme is proposed to
select the best network interface. It uses the signal strength
for both 3G and Wi-Fi networks to estimate the rates for each

8Copyright (c) IARIA, 2017.     ISBN:  978-1-61208-562-3

AICT 2017 : The Thirteenth Advanced International Conference on Telecommunications



interface and use them to select the appropriate option. In [9],
Lai et. al. analyze the wireless network interface selection as
a multi-criteria problem based on an utility function, defined
as the user satisfaction regarding the network interface choice.

The central point that motivates this paper is that, as
far as we know, there are not many works in literature
concerning energy consumption as the main network interface
selection criterion. So, this work proposes a dynamic wireless
network interface-selection mechanism focused on minimizing
the energy consumption of the mobile device, allowing an
increase in battery life. For this, Machine Learning (ML)
regression-based algorithms are used to predict the energy
cost per transmitted byte for each type of available network
interface and to choose the most energy-efficient one. Finally, a
comparison of the energy consumptions for both the proposed
mechanism and the Android native method is performed.

The remainder of this article is structured as follows.
Section II presents the proposed dynamic network
interface-selection mechanism. Details about the measurement
setup and the model tuning are also introduced. Numerical
results are provided in Section III. Finally, conclusions are
drawn in Section IV.

II. PROPOSED DYNAMIC SELECTION MECHANISM

Although most of the network interface-selection
mechanisms do not consider energy consumption as their
main selection criterion, energy-efficient mechanisms are
not a novelty. For example, in [10], an energy-efficient
adaptive scheme was proposed based on the mathematical
modeling of energy consumption and data transfer delay
patterns. However, in our case, we intend to find the most
energy-efficient network interface available for the mobile
device under a high network traffic, e.g. download a file
via browser, using field data. To achieve that, the proposed
mechanism estimates the energy cost per transferred byte and
uses this parameter as a network interface selection criterion.
The estimation of the energy cost per transferred byte is
obtained by ML regression-based algorithms.

A. Machine Learning

ML is a form of artificial intelligence by which computers
evolve the ability to learn from and make predictions based on
data. Today, ML has been used by organizations and academic
communities in a variety of ways, including enhancing
cybersecurity [11], improving medical outcomes [12], and
making automobiles safer [13].

ML algorithms are categorized into supervised and
unsupervised learning. In the first category, we have labeled
input and output data to provide a learning basis for future data
processing. In the second one, we have to draw inferences from
input data without labeled response. Considering supervised
learning, ML is divided into classification and regression
algorithms. The difference between them is that the former
aims to classify new data and the latter focuses on estimating
a new data continuous variable. Both algorithms depend on
training data, i.e., a set of examples with paired input and
expected output.

TABLE I. FEATURES COLLECTED FROM THE SMARTPHONE AND
THE WIRELESS NETWORK.

Feature Category Features
Battery info* Battery voltage and current

Execution time info* Execution time for each collect

Data transfer info* Number of transferred bytes

Global config. ADB status, Bluetooth status

Smartphone config. Accelerometer, Location Manager status

Bluetooth config. Bluetooth state, Bluetooth discovery state

Wi-Fi config. Wi-Fi state, signal frequency, link speed

Celullar config. Network type, connection status and state, RSSI

Process info Process list, CPU usage

B. Measurement Setup

To begin with, we collected data as a set of features from a
Motorola Moto G 2nd Gen. Dual SIM XT1068 [14]. After that,
we divided the data into two sets: the first one to generate (train
and test) the regression models and the second one to validate
our proposal by simulation. The collected features are shown
in Table I by feature category, including current and voltage
measurements and the value of transferred bytes for each
network interface individually. The feature categories marked
with (*) are the ones used to calculate the energy efficiency,
which will be described later. The number of transferred
bytes is measured by the difference of total transferred bytes,
value available in Android API, between two collect iterations.
Concerning the Wi-Fi signals, the environment in which the
data was gathered had six wireless access points, but the device
could only connect to one of them. For data gathering, a
self-developed app collected the features every five seconds,
while the mobile device was held in movement during the
entire gathering time to guarantee variable network conditions
for both Wi-Fi and 3G interfaces. It is known that the battery
voltage drops according to the level of the battery charge in a
non-linear way [15]. To prevent that, all measurements had a
maximum duration of five minutes and were started with the
fully-charged battery.

Considering that modern smartphones have reliable
readings from the battery [16], both current and voltage
measurements were obtained via software. The voltage
measurement was read via the BatteryManager class from
Android API [17], while the current measurement was obtained
from the Android system files. Based on voltage and current
measurements, we define the instantaneous power Pi as

Pi = ViIi (1)

in which Vi is the battery voltage in mV and Ii is the battery
current in µA. From Pi, we can define the consumed energy
Ec, as

Ec = Pi∆t (2)

where ∆t is the time interval in which the power in used.
Finally, we can obtain the energy cost per transferred byte Cb

as
Cb = Ec/Qb (3)

where Qb is the number of transferred bytes in the time interval
∆t.

To verify how the collected features affect the response
variable Cb, we apply the Recursive Feature Elimination (RFE)
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TABLE II. RANKING OF FEATURES GIVEN BY THE RFE
ALGORITHM.

Feature Ranking
User CPU usage 1

Cellular RSSI 2

Wi-Fi link speed 3

Wi-Fi RSSI 4

System CPU usage 5

Number of transferred bytes 6

Wi-Fi signal frequency 7

Cellular network activity type 8

Cellular network state 9

Cellular network data connection status 10

Cellular network connection type 11

Wi-Fi state 12

algorithm [18]. The objective of the RFE algorithm is to create
a rank of all input features from the most to the least relevant
of the set when considering the target variable. Table II shows
the ranking of features by relevance to the energy cost Cb

obtained by the RFE algorithm. To reduce the feature space
and, consequently, the computational complexity, we define a
threshold rank, where the features whose rank is below the
threshold are discarded. The threshold rank was found by
testing the models and checking if the accuracy was reduced
by removing the last ranked feature. This process was done
iteratively. Therefore, the threshold rank was defined as 12
and the 7 least relevant features were dropped from Table II.

Figure 2 shows a diagram that represents the development
of the regression model. The features used to train the model
are divided into categories, which, in turn, are grouped in
two sets (A and B). Even after optimizing the features by
the RFE algorithm, it is important to emphasize that some
features of the final dataset can not be used as part of the
training data. For example, due to limitations of the Android
Operating System (OS), during 3G data collection, the Wi-Fi
interface must be shut down, otherwise the smartphone will
always be connected to the Wi-Fi network. As a result, the
Wi-Fi configuration features (features whose rankings are 3,

4, 7, and 12 in Table II) are not included on the 3G training
data. Also, the number of transferred bytes Qb is not adopted
as input of the 3G training data, because when both interfaces
are available, the collected variable Qb normally refers to the
Wi-Fi interface. Conversely, the remaining features of the set
B (except those from the Wi-Fi configuration category) are
common to both network interface modeling. At last, since
features do not include the energy cost Cb, a parser is applied
to generate it (see (3)) for both 3G and Wi-Fi regression models
using the features of the set A.

C. Model Tuning

Cross-validation is a statistical method for estimating the
performance of a predictive model [19]. The basic form of
cross-validation is k-fold cross-validation. In this technique,
the data is initially split into k equally (or nearly equally)
disjoint data segments named folds. This partitioning allows
the execution of k iterations of the technique, where in
each iteration, a different fold is used for validation and the
remaining (k − 1) folds are used for training.

Figure 3 illustrates how the process of three-fold
cross-validation works. In each iteration, one ML algorithm
uses two folds to learn one model and, after that, the learned
model is asked to make predictions about the data in the
validation fold. In this work, the following ML techniques
are examined: Linear Regression (Ordinary Least Squares,
OLS) [20], Random Forest [21], Gaussian Process Regressor
(GPR) [22], K-Nearest Neighbors (K-NN) [23], Multi-Layer
Perceptron (MLP) [23], and Support Vector Regression (SVR)
[24]. To evaluate the ML algorithms, we use four metrics
to assess the outputs from the regressors: Mean Absolute
Error (MAE), Mean Squared Error (MSE), Median Absolute
Error (MnAE) and R2 score. Due to limitation of space, the
mathematical definitions of these metrics were omitted in this
work and can be found in [25].

The final step of the proposed mechanism is to compare
the estimates of the energy cost per transferred byte of new
data for each network interface and select the interface that
has the lower energy cost, or equivalently, the higher energy

Figure 2. Diagram representing the creation of the regression model. The feature categories marked in grey are only used for the Wi-Fi models.
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TABLE III. STATISTICAL ANALYSIS FOR THE WI-FI AND 3G DATA SUBSETS.

Feature
Wi-Fi 3G

Average Minimum Maximum Median Average Minimum Maximum Median
RSSI -58.55 dBm -80 dBm -27 dBm -59 dBm -74.11 dBm -103 dBm -53 dBm -73 dBm

User CPU 21.30% 2.00% 41.00% 20.00% 20.61% 6.00% 35.00% 20.00%

System CPU 12.20% 5.00% 22.00% 12.00% 11.56% 6.00% 20.00% 11.00%

Battery current 337 mA 205 mA 483 mA 341 mA 425 mA 326 mA 770 mA 408 mA

Battery voltage 4.20 V 4.17 V 4.24 V 4.19 V 4.20 V 4.17 V 4.22 V 4.20 V

Energy cost (J/B) 2.26e-05 7.46e-07 2.98e-04 1.75e-06 3.87e-06 1.06e-06 2.25e-05 2.92e-06

TABLE IV. EVALUATION OF REGRESSION MODELS FOR WI-FI AND 3G DATA SUBSETS.

Regressor
Wi-Fi 3G

MAE MSE (e+05) MnAE R2 MAE MSE (e+03) MnAE R2

OLS 241.48 1.59 170.09 0.41 19.31 0.86 14.31 0.09

SVR 294.64 3.10 145.17 -0.07 19.47 1.32 10.71 -0.05

Random Forest 58.31 0.28 2.62 0.89 14.56 0.70 9.03 0.46

K-NN 61.10 0.38 2.25 0.89 14.64 0.91 7.40 0.38

GPR 329.12 29.7 212.96 -0.08 21.46 1.29 13.84 -0.13

MLP 98.96 0.48 22.73 0.82 13.54 0.40 8.30 0.66

Figure 3. Diagram depicting the process of three-fold cross-validation.
Adapted from [26].

efficiency. In summary, the proposed mechanism dynamically
finds the threshold where the Wi-Fi interface consumes more
energy than the 3G interface, in case of high network traffic.

III. NUMERICAL RESULTS

All models considered in this work are implemented in
Python language, utilizing scikit-learn, an open-source ML
toolbox [25]. The performance metrics of the regression
models are evaluated for the ML regression-based techniques
mentioned in Subsection II-C.

After the data acquisition, we verify if the final dataset is
able to represent different network conditions. From this point,
we split the training dataset into two portions (Wi-Fi and 3G
subsets), since our objective is to generate an estimation of
the energy cost per transferred byte for each type of network
interface. Table III summarizes the statistical analysis for

both Wi-Fi and 3G data, containing the average, minimum,
maximum, and median for Received Signal Strength Indicator
(RSSI), CPU usage (user and system), battery information
(current and voltage) and parsed energy cost. The RSSI values
are within the range described in [8] from very low signal
strength (lower than -85 dBm and -95 dBm for Wi-Fi and
3G, respectively) to very high signal strength (higher than -55
dBm and -65 dBm for Wi-Fi and 3G, respectively). Battery
information (current and voltage values) is also consistent with
the results presented in [5], where the 3G interface drains more
energy than the Wi-Fi interface, on average. However, when
considering the energy cost per transferred byte, the collected
data shows that it is possible for the 3G interface to be more
energy-efficient under conditions where the Wi-Fi network has
a very low signal strength. The data also shows us that the
energy cost for the Wi-Fi interface has a higher variation.

Considering the Wi-Fi subset, we apply the six regressions
models previously mentioned. To find the best predictive model
for the Wi-Fi interface network, a three-fold cross-validation
is executed for each regression model. Table IV shows the
evaluation of the regression models for the Wi-Fi subset. The
results show that Random Forest and K-NN approaches have
better accuracy than the other ML techniques.

To refine the choice of the best regressor for the Wi-Fi
network, we compare the order of magnitude of the expected
and model responses. Table V illustrates the difference in order
of magnitude for Wi-Fi and 3G regressors. For Wi-Fi, the
Random Forest estimation have the same magnitude order of
the expected response on 82.4% of the cases, a value 1.5%
higher than the K-NN estimation. When analyzing situations
where the models estimations have a lower magnitude order
than the expected response, the Random Forest model is
better, with 8.8% against 10.3% for the K-NN model. With
this in mind, we define Random Forest as the best regressor
to estimate Cb for the Wi-Fi network interface among the
investigated options.

Let us now analyze the 3G network interface, where the
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TABLE V. DIFFERENCE IN ORDER OF MAGNITUDE FOR WI-FI AND 3G REGRESSORS.

Regressor
Wi-Fi 3G

Magnitude order (%) Magnitude order (%)
Equal Higher Lower Equal Higher Lower

Random Forest 82.4% 8.8% 8.8% 94.6% 0% 5.4%

K-NN 80.9% 8.8% 10.3% 93.3% 0% 6.7%

MLP – – – 98.7% 0% 1.3%

same regression models apply to the 3G subset. Table IV also
shows the performance metrics of the regression models for the
3G subset. It can be seen from the results that Random Forest,
K-NN, and MLP have better accuracy than the remaining of
the investigated ML algorithms. Similar to the Wi-Fi interface,
an investigation about the magnitude order of the expected
and real responses is executed. From Table V, we can see that
the MLP is the best option among the regression models to
estimate Cb for 3G network interface.

Defined the best regression model for each network
interface individually (1 for 3G and 1 for Wi-Fi), we simulate
the behavior of the proposed dynamic selection mechanism
using the second dataset defined in Subsection II-B, which
is equivalent to a 15-minutes long download. This simulation
is performed to compare the energy consumptions of our
proposal and the Android native selection mechanism. We
should remember that the Android native mechanism always
selects the Wi-Fi network interface when it is available.
Another relevant keypoint for comparison is that the energy
consumed on network interface switching is not considered.

Figure 4 shows the estimated energy cost per transferred
byte for Wi-Fi and 3G network interfaces for a 12-minute long
segment of the dataset. The whole dataset is not included on
the graph to make the lines distinguishable. Note that lower
energy cost means higher energy saving. Also from Figure 4,
it is possible to see time instants where the 3G energy cost
is lower than the Wi-Fi one, implying that the 3G network
interface is more energy-efficient and, consequently, its use
can extend the battery life. The results show that the proposed
mechanism chooses the 3G interface for about 26.7% of the
total time.
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Figure 4. Energy cost per transferred byte for each network interface for a
12-minute long segment of a download process.
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Figure 5. Comparison of the consumed instantaneous energy for both
mechanisms for a 12-minute long segment of a download process.

To estimate the energy saving associated with the use
of the proposed mechanism, we assume that the number of
transferred bytes is constant, independent of which network
interface is connected. The estimation of the consumed energy
is obtained from (3). Figure 5 represents the comparison
of the instantaneous energy consumption using the proposed
mechanism and the Android native mechanism for the
simulation dataset. We can see that, in certain moments of time,
the proposed mechanism selects the 3G network interface,
resulting in energy saving. Considering only these moments,
the average energy saving is around 48%.
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Figure 6. Comparison of the total consumed energy for both mechanisms for
a 12-minute long segment of a download process.
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Finally, we manage to analyze the total energy saving
for the proposed mechanism. Figure 6 represents the total
consumed energy by using the proposed and the Android native
mechanisms. The estimated data for both mechanisms shows
that our proposal generates an energy saving of approximately
11.2% on the scenario of variable network conditions. In
addition, we believe that it is possible to reach even higher
values of energy saving in more realistic scenarios, such as,
for example, when the smartphone is placed in a poor Wi-Fi
signal environment.

IV. CONCLUSION AND FUTURE WORK

In this work, we proposed a dynamic wireless network
interface-selection mechanism focused on minimizing the
energy consumption of the mobile device, allowing an increase
in battery life. For this, machine learning regression-based
algorithms were used to predict the energy cost per transmitted
byte for Wi-Fi and 3G network interfaces using field collected
data. Numerical results showed that Random Forest and
Multi-Layer Perceptron were the best regressors to estimate
the energy cost per transferred byte for Wi-Fi and 3G network
interfaces, respectively, among the investigated algorithms.
On an 15-minutes long download simulation, our proposal
presented around 48% of energy saving in situations where 3G
had lower energy cost than Wi-Fi. For the whole simulation,
the total energy saving was roughly 11.2%. Work is in
progress to investigate the behavior of the proposed mechanism
for other network scenarios, for example, in a streaming
environment. In addition, we aim to find better models to
estimate the energy cost for the network interfaces and to test
a real implementation of the proposed method to validate the
results obtained in this work.
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