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Abstract—One  way  to  prevent  attacks  to  security  in  the
Internet  of  Things  (IoT)  is  the  adoption  of  an  Intrusion
Detection System (IDS).  With the use of an Artificial Neural
Network (ANN) it is possible to decrease the limitations of the
IDS such as false positive that can compromise the system. In
this paper, we evaluate the performance of two ANNs to verify
which of both is the more adequate to use in an IDS for the IoT
environment.  We compare  the  performance  of  a  Multilayer
Perceptron  (MLP)  with  Limited  Weights  with  a  Multilayer
Perceptron  with  normal  weights.  The  used  Multilayer
Perceptron  presents  ten  neurons  in  the  hidden  layer.  The
implementation  is  in  C  language  and  run  on  an  embedded
platform  with  an  ARM  Cortex-M3  micro-controller.  It  is
possible to consider the ANN training in another platform and
to permit the embedded platform receives the trained weights.
It is also possible to make the training in real time using the
received data one time. We conclude that it is viable to use an
Artificial  Neural  Network  Multilayer  Perceptron  in  an
Intrusion Detection System for the Internet of Things.

Keywords-IDS System;  IoT Internet  of  Things;  Multilayer
Perceptron; Neural Network; Limited Weights;

I.  INTRODUCTION

The Internet of Things (IoT) is a novel paradigm whose
concept is based on the ubiquitous presence of objects, like
sensors,  actuators,  mobile  devices  and  Radio-Frequency
Identification  (RFID)  tags.  These  objects  can  interact
through single address to achieve common objectives [1].

Anytime, anywhere it  will be possible to communicate
with  anything,  a  new  dimension  will  be  added  to
communication  technologies  [2].  The  IoT  can  also  be
defined as a Wireless Sensor and Actuator Network (WSAN)
connected to the Internet, and these sensors and actuators are
the  atomic  components  connecting  the  real  world  to  the
digital world [3]. The IoT is extremely vulnerable to attacks,
most  of  the  communication  is  wireless,  most  of  the
components have constrained resources and it is possible to
physically  attack  the  IoT  components  [1][4].  Considering
that the IoT will have information about almost everything,
security and privacy are key concerns in IoT research [5][6].

Xu, He and Li [5] say that the research about security is
necessary to the massive adoption of this technology in the
industry.  Gubbi,  Buyya,  Marusic  and  Palaniswami  [6]
highlight the need of self-protection in domestic applications,

arguing that actuators will be connected to the system and
they will need protection from intruders.

The  IoT,  with  its  potential  dimension  and  attack
possibilities, needs a proper feature that allows it to keep safe
with  minimal  human  intervention  otherwise  its  scalability
will be compromised. According to Roman, Zhou and Lopez
[7], fault tolerance will be essential in the IoT. The number
of  vulnerable  systems  and  attacks  will  increase,  so  it  is
needed  to  develop  intrusion  detection  and  prevention
systems to protect the components of the IoT. 

The  adoption  of  an  Intrusion  Detection  System (IDS)
allows  the  network  to  handle  attacks.  The design  of  IDS
should evaluate the deployment environment. In the case of
the Internet, it is important to have a high accuracy rate with
a low false positive rate. In Wireless Sensor Network (WSN)
should also consider the consumption of resources, such as
energy and memory. In the IoT environment, as well as a
WSN, there must be concern about the limited resources.

The  use  of  artificial  intelligence  methods  reduces  the
limitations of IDS [8], such as missing detections and false
alarms  that  can  compromise  the  system.  The  artificial
intelligence  method  that  we  use  in  this  work,  Artificial
Neural  Networks  (ANN),  can  be  used  to  indicate  the
presence  of  an  intruder,  from  environment  features  [9].
These  features  can  be:  communication  duration,  source
address, destination address, and other information obtained
from the environment.

The objective of this work is to implement a Multilayer
Perceptron  (MLP)  optimized  in  memory  and  verify  the
feasibility of using it in IDS system for the IoT environment.
The  results  of  the  accuracy  and  false  positive  rates  were
compared with related works of IDS that use ANNs. There is
also  the  analysis  of  memory  consumption  of  the
implementation.  The  MLP was  implemented  with  limited
weights  and  without  limited  weights,  to  compare  their
memory consumption in IDS system using ANNs. The MLP
is  trained  with  Quantized  Back-Propagation  Step-by-Step
and with an incremental method, where each input stimulates
the ANN once to reduce the need of memory in the training
phase.

This paper is organized in five Sections, as can be seen in
the  following:  Section  II  shows  related  work,  Section  III
presents  the methodology of  this  work,  Section IV shows
and discusses the experiments and results and in the Section
V there is the conclusion of this work.
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II. RELATED WORK

The related works listed in this paper are split into two
groups: IDS that uses ANNs and IDS for wireless resource
constrained systems. This division was made because as far
as  we  know,  there  is  not  an  IDS  for  wireless  resources
constrained systems that use ANNs.

A. IDS that uses ANNs

The IDSs that uses ANNs described in this paper were
not related to the resource constrained systems. So there is
not  any  memory  consumption  evaluation  making  the
comparison of memory consumption impossible.

Lei  and  Ghorbani  [10]  present  an  approach  to  an
intrusion  detection  system  with  a  neural  network  with  a
competitive learning approach. They achieve 4 times more
performance  in  training  than  Self-Organizing  Maps  of
Kohonen (SOM) with a better  accuracy. Their proposal  is
called  Improved  Competitive  Learning  Network  (ICLN).
The winner neuron weight is updated with a value nearest to
the entrance and the weights of the loser neurons are updated
with values farthest  to the entrance.  The training used the
KDD99 database, widely used in IDSs.

Eskin, Arnold, Prerau, Portnoy and Stolfo [11] provide a
framework  for  detection  of  non-labeled  anomalies.  They
perform tests alternating the use of Kernel  function in the
feature map and three algorithms: Cluster-based estimation,
KNN and One Class SVM. Using the KDD99 database, they
achieved a detection rate between 91% and 98% with a false
positive rate between 8% and 10%.

Amini,  Jalili  and  Shahriari  [12]  present  two  solutions
related to IDS in unsupervised network. The experiments are
made with three types of ANNs: ART-1, ART-2 and SOM.
They achieve an accuracy rate between 95.74% and 97.42%,
and false positive rate between 1.99% and 3.50%. They also
use the KDD99 database.

Yan, Wang and Liu [13] propose a hybrid technique that
uses a rule-based decision and an ANN. When rules detect an
abnormality,  the  packet  is  forwarded  to  a  multilayer
perceptron  with 50 neurons in  the  hidden layer  and  other
rule-based decision is made to detect  the intrusion or not.
Using  the  KDD99 database,  they  get  an  accuracy  rate  of
99.75% and a false positive rate of 0.57%.

B. IDS for Wireless Resource Constrained Systems

Raza,  Wallgren  and  Voigt  [14]  designed,  implemented
and evaluated  SVELT, an  IDS for  the  IoT. The SVELTE
detects  sinkhole  and  selective-forwarding  attacks  in
6LoWPAN (IPv6 over Low Power Wireless Personal Area
Networks)  wireless  network  that  uses  the  RPL  routing
protocol. The IDS builds the network topology of RPL in the
border router and uses algorithms to detect inconsistencies,
possible filtered nodes, network topology validity and end-
to-end losses.

Salmon  et al. [15] proposed an anomaly based IDS for
WSNs  using  the  Dendritic  Cell  Algorithm  (DCA).  The
proposed  IDS  architecture  has  five  elements,  distributed
between  roles  in  the  network.  The  authors  proposed  two
roles: Dendritic Cells (sensor-dc), responsible for sense the
environment's  values,  managing  the  monitoring  and
parameter  base,  organize  the  tasks  and  coordinate  the
responses  and  actions  to  other  managers;  and  the  Lymph

node (sensor-lymph) responsible to execute the dendritic cell
algorithm,  detect  an  attacker,  manage  the  base  rules  and
execute the actions to combat the identified attacks. Several
experiments  were  made,  changing  configuration,  time  of
jamming attack, number of sensor-dc. Through the tests, the
authors  concluded  that  the  IDS  proposed  is  efficient  for
WSNs  saving  energy  from  the  nodes  while  there  is  a
jamming attacker.

C. Related work analysis

All the related work listed in this paper that uses ANNs,
uses  the  KDD99 database  [10][11][12][13].  This  database
provides  a  big  number  of  labeled  connections  that  helps
supervised  training,  although  it  is  used  in  unsupervised
training [11][12].

In supervised training, the accuracy rate  is bigger than
95% [10][13],  and have a small  false positive rate.  Using
unsupervised training, it is possible to achieve an accuracy
bigger than 90% with a false positive rate around 9% [11] or
decrease the accuracy around 75% with a false positive rate
between 2% and 3.5% [12].

The  related  works  of  IDS  for  wireless  resource
constrained  systems  do  not  use  the  KDD99  database.  In
Salmon  et al. [15] work, the network topology focuses on
jamming attack, which it is not characterized in the KDD99
database. In SVELTE IDS [14] the attacks are sinkhole and
selective forwarding, also they are not characterized in the
KDD99 database.

III. METHODOLOGY

The ANN that we chose is the MLP with ten neurons in
the hidden layer. The choice of ten neurons in the hidden
layer was made to minimize the memory consumption. The
evaluation  of  the  ANNs  was  made  from  a  C  language
implementation, for the MLP and Multilayer Perceptron with
Limited Weights (MLPLW).  The MLP and MLPLW share
the same interface, so the utilization is made with the same
steps.  The  difference  between  the  MLP  and  MLPLW
implementation is in the structure that keeps the trained data
and the training algorithm. In the classification phase, there
is only need to adapt the value of each weight to represent a
float point value. The MLP training algorithm is the Back-
Propagation  and  the  MLPLW  training  algorithm  is  the
QBPSS [16].

The database used was KDD99, which is used in several
papers [10][11][12][13] to validate an IDS. This database has
connections  from the  transport  layer,  like  UDP and  TCP.
Each connection is classified between a normal classification
or some kind of attack.  The attacks are grouped into four
large groups, they are: Denial of Service (DoS), User to Root
(U2R), Remote to Local (R2L) and Probe. The database has
4,898,431 data items, each having 41 features.

Unfortunately, the KDD99 database cannot represent an
IoT  environment.  The  utilization  of  KDD99  database  is
important to check our ANN implementations and see if they
can achieve similar results to related works. When the ANN
implementation are validated, we can analyze the memory
consumption  and  check  if  it  can  be  used  in  an  IoT
environment. 

For this work, it is considered the DoS attacks that can
affect  6LoWPAN networks too, making IoT networks that
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use this protocol stack vulnerable to DoS attacks using ICMP
(Internet  Control Message Protocol), UDP (User Datagram
Protocol or TCP (Transmission Control Protocol).

The training of both networks, MLP and MLPLW, was
performed  on  a  PC,  called  traditional  platform,  whose
features can be seen in Table 1. In a real environment of the
IoT, this training can be performed in the cloud, for example,
so the metrics of training are not crucial in this work. The
third approach of training is using the MLPLW ANN, but
performing the training in the constrained resource platform.
The training is similar to Back-Propagation, but each input is
trained  once,  considering  that  the  platform  will  receive
numerous packets and does not need to retrain each input,
this training removes the need to keep training inputs in the
platform, reducing the memory usage.

The first step is to normalize the KDD99 database. The
discrete  features  are  quantized,  and  each  possible  value
represents a number. All the features, discrete or continuous,
will  have  a  value  between  0  and  1,  at  the  end  of  the
normalization. The sigmoid function was chosen to be the
activation function because it has its values between 0 and 1,
like the normalized features.

The second step, after the normalization, is to train the
ANN. Each input to the database will have an output from
the ANN. The output is compared to the desired output and
the error is calculated. In (1), it is possible to see the equation

to calculate the error . The desired output is represented

by , the input weight set is represented by , and the

hidden weight set is represented by .



The neuron weights of the hidden layer are updated by a
fraction of the error multiplied by each input feature. In (2) it
is  possible  to  see  how the  hidden  weight  set  is  updated,

where the hidden weight update is represented by  ,

the learning rate of hidden layer is represented by , the
error  is  represented  by  ,  and  the output  set  of  hidden

layer  is  represented  by  .  Equation  (3)  shows how the
input weight set is updated, where the input weight update is

represented by  , the output set of the input layer is
represented by , the hidden weight set is represented by

, the learning rate of input layer is represented by ,
the error is represented by , and the input is represented

by .





Each step of  training consists  in  the  update of  hidden
weights and input weights for an input. The set of steps to
train the ANN by each input is called an epoch. The training
is finished if the quadratic error, when used a testing set of
data,  has  increased  after  ten  epochs  or  if  it  reaches  an
arbitrary epoch value defined by the designer.

The MLPLW training is  similar  to  the  MLP, but  after
each  step,  the  weight  sets  are  quantized  and  the  previous
weight  update  is  added  to  current  weight  update.  These
differences  are  made  in  the  QBPSS  (Quantized  Back-
Propagation  Step-by-Step)  [16]  to  speed  up  the  training
phase for a limited weight ANN.

The QBPSS training method is proposed by Bao, Chen
and  Yu  [16]  for  ANNs  with  limited  weights,  reducing
training time by up to 7 times. The QBPSS is inspired by
Back-Propagation.  The  algorithm  is  similar  to  Back-
Propagation,  but  it  is  considered  a  value  proportional  to
previous adjust weight value,  also the weight is quantized
each  step,  in  the  beginning  with  a  soft  quantization  until
reach the quantized value expected.

Equation  (4)  shows  the  update  of  hidden  weight  set,

where the hidden weight update is represented by  ,
the momentum for the height update is represented by  ,

the learning rate for hidden layer is represented by , the
error is represented by , the output set of the input layer

is represented by  , and the last hidden weight update is

represented by  . Equation (5) shows the update of
input  weight  set,  where  the  input  weight  update  is

represented  by  ,  the  momentum  for  the  weight
update is represented by , the output set of the input layer

is represented by  , the hidden weight set is represented

by , the learning rate for the input layer is represented

by  ,  the  error  is  represented  by  ,  the  input  is
represented  by  ,  and  the  last  input  weight  update  is

represented by .





As the MLP training, the MLPLW training will continue
to use all inputs to train the ANN until the quadratic error
increases after 10 epochs or an arbitrary value defined by the
designer is reached.

The  second  MLPLW  training  uses  the  methods  and
equations of the QBPSS, but each input stimulates the ANN
once. The update of the weights is equal to the first MLPLW
training method.

After  the training, for both ANNs,  the input dataset  is
used  to  verify  the  correct  classification  and  the  incorrect
classification  of  each  ANN,  MLP and MLPLW. With this
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information it is possible to calculate the accuracy rate and
the false positive rate.

IV. EXPERIMENTS AND RESULTS

To  perform  the  test  of  the  two  chosen  ANNs,  two
platforms have been selected. One is a personal computer,
called  traditional  platform,  and  the  other  is  an  embedded
platform  with  an  ARM Cortex-M3 micro-controller.  Both
technical features can be seen in Table I.

The choice of Arm Cortex-M3 processor was taken by
the highlight  of  ARM core  micro-controllers.  The Contiki
community,  for  example,  is  already  adopting  the  ARM
micro-controllers  as  the  focus  for  the  3.0  version  of  the
operating system [17].

TABLE I. CHOSEN TECHNICAL PLATFORM FEATURES

Technical Feature Traditional platform Embedded Platform

Processor Intel I7-2630 QM
STM32F103VET6
(ARM  Cortex-M3
core)

Processor
Frequency

2.00 GHZ 72 MHz

Volatile Memory 8 GB 64 KB

Persistent memory 1 TB 512 KB

The measures made for both platforms fit the context of
resource-constrained  devices:  ROM  and  RAM  memory.
There is also a measure to prove the efficiency of the ANN:
Accuracy  and  false  positive  rate.  For  the  incremental
training,  where  each  input  is  used  once,  it  measures  the
accuracy and false positive rate for each thousand inputs to
see the evolution of these measures according to the inputs.

The chosen ANN, MLP or MLPLW, was made as a first
test  to  verify  if  this  ANN  configuration  can  be  used  in
resource-constrained  devices.  Also,  we selected  to use ten
neurons  in  the  hidden  layer  to  achieve  less  memory
consumption  with  a  greater  accuracy  rate.  The  RAM
memory  consumed  by  the  hidden  layer  grows  linearly
proportional to the number of system inputs.

The training phase of both ANN used 90% of KDD99
data as  training set  and the remaining 10% to test,  as  the
testing set. We used the same proportions of each type of
connection  in  training  and  testing  set  to  avoid  vicious
training of testing. After performing the training phase with
KDD99 database in MLP and MLPLW ANNs, the trained
networks  are  stimulated  with  the  same  input  data.  The
predicted output is compared to the desired output and, if it is
equal to the database label, the input is marked as correct,
otherwise is marked as incorrect. If a normal connection is
classified as an attack, it is marked as a false positive. The
sum of correct inputs is compared to the total inputs and is
possible to calculate the accuracy rate of the ANN. The sum
of false positive inputs is compared to the total inputs and it
is possible to calculate the false positive rate of the ANN. In
the Table II, it is possible to see the results of the MLP and
MLPLW. It is possible to see that the accuracy rate and false

positive  rate  of  the  MLPLW remained  close  to  the  MLP.
While average accuracy rate of MLP was 97,75% and the
average false positive rate was 2,13%, the average accuracy
rate of MLPLW was 97,65%, 0,10% lower than the MLP
rate, and the average false positive rate was 2,11%, 0,02%
higher than the MLP rate.

The results in Table II, were compared with the results of
related works. This comparison is shown in the Table III, the
bold lines are the ANNs of this paper. When compared with
techniques  of  unsupervised  ANNs,  MLP  and  MLPLW
achieve better results, but it should be considered that MLP
and MLPLW use labeled data,  that  help the classification.
When compared with the ANNs presented in [10] and [13],
the MLP and MLPLW with ten neurons in the hidden layer
have similar results.

TABLE II. ACCURACY AND FALSE POSITIVE RATE OF MULTILAYER
PERCEPTRON AND MULTILAYER PERCEPTRON WITH LIMITED WEIGHTS.

ANN Measure Average
Standard
Deviation

MLP
Accuracy rate 97,75% 0.02

False Positive rate 2,13% 0.02

MLPLW
Accuracy rate 97,65% 0.01

False Positive rate 2,11% 0.01

TABLE III. COMPARISON OF RESULTS OF THIS PAPER WITH RESULTS OF
RELATED WORKS.

ANN Accuracy
False

Positive
Supervised
training?

MLP 97,75% 2,13% Yes

MLPLW 97,65% 2,11% Yes

ICLN [10] 97.89% – Yes

Cluster [11] 93% 10% No

K-NN [11] 91% 8% No

SVM [11] 98% 10% No

RT-UNNID ART-1 [12] 71.17% 1.99% No

RT-UNNI ART-2 [12] 73.18% 2.30% No

RT-UNNID SOM [12] 83.44% 3.50% No

YAN; WANG; LIU [13]
(50 neurons in hidden

layer)
99.75% 0.57% Yes

With  the  results  of  the  MLP  and  MLPLW  training,
checking that they have similar results to other related works,
both  ANNs  were  trained  with  a  different  approach.  Each
input  stimulated  the  ANN  once  and,  we  measured  the
accuracy after one thousand stimulations. Considering that in
the IoT environment the nodes will receive several packets,
the  ANN  can  be  trained  while  the  node  is  alive.  This
experiment checks how fast the ANN can respond to a new
type of DoS Attack.

The MLP achieves  an  accuracy  rate  of  97% after  the
seventh thousand connections, considering normal and attack
connections, after that the accuracy rate is established around
97,4%. This curve is shown in the Figure 1.
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In the MLPLW ANN, the accuracy rate achieves 97% in
the first thousand connections, but oscillates until the third
four thousand connection. This curve is shown in the Figure
2. It is important to highlight that the input data is used in
random order, using normal and attack data randomly. We
can use a random order input because the KDD99 database is
based on connections, and they do not need to be used in a
specific order. The part of KDD99 database used has 76% of
normal data and 24% of DoS attack data.

The measures related to resources used can be seen in
Table IV. It is possible to see that MLPLW consumes more
ROM memory than MLP, this is because of some procedures
to transform the limited weight into the floating point weight,
but when compared to ROM memory available in embedded
platform,  it  is  an  increase  of  0.03%.  Besides  the  RAM
memory  consumption  is  smaller  in  MLPLW  and,  when
compared  with RAM memory, available  in  the  embedded
platform, it is a decrease of 4.5%. It is possible to see that the
MLPLW has  a  smaller  impact  in  the  embedded  platform
memory.

The ROM memory consumed by MLPLW with training
is  the  biggest,  because  it  needs  the  code  of  QBPSS,  but
analyzing  in  percentage,  the  amount  of  ROM  memory
consumed is less than 0.5%. The RAM memory consumed is
equal to MLPLW and the analysis is the same. It is important
to highlight that the MLPLW with training do not need to
communicate with a server, reducing the communication and
energy consumption, so in the nodes where the energy is a

crucial  factor,  the  MLPLW  with  training  presents  this
advantage.

TABLE IV. MEMORY USED BY MLP  AND MLPLW  NEURAL
NETWORKS WITH REMOTE TRAINING

Resource MLP MLPLW MLPLW with training

ROM memory 214 bytes 354 bytes 1716 bytes

RAM memory 3360 bytes 420 bytes 420 bytes

Related ROM
(Embedded
Platform)

0.04% 0.07% 0,33%

Related RAM
(Embedded
Platform)

5.12% 0.64% 0,64%

V. CONCLUSION

In this paper, we presented the performance evaluation of
a  Multilayer  Perceptron  with  Limited  Weights  comparing
with  a  Multilayer  Perceptron  with  normal  weights.  The
accuracy and false positive rate decreases 0,10% when the
weights  are  limited  to  one  byte.  The  ROM  memory
consumption increases  140 bytes  for  the weight  limitation
and 1362 bytes including the training algorithm. The RAM
memory, when limiting the weights, decreases eight times.

With  this  experiment,  it  was  possible  to  observe  the
possibility  to  use a  multilayer  perceptron  in  an embedded
platform.  The  consideration  of  the  training  in  another
platform allows the embedded platform in this work to use
an ANN trained by 4 million data, with more than 97% of
accuracy and using only 354 bytes of ROM and 420 bytes of
RAM, less than a kilobyte of memory.

When  the  ANNs  are  trained  while  the  platform  is
running, there is a good response from the MLP, achieving a
great  accuracy  rate  for  the  DoS  attacks  after  the  seventh
thousand  connections.  The  MLPLW  training  should  be
revised to approximate it results to the MLP ANN.

With these results it is possible to achieve better use of
ANNs in embedded systems connected to the Internet, using
the  techniques  from  the  IDSs  for  the  Internet,  with  high
detection  rate  and  low  false  positive  rate,  in  resource-
constrained platforms.

In a future work, it is intended to improve the MLPLW
in-node  training  approximating  of  MLP  in-node  training.
Also, implement the MLPLW in a 6LoWPAN environment
and simulate it with live data.
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