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Abstract—Cloud Radio Access Network (C-RAN) is a new mobile
radio access network design based on centralized and pooled
processing. It offers potential cost savings by utilizing the so-called
tidal effect due to user mobility in cellular networks. This paper
provides a quantitative analysis of the performance (multiplexing)
gain of such cellular networks. The used analytical model is
based on a multi-dimensional loss system and can be applied to
heterogeneous networks with various cell traffic profiles. Based on
the analysis, the key parameters for cell deployment optimization
are identified. The conditions for optimization are based on
the aggregated traffic characteristics and baseband unit pool
dimensioning. This paper considers cells with different traffic
profiles and the optimal conditions for maximization of the
pooling gain are determined. Furthermore, it is shown how the
model can be applied to dynamically re-assign cells to a pool
of baseband units. The re-assignment is based on the cell load
and traffic characteristics such that effective utilization of the
baseband resources is assured.

Keywords–C-RAN, deployment optimization, multiplexing gain,
baseband unit pool dimensioning, multi-dimensional loss system.

I. INTRODUCTION

The explosive increase in mobile traffic is a main driver
for a spectrum, energy, and cost efficient design of the fu-
ture radio access network (RAN). Network densification is a
prevailing technique that addresses the challenge of 1000-fold
traffic growth of mobile data. The full benefits of network
densification can be realized if it is followed by complementary
backhaul technology [1], such as Cloud RAN (C-RAN). C-
RAN is a scalable and flexible RAN design where the baseband
processing is virtualized, centralized and shared among base
stations (BS). The centralization of the processing power
enables high cooperation among distributed antennas. Virtu-
alization on the other hand allows for processing aggregation
and dynamic resource allocation. Thus, C-RAN reduces the
operators capital and operating expenditures, provides high
spectral and energy efficiency. C-RAN supports coexistence of
multi-standard types of communication (device to device, full
duplex), and multi-layer architectures. Additionally, C-RAN
facilitates the deployment of services at the edge, opens new
opportunities for services in the cloud, such as the ability to
offer the radio access network as a service [2].

The C-RAN architecture consists of three main parts:
remote radio heads (RRHs) that provide the wireless coverage,
baseband unit pool (pool of virtual BSs) and a transport
network (fronthaul) that connects the BBU pool with the
RRHs. The up to date research confirms that the C-RAN design
simplifies and reduces the cost of dense cell deployment [3].
Yet the conditions for optimal deployment under C-RAN

remain an important area of research. The need for analysis,
design and optimization of fronthaul and backhaul technolo-
gies for 5G is emphasized in a recent draft proposal of the
pre-structuring model for the Horizon 2020 5G Infrastructure
PPP [4]. In this work, traffic engineering approach is used in
order to perform a quantitative study of C-RAN, and indicate
the conditions for optimal multiplexing gain and dimensioning
of the BBU pools. The model used in this paper is generalized
and can be used for heterogeneous network deployments under
various traffic models. The goal of this paper is to determine
the key performance metrics that maximize the multiplexing
gain. Furthermore, in our model, the optimal dimensioning of
the BBU pool considers both the cost saving factor as well as
the sensitivity to traffic variations. As a baseline, we consider
a network consisting of two cell types that generate different
traffic profiles. The work suggests the optimal ratio of the two
types of cells for an energy efficient BBU pool, and how the
architecture can adapt to the changes in the traffic conditions.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview of related works. Section III
presents the model based on direct routing and how it is
mapped to the C-RAN architecture. Section IV discusses the
approach taken in this paper for evaluation of the multiplexing
gain and dimensioning of the BBU pool. Section V presents
and analyses the results for a specific case with respect to
multiplexing gain and dimensioning, and elaborates how the
model can be applied for dynamic mapping between RRH and
BBU pools. Finally, the last section concludes the paper.

II. RELATED WORK

As indicated in [5] the main multiplexing gain in C-RAN
comes from the fact that the cells have diverse traffic load dur-
ing day hours depending on the area they serve. This is the so-
called ”tidal effect” since the load in the mobile network moves
according to the daily routine of the users. During the working
hours more users are located in the office areas, hence the BSs
associated to those cells are busiest. After working hours, the
users move towards the entertainment and residential areas,
increasing the traffic demand on the BSs associated to these
cells. In case of traditional deployment, the residential cells
during working hours and the office cells during evening hours
will be underutilized. The benefit of dynamic assignment of
baseband processing to RRHs (illustrated in Figure 1) has been
analyzed in [6] through a system level simulation of a scenario
where the generated traffic pattern follows the tidal effect. The
paper shows that the multiplexing gain comes not only from
the fact that the computational power can be shared among
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Figure 1. Dynamic allocation of RRHs to a BBU pool. The assignment is
defined by different colors.

BSs but also from cost and energy efficiency perspectives. In
[7] and [8], the need for dynamic RRH-BBU association is
emphasized. Their work shows that the configuration in the
network must be flexible in order to provide high performance
and energy efficiency. Semi-static and dynamic RRH-BBU
switching schemes have been proposed and analyzed with
respect to efficiency in the BBU pool. The results show that a
percentage of BBUs can be reduced, depending on the traffic
load and the applied scheme for assignment.

In [9], the authors model the dynamics of the BBU pool
with a multi-dimensional Markov model. The work shows that
the system parameters such as pool size, QoS requirements at
the radio part, and the traffic load have impact on the system
design. In their analysis, all the cells that are associated in a
common pool of BBUs, have the same characteristics: size (BS
transmission power), type of traffic, QoS demand. Therefore,
the proposed model cannot be directly used if heterogeneous
deployments are analyzed. In this paper we present a model
that can be used to estimate the performance metrics for a C-
RAN architecture that can include cells with different size (as
number of radio resources), cells with different traffic profiles
(smooth, bursty and random), services that have different QoS
requirements (as a minimum number of resources that need
to be allocated), as well as multi-layer deployment (small
cells overlapped with macro cell). The following performance
metrics have been studied: blocking probabilities and carried
traffic. Based on the desired resource utilization, we dimension
the pool of BBUs using the Moe’s principle for network
dimensioning. We evaluate the dimensioning of the backhaul
link based on the carried traffic characteristics. The network
model considered in the numerical analysis is based on a
mixture of residential and office cells. For the considered
scenario, a method is proposed for determining the optimal
ratio of the two cell types for multiplexing gain maximization.

III. NETWORK MODEL

This section presents the mathematical model used to asses
the benefit of placing baseband processing in a pool that
can be shared among RRHs. First, the direct routing network
model based on the multi-dimensional systems is described.
Afterwards, the mapping of the model to the three different
scenarios of network layout is explained.

A. Link model
In a multi-dimensional system, a single link with capacity

of n basic units (BUs) is shared among N statistically inde-
pendent (uncorrelated) flows of Binomial, Poisson, and Pascal

(BPP) traffic. A stream is characterized by mean value Aj

(offered traffic in number of BUs), standard deviation stdj ,
the required number of BUs for the entire connection dj , and
nj is the maximum number of BUs that can be occupied by
flow j. The system state at any time can be described by the
vector (x1, x2, ..., xN ) where xj = ij · dj and ij represent the
number of connections of a flow j. Then the restrictions that
lead to truncation of the state space can be formulated as:

0 ≤ xj ≤ nj ,
N∑
j=1

xj ≤ n, where

N∑
j=1

nj ≥ n (1)

In the case where the last two restrictions are not valid (n is
sufficiently large such that there is no global restriction), the
system corresponds to N independent one-dimensional loss
systems (classical BPP loss system), that are represented by
state probabilities pj(xj).

The system described above is reversible and has product
form. Due to the product form, the algorithm based on convo-
lution [10] can be applied to obtain the individual performance
metrics of each stream. By successive convolution of one flow
at a time, the state probabilities can be aggregated and a
one-dimensional vector can be used to describe the system
(* denotes the convolution operation):

p(x) = p1(x1) ∗ p2(x2) ∗ ... ∗ pN (xN ), (2)

where x = x1 + x2 + ...+ xN . The convolution is done such
that first two flows j and k are convolved with limitation
min(nj +nk, n). Then the third flow is added to the previous
convolution and so on. Due to the truncation, normalization at
each step needs to be performed in order to get the true state
probabilities. To calculate the time, call, and traffic congestion
for a flow j, all flows except j need to be convolved into pN/j .
The derivation of the three types of congestion is given in [11],
here only the calculation for the carried traffic (in number of
BUs) is presented:

Y n
j =

n∑
x=0

x∑
xj=0

xj · pN/j(x− xj) · pj(xj) (3)

and Cn
j = (Aj − Y n

j )/Aj represents the traffic congestion.
By applying the above method, the performance measures for
each flow can be derived.

B. Network with direct routing
A network with direct routing [12] is characterized by

routes Rj representing different traffic flows, links Lk and dj,k
as the number of BUs a route j uses on a link k. Each link is
represented with capacity lk that defines the maximum number
of basic unit that all flows can use on that link. The restriction
on each link can be expressed as:

N∑
j=1

xj,k =

N∑
j=1

ij · dj,k ≤ lk, k = 1, 2, ...K (4)

All the routes are independent, hence the convolution algorithm
can be applied to aggregate the state probabilities of any two
route to one route, until one route remains for which the
performance metrics are calculated. Now, during convolution,
each link has to be considered one at a time, as a restriction to
the state space. Because each link can restrict one or more
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routes, the number of busy channels at each link, or the
number of connections at each routes need to be tracked.
The algorithm becomes more complex since multi-dimensional
vectors need to be convolved, where the number of links
defines the dimension. The state number increases to maximum
K∏

k=1

(lk + 1), which requires large memory for calculation.

C. Network layout mapping to a C-RAN deployment
Using the model presented, the following notation will be

used throughout the paper to describe a C-RAN network. A
BBU pool is associated with N RRHs, where a RRH j can use
up to nj radio resources. The number of baseband processing
power (or computational resources) in a BBU pool is given by
n, where n ≤

∑N
1 nj . The traffic at RRH j is represented

through the mean value of offered traffic Aj and standard
deviation stdj . A call j requires dj radio and computational
resources for the entire duration of a connection. In the
multi-dimensional Markov model there will be two types of
truncations. The truncation due to the limited radio resources is
referred to as blocking probability due to radio resources, while
the truncation that is resulted from n is referred to as blocking
probability due to computational resources (BBU pool limita-
tion). Hence, for each traffic flow, the call blocking probability
depends on the blocking probability due to radio resources and
blocking probability due to computational resources.

Using the model with direct routing, the system can be
represented through a matrix where the routes are identified as
columns, and the links are defined by rows. We consider three
different deployment scenarios in C-RAN in order to explain
how the analysis can be performed. The reason for this is to
show that this method is general and that the complexity of the
algorithm can be highly reduced. The reduction can be done
both in terms of dimensions of convolution vectors as well as
in number of convolutions, due to reduced dependences on the
links and generalizations on the cells characteristics.

D. Case study: proportion of office and home small cells
The direct routing equivalent for a network where the BBU

pool aggregates a proportion of cells that serve office and
residential area is presented in Table I. The number of office
RRHs is O, where each RRH has no radio resources. The
number of residential cells is N −O where each RRH has nr
radio resources. The office cells are offered bursty traffic model
with equal mean and standard deviation (Pascal distribution).
The traffic at the office cell is modeled using smooth model
(Engset distribution) and has equal characteristics among all
residential cells. In this paper, this case study is considered
as baseline for evaluation of the multiplexing gain in C-RAN.
As it can be seen, the table consists of an identity matrix of
dimension N . Hence, the complexity of the method described
in Section III is highly reduced: the number of the convolutions
required to get the performance metrics of one traffic stream
is reduced to N . Since there are no dependencies among cells,
except the last row, the aggregation of the streams can be done
into one-dimensional vectors, and only the global state needs
to be remembered. Thus, the number of the states and the
required memory is of complexity O{n}.

E. Case study: mixture of traffic types
This case corresponds to the heterogeneous traffic char-

acteristics in terms of BUs that a stream requires during the

TABLE I. Direct routing equivalent to C-RAN that covers a mixture of
office and home cells

Routes
Link R1 R2 ... RO RO+1 .. RN Capacity
L1

Identity matrix
of size O

Zero matrix of
size [R,O]

no

... ...
LO no

LO+1

Zero matrix
of size [O x R]

Identity matrix
of size R

nr

... ...
LN nr

LN+1 all ones vector of size [1, N ] n

TABLE II. Direct routing equivalent to C-RAN that covers a mixture of
traffic types for each cell

Routes
Cell1 Cell2 Cell3 Cell4

Link R1 R2 R1 R2 R1 R2 R1 R2 Capacity
L1 d1 d2 0 0 0 0 0 0 nr

L2 0 0 d1 d2 0 0 0 0 nr

L3 0 0 0 0 d1 d2 0 0 nr

L4 0 0 0 0 0 0 d1 d2 nr

L5 d1 0 d1 0 d1 0 d1 0 nd1

L6 0 d2 0 d2 0 d2 0 d2 nd2

L7 d1 d2 d1 d2 d1 d2 d1 d2 n

connection. Video services that require high bandwidth can
be modeled with dj > 1. Table II shows the equivalent direct
routing model for C-RAN that aggregates RRH, that offer het-
erogeneous services in terms of bandwidth demand d1 6= d2.
The model is for a case of 4 non-overlapping cells, which
can be easily extended to more cells. The two traffics types
can have individual mean value and standard deviation, while
the radio resource limitation could be the same or different.
The limitations L5 and L6 could be left out, or used when
QoS guarantee needs be implemented to make sure that the
increase of one type of traffic does not block the other type of
traffic. The complexity of the algorithm is again reduced due to
the symmetry. The number of convolution for each individual
traffic stream (in this case two) is equal to the number of cells,
while the dimension of the each convolution vector is equal to
the number of different traffic flows. Hence, in the considered
example the number of states and the required memory is of
complexity O{(nd1 + 1) ∗ (nd2 + 1)}.

F. Case study: Multi-layer deployments
Multi-layer heterogeneous deployments are considered as

a way of increasing the throughput per area. A scenario
where a BBU pool covers cells with different sizes, and
traffic offloading exist among overlapping cells, should be
considered. The analysis of such a case, should reveal the
optimal number of small cells per sector of a macro cell,
and could be used to indicate how to dimension BBU pool,
depending of the traffic offloaded from the macro cells to the
small cells. A direct routing equivalent for a three sector macro
cell with two small cells per sector is shown in Table III.
All small cells have the same characteristics for the offered
traffic and size of a cell (nm for macro cell and ns for small
cells). The traffic streams in the small cells can also use radio
resources in the macro cells, with call rearrangements [12].
Regarding the complexity analysis, this is the most complex
case compared to the previous case studies. Two sectors can be
easily aggregated into one dimensional vector, so the number
of one dimensional convolution is equal to double the number
of small cells per sector (small nr sector). In order to find
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out the performance metrics for each traffic stream (one for
macro cell and one for small cell), the algorithm requires one
convolution vector of dimension equal to the number of small
cells per sector. Then the number of states increases to order
of (n+ 1) · (nm + 1) ·

∏
small nr sector

(ns + nm + 1).

TABLE III. Direct routing equivalent to C-RAN for multi-layer deployment
Routes

Links Sector1 Sector2 Sector3 Capacity
L1 1 0 0 0 0 0 0 0 0 nm

L2 1 1 0 0 0 0 0 0 0 nm + ns

L3 1 0 1 0 0 0 0 0 0 nm + ns

L4 0 0 0 1 0 0 0 0 0 nm

L5 0 0 0 1 1 0 0 0 0 nm + ns

L6 0 0 0 1 0 1 0 0 0 nm + ns

L7 0 0 0 0 0 0 1 0 0 nm

L8 0 0 0 0 0 0 1 1 0 nm + ns

L9 0 0 0 0 0 0 1 0 1 nm + ns

L10 1 1 1 1 1 1 1 1 1 n

IV. DISCUSSION ON MULTIPLEXING GAIN AND BBU
POOL DIMENSIONING

This section outlines the approach considered for evalua-
tion of the multiplexing gain and the conditions for optimal
dimensioning and configuration of the pool. The rationals for
the considered performance metrics are discussed as well.

A. Multiplexing Gain
In [9], it is demonstrated that, as more cells are aggregated

to the BBU pool, the gain (defined as reduction of the number
of BBU processing servers that are required to achieve a block-
ing probability lower than a certain threshold) is increasing.
Furthermore, it is shown that as the pool size becomes large,
the gain is increasing with a slow pace, such that at a very
large pool size, the gain is approaching a limit. Still, the work
is missing a discussion on the background for such trend of
the gain. The increase in the multiplexing gain comes from
the principle of group conservation [13]. In order to explain
better, a comparison is made on the n number of resources
(BUs) required to achieve a blocking probability of 1% in
case of serving individual streams and an aggregation of the N
streams. Figure 2 shows the comparison when N = 100 traffic
streams are considered, each with mean value of 10 (offered
traffic is 10 erlang) and std =

√
σ2 =

√
10 (Poisson arrivals).

The dashed line shows the normalized number of BUs (n/N )
when the traffic streams are served independently, which is
constant. The full line shows the normalized number of BUs
required to serve the aggregated traffic that is decreasing as
N is increased until a certain point after which it reaches a
limit and becomes almost constant. The reason for this comes
from the fact the way the summary statistics are derived for
the aggregated stream. Since each stream is independent of the
others, the mean and the standard deviation are calculated as:

Aagg =

N∑
1

(Aj), stdagg =

√√√√ N∑
j=1

stdj
2 (5)

These equations indicate that the mean value of the total
traffic is the same in case of individual streams and stream
aggregation. The difference is in the standard deviation, or the
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Figure 2. Analysis of multiplexing gain with aggregation.

coefficient of variation (CV = std
A ) which is shown in Figure 2

to the right. The CV is reduced as the number of streams is
increased, but already after N = 30 the reduction is slow. Any
additional increase of N will not lead to significant reduction
of the number of required BUs. The channel utilization, defined
as A/n will not be significantly improved at large pools,
since any marginal increase of the offered traffic will lead to
equal increase of number of BUs for each group, meaning ∆A

∆n
becomes constant. This means that very large pools will not
lead to significant increase of the gain compared to medium
size pools. Due to high utilization, very large groups are even
more sensitive to overload, and therefore large pools are not
recommended. For that reason, the tradeoff between utilization
and sensitivity should be considered when dimensioning.

Having in mind the discussion above, the multiplexing gain
defined as in (6) is used as a performance metric to evaluate
how much the coefficient of variation is reduced in case of the
aggregating the individual streams.

MultiplexingGain =

∑N
j=1 (Aj + stdj)

(Acarried
agg + stdcarriedagg )

(6)

s.t. Acarried
agg and stdcarriedagg are carried traffic characteristics.

B. Dimensioning of computational resources.
Two approaches of dimensioning can be considered: di-

mensioning with fixed blocking probability and dimensioning
with fixed improvement function. With fixed blocking proba-
bility, the dimensioning of the BBU pools is done by restricting
the time congestion to a threshold such that the number of
calls that need to re-attempt the connection will be low. This
type of dimensioning can easily lead to a system with high
utilization (large pool size), but also very sensitive, since it
does not consider the channel utilization.

On the other hand, the Moe’s principle for dimensioning is
based on the improvement function. The improvement function
is defined as the increase in carried traffic when the number of
channels (n) is increased by 1, Fn(A) = Y n+1(A)− Y n(A),
where Y n(A) =

∑N
j=1 Y

n
j (Aj). In this case the point where

the ∆A
∆n becomes constant for all BBU pools indicates the

dimension of the pools. The improvement function can be
set to a fixed improvement value Ftarget, such that balance
between high utilization and sensitivity is be ensured. A cost
requirement can also be included in determining the optimal
number of computational resources. Then the improvement
value depends on the cost of the additional resource such as
cost of fiber, BUU unit and alternatively the cost of adding a
RRH to a BBU pool. The increase of the carried traffic should
be included as well as income, such that Ftarget =

cost
income .
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V. C-RAN OPTIMIZATION

A. Input Parameters
In this work, the study case where a BBU pool aggregates

RRH that cover residential and office areas is considered. The
chosen parameters for the analysis follow the examples given
in [5] and [6]. The total number of cells is N = 100, while the
percentage of office cells is varied between 1% and 99% with
1% as step. Each cell has nr = no = 28 radio resources, which
limits the maximum number of computational resources at the
BBU pool at N · nr = 2800. The offered traffic, and standard
deviation of the office and residential cells are summarized
in Table IV. The traffic streams will result in very low radio
resource blocking probability. The overall blocking probability
will be mostly influenced due to the diagonal truncation which
results from the limitation of the resources in the BBU pool.
Two sub-cases have been considered as two different time
snapshot. One is from daytime when the traffic of the office
cell is higher than the traffic from the home cells. The other
is in evening time, when the traffic of the residential cells is
higher. By considering these two snapshots, the dynamic of
the traffic during one day can be captured.

TABLE IV. Input parameters
Daytime Evening time

Cell type Office Home Office Home
Load 30% 10 % 5% 15%

Traffic type bursty
(Pascal dist.)

smooth
( Engset dist.)

smooth
(Engset dist.)

bursty
( Pascal dist.)

A 8.22 2.77 1.27 4.75
std 3.51 1.44 0.99 2.43

B. Multiplexing gain
The multiplexing gain, according to (6) for the consid-

ered case study is shown in Figure 3. During day time the
multiplexing gain is reduced as the number of office cell is
increased. This is because the mean value is increased but the
difference in the standard deviation does not give influence
in coefficient of variation of the aggregated and the sum of
the individual streams. During night time the opposite trend
is observed: the multiplexing gain is increasing as the number
of office cells is increased. In this case, the mean value of the
aggregation stream is decreasing with the increase of the office
cells, and the deviation of the aggregation stream becomes
smaller compared to the individual streams.

MG =

∑N
j=1 max((Aj + stdj)

day, (Aj + stdj)
night)

(Acarried
agg + stdcarriedagg )

(7)

By looking at the multiplexing gain of the sub-cases of
daytime and night time, the optimal ratio of office cells and
home cells cannot be deducted. In order to capture the traffic
dynamics during one day, (6) has been modified to (7). This
metric is also shown in Figure 3 and as it can be seen it peaks
at 22% of office cells. Hence, for the this case, the largest gain
is achieved when the number of office cell is 22 out of 100.

C. Dimensioning the BBU pool
For dimensioning the BBU pool in terms of computational

resources, we use the Moe’s principle. We do not focus in
this paper on the cost, nor the income. We use improvement
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value Ftarget = 0.2, such that Fn−1(A) > Ftarget ≥ Fn(A).
The analysis has been done for the two considered sub-cases:
daytime and night. Instead of giving the optimal number of
computational resources, we indicate the percentage of the
maximum number of computational resources that can be
saved. Figure 4 shows the computational resources percentage
that can be saved in case of multiplexing. In daytime analysis,
the percentage of the saved computational resources is reduced
with the increase of the number of the office cells. The reason
for this is that the number of the computation resources scales
with the mean value of aggregated traffic. As the mean value
of the office cells traffic is larger than the mean value of the
home cell traffic, by increasing the number of the office cells,
the mean value of the aggregated traffic is increased. During
evening time the opposite trend is observed: the increase
of the percentage of the office cell reduces the mean value
of the aggregated stream, and therefore less computational
resources are required. From the figure, it can be noticed
that the two lines cross at 22% of the office cells, meaning
that with this ratio of office and residential cells, the same
savings can be achieved during day time and night time.
Hence, the optimal ratio of the office and residential cell is
22 office and 78 residential cells, by which almost 85% of the
maximum resources in the pool can be saved. The analysis
based on multiplexing gain and dimensioning on the BBU
pool has shown the same results. Furthermore, the conclusion
is comparable with the simulation based analysis in [6], which
confirms the correctness of the described model.

D. RRH-BBU pool dynamic mapping
The optimal percentage of office cells for different mean

values of the traffic streams for office and residential cells
during day time and during night time is summarized in
Figure 5. Additionally for each optimal deployment it shows
the potential savings by dimensioning the size of the pool
using the Moe’s principle. The results show that in case of a
change of the traffic characteristics, the model can be used for
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flexible and dynamic re-assignment of RRH to BBU pools. For
example, if the mean value of the traffic stream for residential
cells during night time is increased, the number of office cells
per BBU pool need to be increased. On the other hand, if the
mean value of the residential traffic stream during day time is
increased, then the number of office cells need to be reduced.

The radio resourcce blocking probability is low as the load
of the cell is not high (Table IV) and the overall blocking
probability is influenced from the blocking probability due
to computational resources. This is important as the model
complexity is further reduced, as only the global state needs to
be remembered, which can be described with one dimensional
vector of length n. This simple analysis allows for adoption
to the dynamic changes in the configuration. If a certain cell
needs to be added to the BBU pool, a convolution needs to
be performed in order to aggregate the new cell traffic. If one
cell needs to be removed, deconvolution needs to be done.

The challenge of the fronthaul design is not just limited to
high capacity requirement, but also to the ability to provide
flexible and adaptive deployments with respect to RRH-BBU
pool assignment. Fiber solutions are capable of supporting
high data rates, but are lacking the ability for flexible re-
assignment due to the need of manual configurations or very
costly optical switches. Adopting any other transport solutions
(ex. packet based: wired or wireless) is challenged with strict
jitter and synchronization requirements but are capable of
flexible reconfigurations. As C-RAN already integrates the
concepts of network function virtualization and network virtu-
alizaion ([14], [15]), adoption of software defined networking
(SDN) can further optimize and simplify network design and
operation. The proposed model can be implemented at an
SDN controller. The SDN controller will be responsible for
RRH to BBU pool re-assignment due to traffic distribution
change and/or addition of new cells in the network. Thus, the
SDN controller can instruct and manage all virtual network
components in order to maximize the multiplexing gain and
dimension the BBU pools optimally. Figure 1 illustrates the
dynamic assignment of RRH to BBU pools, where not only the
location, but the traffic load and type determine the assignment.

VI. CONCLUSION

This paper concludes the optimal conditions for dense cell
deployments under which the multiplexing gain is maximized.
In the presented study case, this is defined as the optimal ratio
of the two types of cells: serving office and residential areas.
The model has been compared with simulation based analysis,
which confirms the correctness of the model. Additionally, we

demonstrate that the model indicates the optimal ratio of the
cell types depending on the individual traffic loads.

Furthermore, the analysis shows that not only cost, but
sensitivity to traffic variations need to be considered when
dimensioning the pool of baseband units. For the given ratio of
the cell types, the indicated dimension is proven to be optimal.

The model used in the analysis is generalized, and various
case studies have been identified. These studies include hetero-
geneous deployments and different traffic profiles. Due to its
simplicity and low level of complexity, we show that the model
can be adopted for dynamic re-assignment of RRH to BBU
pool. In the future, additional cases are going to be studied,
as well as further analysis will be conducted to investigate the
implications of new radio technologies such as coordinated
multipoint and carrier aggregation.
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