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Abstract— Intrusion Detection Systems generate alerts which 
depend on manual analysis of a specialist to determine a re-
sponse plan. However, these systems usually trigger thousands 
of alerts per day. Investigating unmanageable amounts of 
alerts manually becomes burdensome and error-prone. Be-
sides, it complicates the analysis of critical alerts. In this paper, 
an approach is proposed to facilitate the investigation of huge 
amounts of intrusion detection alerts by a specialist. The pro-
posed approach makes use of process mining techniques to 
discover attack strategies observed in intrusion alerts, which 
are presented to the network administrator in friendly visual 
models. Tests were performed using a real dataset from the 
University of Maryland. The results show that the proposed 
approach combines visual features along with quantitative 
measures that help the network administrator to analyze the 
alerts in an easy and intuitive manner. 

Keywords-intrusion detection; security visualization; alert 
mining; heuristic mining. 

I.  INTRODUCTION 
In recent years, the increase of security vulnerabilities 

has concerned companies and organizations. In 2014 alone, 
almost 8000 new vulnerabilities were found in software 
applications and operating systems, as shown by the National 
Vulnerability Database (NVD) statistics [1]. The more in-
creases the number of new vulnerabilities, the greater the 
likelihood of increase in the frequency of computer security 
violations. That is where the security measures come into 
play. 

Intrusion Detection Systems (IDS) are devices that play 
an important role in the set of security policies in information 
systems. IDS monitor the network and system activities for 
any security violations. When it detects a security violation, 
it reports the event to a network administrator, who assesses 
the threat and initiates a response [2]. Unfortunately, IDS 
sensors generate huge amounts of alerts that makes it diffi-
cult to analyze them and identify relevant alerts [3]. To ad-
dress this problem, alert correlation techniques [3][4][5] have 

been proposed to extract high-level descriptions of huge 
amounts of alerts. 

The idea of using high level descriptions and graphical 
models in security assessment is not exclusive of alert corre-
lation research, but it is also employed in the theory of attack 
trees and attack graphs. Attack trees and attack graphs have 
been extensively used to a variety of purposes such as attack 
and defense assessment, as well as for metrics quantification 
(e.g., cost, time, impact, probabilities, etc.). However, these 
representations usually require some expert knowledge of the 
network (e.g., topology, hosts) to generate the model.  

In this paper, an approach is proposed to the IDS alert 
analysis problem from a process-oriented perspective. Alerts 
are considered as events of a process and they are analyzed 
with process mining techniques to generate a process model. 
The process model is a high-level visual representation of 
attack strategies observed in IDS alerts.  

The proposed approach has the following benefits. At 
first, specific data acquisition is not necessary since compa-
nies and organizations usually employ IDS sensors to protect 
their networks. Secondly, process models provide an intelli-
gible and intuitive way to interpret complex information such 
as IDS alerts. Thirdly, it is possible to model different per-
spectives from the alerts, e.g., the attackers’ perspective, 
giving the network administrator a comprehensive view of 
the network. Moreover, it supports different levels of granu-
larity in analysis as it is possible to filter the most frequent 
behavior observed in the alerts. Finally, the proposed ap-
proach shows the strategies that attackers are employing to 
compromise the network, helping network administrators to 
determine preventive measures.  

The rest of the paper is organized as follows. Section II 
reviews related work. Section III defines the preliminary 
concepts used in this paper. Section IV shows the proposed 
approach and its operation. Section V presents the results 
obtained in the evaluation of the proposed approach. Finally, 
the Section VI contains concluding remarks and future work 
possibilities. 

119Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications



II. RELATED WORK 
In this section, an overview of previous work on attack 

modeling and IDS alert analysis is presented. Previous work 
that used real IDS alerts data to discover attack strategies 
with process mining techniques was not found in literature. 
Therefore, approaches that use visual representation for 
attack modeling and data mining for IDS alerts analysis will 
be presented. 

One of the great advantages of using higher level graph-
ical models is that they are intuitive and facilitate threat 
assessment and attack scenario understanding. Attack trees 
and attack graphs are the most common methods used to 
modeling attack threats. As introduced by Schneier [6], at-
tack trees are a visual representation that aims at modeling an 
attack in a tree structure. The attacker’s goal is specified as 
the root of the tree. Branches in the tree represent attack 
subgoals, which can be represented as disjunctive or con-
junctive nodes. Disjunctive nodes depict different alternative 
paths that an attacker can follow to achieve his goal. Con-
junctive nodes represent different steps an attacker needs to 
take in order to achieve a goal [7].  

Unlike the approach proposed in this work, attack trees 
are often modeled manually, a labor-intensive and error-
prone process. In [8][9][10], this problem is addressed by 
methods to automate attack trees generation. Moore et al. 
[11] use attack trees to represent security attacks and docu-
ment information, aiding security analysts to identify attack 
patterns. Tidwell et al. [12] enhance attack trees to represent 
multi-stage attacks behavior with an attack specification 
language.  

Attack trees have some limitations regarding attacks 
modeling. This type of representation is static and can not 
take temporal aspects, such as dynamic time variations and 
order or priority of actions [7]. Therefore, this representation 
is not suitable for the proposed approach that takes these 
aspects into account. 

Attack graphs are another way to represent and analyze 
security attacks. The term was first introduced by Phillips 
and Swiler [13]. In an attack graph, the nodes represent the 
network state and the edges represent an action of the attack-
er that changes the state. Weights can be assigned to the 
edges to enrich the model and algorithms can be applied to 
graph analysis, e.g., shortest path, to find which paths are 
more likely to succeed, time to success and other metrics [7]. 
Swiler et al. [14] developed a tool to generate attack graphs. 
Researches in [15][16] addressed the scalability problem of 
the graph size. Attack graphs are generated based on infor-
mation about the attack, the system and the attacker profile 
[7]. This requires some background knowledge that is not 
always known. The approach proposed in this work gener-
ates the model based only on IDS alerts and hence does not 
require such knowledge. 

Researchers have also studied how to extract attack in-
formation from huge volumes of IDS alerts. In [3], Ning and 
Xu published one of the first researches in this field. They 
proposed a model that builds graphs from IDS alerts to rep-
resent attack strategies. The authors also presented a method 
to measure the similarity between different attack strategy 

graphs. In more recent work, Lagzian et al. [4] and Xuewei 
et al. [5] used data mining techniques. Lagzian et al. present-
ed a framework that, at first, aggregates the alerts in graphs. 
Then, it applies the Bit-AssocRule algorithm to mine the 
most frequent patterns in the graphs. Xuewei et al., on the 
other hand, proposed to identify causal relationships between 
the alerts with Markov models.     

III. BACKGROUND INFORMATION 

A. Intrusion Detection Systems 
An IDS is a software or a hardware device that monitors 

computers or network traffic for malicious activities or intru-
sive behavior. Once a malicious activity is detected, IDS can 
either raise an alert or log the event [17]. IDS can be classi-
fied into two categories, namely network-based and host-
based. Moreover, it can use one of these three techniques: 
signature-based detection, anomaly-based detection or hy-
brid [18]. 

Signature-based detection is the process of comparing 
patterns or signatures that corresponds to a known threat 
against observed network events to identify malicious activi-
ty. This technique uses a database of already known attack 
signatures for detecting intrusions. Signature-based IDS is 
very effective to detect known attacks, already defined in its 
database. On the other hand, it can not detect attacks that do 
not have a previous signature, e.g., zero-day attacks or modi-
fied attacks. This limitation is circumvented by adding new 
signatures and keeping the database up to date. 

An anomaly-based IDS works by distinguishing an ab-
normal behavior from what is considered to be normal. 
Therefore, this technique builds a model of normal traffic 
and raises an alert for any traffic that deviates from this 
model. A great advantage of this method is the detection of 
new attacks without any prior knowledge. The weakness of 
anomaly detection is the difficulty to define a model for what 
is normal, what is malicious and the boundaries between 
them.   

A hybrid method combines the qualities of both signa-
ture-based and anomaly-based detection and integrates them 
in a single system. 

B. Process Mining 
Process mining depicts a set of methods and approaches 

that combine data mining techniques and business process 
modeling and analysis [19]. Process mining uses information 
recorded in a log to extract knowledge and represent it as 
process models. Therefore, it is important that logs have 
relevant and proper information as they are the starting point 
for process mining techniques.  

For process mining, each record in the log is considered 
an event, the reason the logs are known as event logs. Fur-
thermore, to extract information from the event logs, some 
characteristics must be considered [20]: 

• Each event in the log corresponds to an activity, i.e., 
an action that was performed in the process [20]. As 
an example, suppose a user registration system that 
records all its actions in a log. Each recorded action, 
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e.g., Create User, Update User, Delete User, etc., 
can represent an activity in the process. 

• Each event in the process has to refer to a process in-
stance or case. A case defines the process scope, i.e., 
where the process starts and where it ends. In the ex-
ample of a user registration system, a set of events 
associated to the registration of a particular user can 
compose a case. 

• Events can have attributes such as activity, time and 
resource. The attribute activity shows the event ac-
tion, as mentioned before. The attribute time records 
the event timestamp. Finally, the attribute resource 
presents the responsible for performing the event. 

• Events within a case are ordered as they occur, e.g., 
according to their timestamp. The occurring se-
quence of events is crucial because process mining 
algorithms determine causal dependencies between 
events to build the model. 

There are three main areas in process mining, namely 
process discovery, conformance checking and model en-
hancement. Process discovery is related to how to transform 
an event log into a model. A process discovery technique 
receives as input an event log and returns as output a process 
model, so the model is representative for the behavior ob-
served in the event log [19]. This is the main focus of the 
approach proposed in this work. Conformance checking uses 
metrics such as fitness and precision to evaluate the process 
model in the context of a log. Model enhancement uses new 
information to improve the process model. 

In the next subsections, some process discovery tech-
niques are briefly discussed. It is out of scope to discuss in 
details how these algorithms work, but benefits and draw-
backs of each one will be pointed out. Further details can be 
found in [19]-[26]. 

C. The α-Algorithm 
Proposed by van der Aalst et al. [23] in 2003, the α-

Algorithm is one of the first algorithms designed for process 
mining and its ideas contributed to the development of more 
powerful discovery algorithms currently in use. The algo-
rithm produces as output a WorkFlow net (WF-net), which is 
a subclass of Petri nets. In a WF-net, all nodes are on a path 
from the source place (unique place where the process starts) 
to the sink place (unique place where the process ends). The 
α-Algorithm examines the event log for four ordering rela-
tion between activities: directly follows relation, dependency 
relation, non-parallel relation and parallel relation. Refer to 
[22][23] for a complete description of the algorithm. 

Under some specific conditions, the α-Algorithm works 
well. However, it has problems to deal with some situations 
(control-flow constructs) found in real life event logs. For 
instance, short loops, i.e., loops of length one or two, make 
the algorithm to derive an incorrect WF-net. Short loops 
occur when the same activity or two activities are executed 
multiple times in sequence. Considering IDS alerts, this may 
happen when the attacker attempts to perform the same vio-
lation several times until succeed. 

The α-Algorithm has other limitations as it may not de-
rive a correct WF-net when dealing with noise, i.e., event log 

with rare events that do not represent the process behavior, 
and incompleteness, i.e., the event log does not have enough 
events to discover a model. Therefore, this technique is not 
suitable in most real life processes.  

D. The α-Algorithm extensions 
To overcome the α-Algorithm limitations, many exten-

sions have been proposed. Each of them extends the α-
Algorithm to add support to some constraint. The α+-
Algorithm deals with the short loop problem. The Tsinghua-
α-Algorithm focuses on event logs containing activities asso-
ciated to transactional life-cycle. The α++-Algorithm seeks to 
support non-free-choice control-flow construct. The α#-
Algorithm and the α*-Algorithm concentrates on discovering 
some Petri nets that are not in the class of WF-nets and hence 
can not be discovered by the basic algorithm. Refer to a 
survey in [26] for more details. 

E. Heuristic Mining 
As mentioned in Section III-C, one of the limitations of 

the α-Algorithm is it can not deal with noise. However, noise 
is common in real life event logs due to information incor-
rectly logged and occurrence of exceptional events [23]. The 
Heuristic Mining algorithm handles this problem by taking 
the frequencies of events into account. Therefore, the algo-
rithm can express the main behavior observed in the log 
without including the low frequency behavior from the noise 
into the model. Short loops are also overcome by the use of 
dependency/frequency table (D/F-table) and the dependency 
score [25]. The D/F-table contains metrics about the fre-
quency of ordering relations occurrence, e.g., number of 
times one activity is directly followed by another activity. 
Based on these metrics, the dependency score, a numeric 
value between -1 and 1, is computed. The dependency score 
represents how strong the dependency relation between ac-
tivities is. For instance, if the dependency score between 
activity a and itself is close to 1, then a is often the cause of 
a, suggesting a loop. These metrics along with dependency 
score and a threshold can be used to refine the output model. 

IV. PROPOSED APPROACH 
In this section, the proposed method to automate the dis-

covery of attack strategies using a process mining discovery 
algorithm will be introduced. The proposed approach con-
sists of four steps. In the first step, alerts with common fea-
tures are aggregated. In the second step, the aggregated alerts 
are converted in a suitable format for process discovery 
algorithms. In the third step, the process discovery algorithm 
is executed to build the attack model. Finally, in the last step, 
the resulting attack model is analyzed. Figure 1 shows the 
four steps that compose the proposed approach. 

 

Raw alerts AnalysisEvent log Attack Model

Aggregation
(A) (B) (C) (D)

 
Figure 1. The four steps of the proposed approach. 

In the following subsections, the details of each step are 
described. Then, in the next section, the method is evaluated 
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using a real dataset of IDS alerts, discussing the results and 
some considerations.  

A. IDS alerts aggregation 
In attack strategy discovery, the goal is to discover how 

the attackers are attempting to compromise the network. 
After attack strategy discovery, network administrators can 
know each step attackers often take and the dependencies 
between these steps. Therefore, in the first stage of the pro-
posed approach, alerts with common features are aggregated, 
aiming to group the alerts that compose each attack strategy. 
Then, in the next stage, the process discovery algorithm will 
investigate the relationships between these alerts.  To aggre-
gate the alerts, the perspective to be represented is taken into 
account. The perspective denotes how the alerts will be asso-
ciated in the aggregation process. For instance, to represent 
the attackers’ perspective, one can aggregate the alerts origi-
nating from the same source IP address. Similarly, to repre-
sent the targets’ perspective, one can aggregate the alerts 
with the same destination IP address. The flexibility to repre-
sent different perspectives in this step can be explored to 
provide the network administrator a comprehensive view of 
the network. 

B. Conversion of aggregated alerts to an event log 
As aforementioned, for process mining, the input dataset 

should consist of events recorded in a log. Therefore, since 
the intention is to use process mining in IDS alerts analysis, 
the second step of the proposed approach is to convert the 
aggregated alerts into an event log. IDS collect information 
that may vary according to the type of device. This infor-
mation may include source IP address, destination IP ad-
dress, source port, destination port, Autonomous System 
Number (ASN) information, signature severity, attack type 
group for each signature, etc. 

To analyze IDS alerts under a process mining perspec-
tive, each individual alert is considered an event. Each event 
attribute (i.e., the attributes of the alerts) will be analyzed to 
build the attack model. Because the objective is to discover 
attack strategies, the alert attributes that provide information 
about the attacks must be chosen. Then, this information 
will be used to build an event log with the characteristics 
required by process mining such as the concepts of case, 
activity and time (see Section III-B). 

At first, event activity (i.e., the action performed in the 
process) has to be defined. The event activity is an im-
portant information as it will be denoted by the nodes in the 
attack model. The nodes in the model represent the steps 
performed in the attack-flow and help the identification and 
visualization of sequences and dependencies of attacks in 
the model. Usually, IDS record information about what 
triggered the alert, e.g., some signature identification or 
description of the violation. In the context of IDS alerts, the 
signature can be considered the action of the attacker as it 
depicts his intentions to compromise the network. There-
fore, the signature is defined as the event activity. 

Moreover, in an event log, events should be grouped in a 
case (i.e., each event in the process belongs to a case). The 
case defines the scope of the process. During the process 
discovery, several cases are compared among each other to 
determine the causal dependencies between activities. In the 
proposed approach, a case is defined as a group of alerts that 
were aggregated in the first step (see Section IV-A) and 
occurred within a time span t. As an example, suppose that 
the alerts are aggregated according to the source IP address 
and the time span t is set as 1 day. Then, all alerts with 
source IP address x.x.x.x triggered in day m will belong to 
case i. All alerts with source IP address x.x.x.x triggered in 
day n will belong to case j. Finally, all alerts with source IP 
address y.y.y.y triggered in day m will belong to case k. In 
this manner, each attacker composes a case and his attack 
steps (i.e., its alerts occurred within t) are the events of the 
case.  Finally, in an event log, events in a case must be or-
dered as they occur. In the IDS alerts context, the timestamp 
information is used to order the alerts. 

The event log format adopted in the proposed approach 
is the eXtensible Event Stream (XES). XES is an eXtensible 
Markup Language (XML)-based standard used to store 
event logs supported by most process mining tools including 
the ProM Framework [27] used in this research. 

C. Attack model discovery 
To build the model, the process discovery algorithm that 

will take the event log as input and generate the attack model 
as output must be defined. As mentioned before, process 
discovery algorithms have limitations regarding the control-
flow constructs they can discover. Different algorithms may 
generate different attack models. Furthermore, some algo-
rithms may generate attack models that are not able to repre-
sent the behavior observed in the event log and consequently 
may lead to wrong conclusions about the attacks. 

In IDS alerts, loops may take place in the model, since 
events that compose a case may have repeated activities in 
sequence (e.g., situations in which the attacker executed the 
same violation until succeed or attempted to compromise 
multiples hosts such as in a botnet). The discovery algorithm 
should be able to detect these repeated activities and repre-
sent them not as individual activities in sequence but as a 
loop in the model. On the other hand, duplicate tasks (e.g., 
situations in which two different violations have the same 
signature) will unlikely be a problem because IDS alerts are 
atomic entities (e.g., a buffer overflow exploit will not have 
the same signature of a nimda attack in the log). Therefore, 
the proposed approach uses the Heuristic Mining algorithm 
as it can deal with these characteristics. 

D. Model evaluation 
After the model has been generated, an expert analysis is 

required. Through the model, different aspects can be ob-
served. In the next section, a case study and some analysis  
will be presented and discussed. 
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V. RESULTS 
To evaluate the proposed approach, raw IDS alerts gener-

ated by a signature-based device deployed at the University 
of Maryland, whose network has about 40000 computers, 
were used. These alerts were triggered between April and 
December 2012 for inbound and outbound network traffic 
of the University. The alerts raised in October were chosen 
to evaluate the method. 

To perform the first step of the proposed approach, alerts 
with the same source IP address were aggregated. Then, the 
cases were defined, setting the time span t to 1 day. Conse-
quently, alerts with the same source IP address that were 
triggered in the same day were associated to the same case. 
Moreover, only inbound alerts, i.e., alerts originating from 
traffic addressed to the University were considered. To 
represent the frequent behavior of the attackers, exceptional 
situations were filtered (similar to the filtering performed in 
[3]). Therefore, cases containing a single event (isolated 
alert) or cases containing multiple events associated to the 
same violation (i.e., same signature) were not included in 
the model. These cases do not depict attack strategies used 
by attackers, as they show an attack-flow with a single step 
and do not provide enough information on the behavior of 
the attacker, as illustrated by Figure 2. 

Similarly, cases containing more than 50 events in which 
almost all the events have the same signature were not in-
cluded in the model.  

The ProM Framework [27] was used to generate the pro-
cess model with the Heuristic Mining algorithm. Figure 3 
shows the results of tests performed on October 7th. In this 
day, there were 97 events (i.e., triggered alerts) with 8 dif-
ferent activities (i.e., distinct signatures) organized in 9 
cases. 

Analysis of Figure 3 indicates that: 
• Within that day, the attacks started in one of four 

violations: (i) Malicious PHP Program Access, (ii) 
Malicious SMB Probe/Attack, (iii) Possible nmap 
Scan (XMAS (FIN PSH URG)) and (iv) Impossible 
Flags (SFRPAU). Each of them lead to a different at-
tack-flow. 

• Among the 9 cases, there is one case that starts with 
Malicious PHP Program Access, two cases that start 
with Malicious SMB Probe/Attack, three cases that 
start with Possible nmap Scan (XMAS (FIN PSH 
URG)) and three cases that start with Impossible 
Flags (SFRPAU). Similarly, one case ends with PHP 
Code Injection, one case ends with Windows 
PlugnPlay Request Anomaly, four cases end with 
Possible nmap Scan (XMAS (FIN PSH URG)) and 
three cases end with Impossible Flags (SFRPAU). 

• In (i), an attack can be clearly observed. First, the at-
tacker executes a Malicious PHP Program Access. 
Afterwards, the attacker executes a PHP Code Injec-
tion and then the two activities come into loop. This 
shows that some attacker is injecting code (e.g., eval 

injection) into a PHP server located at the University 
network and then some user/visitor is accessing the 
server and executing the code. This attack-flow 
shows a possible unknown vulnerability that the 
network administrator has to fix. 

• In (ii), in one of the attack-flows, the attacker per-
forms a Malicious SMB Probe/Attack followed by 
Windows PlugnPlay Request Anomaly. Although not 
directly related, both attacks have something in 
common: they are associated to Microsoft Operating 
System (OS) and exploit vulnerabilities that allow 
remote code injection and elevation of privileges. 
These vulnerabilities, if successfully exploited, can 
allow the attacker to take control of the compromised 
system as reported by Microsoft Security Bulletin 
[28][29]. 

• In (iii), a possible attack attempting is presented. The 
attacker performs a port scan (TCP Xmas scan), 
probing the server or host for open ports. Port scan is 
a well known technique used in pre-attack phases to 
gather information about the target and be able to 
exploit them. After the port scan, the attack-flow 
splits into three paths. One path leads to (ii). The 
other path leads to (iv). In the third path, the attacker 
performs NULL OS Fingerprinting Probe, an attempt 
to collect information about the target OS and thus 
know what vulnerabilities he can/can not exploit 
(e.g., if the vulnerability was already patched in this 
OS version). After that, the path leads to (iv). This 
attack-flow indicates that the attacker is conducting a 
reconnaissance of the target before executing the at-
tack. 

• In (iv), the attack-flow is similar to (iii). The Impos-
sible Flags (SFRPAU) are TCP packets with all flags 
(SYN, FIN, RST, Push, ACK, UrgPtr) set. These 
packets might be unintentional produced by poorly 
implemented applications but are more likely (con-
sidering the attacks in the paths it splits) from a Full 
Xmas scan.  

It is possible to obtain other information by analyzing the 
model. For example, the Impossible Flags (SFRPAU) signa-
ture was the most executed attack (30 times). Next, there is 
the Possible nmap Scan (XMAS (FIN PSH URG)) attack (21 
times). The reason for this behavior is the loop between the 
attacks, showing that many port scans were executed in this 
day. In addition, the model provides an intuitive and easy 
way to investigate the alerts, showing the attack strategies 
that would hardly be discovered investigating almost 100 
alerts manually. 

As mentioned before, the attack model presented in Fig-
ure 3 represents the attackers’ perspective, i.e., how multiple 
source IP addresses (i.e., the attackers) are attempting to 
compromise several targets in the University network. 
However, this representation may not be the ideal for all 
situations and other perspectives can be explored for a deep 

123Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-411-4

AICT 2015 : The Eleventh Advanced International Conference on Telecommunications



Start 
1

End
1

Apple QuickTime RIFF 
Parsing Integer Overflow 
Vulnerability (ZDI-11-229)

1

Sun Solaris Login Bypass 
(General) 

1

Metasploit Shellcode
1

Microsoft Server Service 
Buffer Overflow 

1

Possible nmap Scan (No 
Flags)

1

Possible nmap Scan 
(XMAS (FIN PSH URG))

1

Figure 2. Example of the behavior of isolated alerts on October 7th.
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Figure 3. Attack model that represents the behavior of the attackers on October 7th.
 
investigation into the attacks. For instance, to represent 
the behavior of distributed attacks (many-to-one attacks), 
the targets’ perspective can be explored (i.e., cases with 
events associated to the same destination IP address).  

VI. CONCLUSION AND FUTURE WORK 
This paper has addressed the problem of analyzing 

huge amounts of IDS alerts. A four step method that uses 
process mining techniques to mine the alerts and generate 
a process model, a high-level graphical representation of 
the attackers’ behavior observed in the alerts, was pro-
posed. The method was evaluated on a real IDS alert 
dataset from University Maryland. The results showed 
that the resulting model has an intuitive and user-friendly 
representation that can be used by network administrators 
as an alternative to the manual investigation of alerts. 

As future work, the objective is to extend the attack 
perspectives and analyze the alerts from another view-
point (e.g., the target perspective). Besides, it was ob-
served that some models become complex as the number 
of distinct signatures increases. Therefore, clustering 
techniques may be employed to reduce the complexity of 
those models and conformance checking metrics, such as 
simplicity, may be employed to evaluate the model.  
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