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Abstract—This paper analyzes the complexity-performance 
trade-off of the Stochastic Chase decoding algorithm for Bose-
Chaudhuri-Hocquenghem (BCH) codes over the additive white 
Gaussian noise (AWGN) channel. It is verified by computer 
simulations that this algorithm can outperform the traditional 
Chase algorithm with less complexity decoding. 
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I.  INTRODUCTION 

Soft-decision decoding is a decoding process that utilizes 
the information contained in the unquantized received 
symbols to improve the error-correcting performance 
compared to hard-decision decoding. However, the better 
performance of the soft-decision algorithms comes at the 
price of higher complexity. Concerning block codes, an 
important class of soft-decision decoding algorithms is the 
reliability-based (or probability-based) decoding techniques 
[1]-[4]. 

The Chase algorithm [1] is a reliability-based decoding 
technique that uses a set of test patterns in attempt to find an 
estimation of the maximum-likelihood codeword. To 
generate the set of test patterns, the least reliable positions 
(denoted by �) of the received sequence are considered. For 
example, considering additive white Gaussian noise 
(AWGN) channel, the real values of the received sequence 
correspond to the reliabilities of the Chase algorithm. The 
higher the value of the reliability, the lower the probability 
that the corresponding symbol had been strongly affected by 
the noise. Given the � least reliable positions, the number of 
generated test patterns is equal to 2�  and it is a way to 
measure the complexity of the decoding algorithm. With 
respect to Reed-Solomon (RS) codes and Bose-Chaudhuri-
Hocquenghem (BCH) codes, many efforts have been made 
to find reduced complexity Chase decoding algorithms, 
including for implementation of VLSI architectures [5][6]. 

A modification of the Chase decoding algorithm, named 
Stochastic Chase algorithm, was proposed in [7]. It was 
assumed that the test patterns are stochastically generated 
instead of using the least reliable positions of the received 
sequence. This proposal was investigated for RS codes and it 
was shown that this modification is a low cost solution for 
soft-decoding of this class of codes. However, nothing was 
commented about the use of the Stochastic Chase algorithm 
for BCH codes. With this in mind, the objective of this paper 
is to analyze the complexity-performance trade-off of the 

Stochastic Chase decoding algorithm for BCH codes and 
how the characteristics of the BCH code influence the 
performance of the decoding algorithm. For sake of 
simplicity, hereafter the Chase algorithm and the Stochastic 
Chase algorithm will be denoted, respectively, by �ℎ  and 
� − �ℎ algorithms. 

The remainder of this article is structured as follows. In 
Section II, a modified version of the Stochastic Chase 
decoding algorithm is described. Section III presents 
numerical results. At last, conclusions are drawn in Section 
IV. 

II. STOCHASTIC CHASE DECODING 

Consider a binary linear code �(	, �, �) in which 	 is the 
codeword length, � is the dimension of the code and � is the 
minimum Hamming distance of � . Let � = (��, ��, … , ��) 
be a codeword in � . For transmission, binary antipodal 
modulation and an AWGN channel are assumed. At the 
receiver side, the sequence of real values observed at the 
output of the matched filters,� = (��, ��, … , ��) , and the 
binary sequence � = (��, ��, … , ��) , obtained by hard 
quantization of � , are used as input of the soft-decision 
decoding algorithm. 

In �ℎ algorithm, the set of test patterns is given by 
sequences of length 	 which have any binary combination  in 
the � least reliable positions. After the generation of the 2� 
test patterns, they are used as input of the Berlekamp-Massey 
(BM) hard-decision decoder. If the decoding is successful (�� 
is valid), the codeword obtained by the BM decoder is 
included in the set of candidate codewords Ʌ. Maximum 
likelihood soft-decision decoding is performed for each 
codeword in this set. 

In � − �ℎ algorithm [7], the test pattern selection is a bit-
wise stochastic experiment based on the observation of the 
sequence �. The bit �� of the �-th test pattern depends on the 
reliability �� , which can be either represented in the 
probability domain as 

�� = �(��|�� = 1) = �1 + !
"#$
%"&

'�
              (1) 

where (�  is the AWGN power. This algorithm has three 
independent parameters. The variation of the threshold ) 
changes the number of bits that will be prevented from being 
inverted. Decreasing )  avoids the flipping of less reliable 
bits, while increasing ) prevents only the most reliable bits. 
The parameter *  is a positive constant that must be 
optimized for each BCH code. The parameter + is the total 
number of generated test patterns, being each one unique or 
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1. for (1 ≤ - ≤ 	) do 
if (�� ≤ 0.5 − )) then 

          �� = 0, where 0 < ) < 0.5 
      else if �� ≥ 0.5 + ) then 
     �� = 1 
      else 
     �� = �

�3456#$, where * > 0 

2. for  (1 ≤ � ≤ +) do 
for (1 ≤ - ≤ 	) do 

- Generate an uniformly distributed random                   
value: 8� ∈ [0,1] 

    - Generate ��< = 0	(if	8� ≥ ��) or 
    ��< = 1	(otherwise) 
- Check if �G is not equal to previous ones. If it 

is duplicated, remove it. 
- Perform BM hard-decision decoding on �G to 

get ��. If �� is valid, insert it into the set of candidate 
codewords Ʌ. 

3. Select the codeword I from  Ʌ which has the 
maximum correlation with �. 

 

not. We introduce an improvement in the decoding algorithm 
to reduce the computational complexity compared to the 
original one. This consists in removing repeated test patterns. 
Simulation results show that for lower minimum distance 
codes, the number of repeated test patterns can be very high 
(see Section III). A summary of the proposed decoding 
algorithm is shown in Figure 1. 

Figure 1.  Description of the modified � − �ℎ algorithm. 

III.  SIMULATION RESULTS 

Computer simulations of the �ℎ  and the � − �ℎ 
algorithms were performed for BCH codes of codeword 
length 	 = 127  and different error-correcting capabilities 
( K = 3 , 6  and 9 ). The three parameters of the � − �ℎ 
algorithm were fixed to + = 1024, ) = 0.45, and * = 6. 

Table I summarizes the results obtained for the three 
BCH codes mentioned previously. The performance of the 
decoding algorithms is given by the frame error rate (FER) 
and the complexity metric is given by the number of BM 
hard-decision decoding that are performed as a step of the 
soft-decision decoding algorithm (�ℎ  or � − �ℎ ). For �ℎ 
algorithm, the number of BM decodings is 2�, because every 
test pattern implies in one BM decoding. For � − �ℎ 
algorithm, the amount of hard-decision decodings depends 
on the average number of distinct test patterns generated to 
decode each codeword (see the description of � − �ℎ 
algorithm in the previous section). We denote the average 
number of BM decodings by PQR . Both parameters (FER 
and PQR ) were obtained for both algorithms for selected 
values of the signal-to-noise ratio (SNR) in dB. 

We observe from Table I that when K = 6 and SNR= 4.0 
dB the � − �ℎ  with PQR = 772  outperforms the �ℎ  with 
1024 (� = 10 ) test patterns (number of BM decodings). 
Thus, the � − �ℎ  algorithm operating with the proposed 

parameters has better performance and less decoding 
complexity than the �ℎ  algorithm. This trend was also 
observed for other values of SNR and other values of K (see, 
for example, the results for K = 9  in Table I). We also 
noticed that the code gain obtained by the � − �ℎ becomes 
negligible for small values of K.  This is observed for K = 3 
in the table, where the values of � were selected such that 2� 
is close toPQR . In this case, both algorithms have 
comparable performance with similar complexities. 

TABLE I.  RESULTS OF PERFORMANCE AND COMPLEXITY OF THE CH 
AND S-CH ALGORITHMS APPLIED TO DIFFERENT BCH CODES OF CODEWORD 

LENGTH 	 = 127. 

STU	(VWX,VYZ, X)	[[ = \] 
 ]^ _ − ]^ 

SNR FER `Sa FER `Sa 

4.0 b. \X ∙ VY'\ dVW Z. eV ∙ VY'\ 427 
4.5 V. Xe ∙ VY'\ WdZ VY'\ 237 
5.0 W. X ∙ VY'f VWb W.f ∙ VY'f 105 

STU	(VWX,bd, V\)	[[ = Z] 
 ]^ _ − ]^ 

SNR FER `Sa FER `Sa 
4.0 V. \b ∙ VY'\ VYWf d. Wd ∙ VY'f 772 
4.5 V. V ∙ VY'f VYWf \. Xd ∙ VY'd 607 

STU	(VWX,XV, Ve)	[[ = e] 
 ]^ _ − ]^ 

SNR FER `Sa FER `Sa 

4.0 b ∙ VY'f VYWf W. VW ∙ VY'f 992 
4.5 d ∙ VY'd VYWf b. \\ ∙ VY'Z 840 
 

IV.  CONCLUSIONS 

In this work, the Stochastic Chase decoding of BCH 
codes is investigated by a modification of the original 
algorithm proposed in [7]. Also, the complexity-performance 
trade-off of the decoding for BCH codes of codeword length 
	 = 127  and different error-correcting capabilities is 
analyzed. Work is in progress to apply this approach to a 
BCH turbo decoding framework. 
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