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Abstract—Spectrum sensing is a low-complex and interesting way
to find unused white spaces for secondary users transmission in
cognitive radio. Because radio frequencies are strategic resource,
their reallocation is required to ensure enough capacity for
future communication devices. In addition to commonly used
frequencies, millimetric waves have been proposed to be used
for communication to fulfill upcoming needs. Because of broad
operating area, adaptive spectrum sensing methods are needed
to manage in different noise environments. For that reason,
noise measurements were performed at several frequency areas
between 10 MHz and 39 GHz. The goal was to study the noise
properties in different frequency areas. Statistical properties of
measured noise areas were analyzed and compared also with
theoretically generated noise. The results show that histograms,
PSDs and CDFs are almost equal. However, it was noticed that
there is a huge difference between the noise levels, so sensing
method that adaptively sets the detection threshold is required.
The localization algorithm based on the double-thresholding
(LAD) method was used as a blind and adaptive sensing method.
The LAD method is based on the assumption that the noise
is Gaussian. The probability of detection and false alarm were
studied. It was shown that the LAD method operates well in all
studied frequency areas.

Keywords–noise measurement, cognitive radio, spectrum sensing,
millimetric waves.

I. INTRODUCTION

In the modern information society, radio spectrum is a
basic and essential element. The demand of more frequencies
because of developing communications requires effective and
improved resource allocation as well as novel way of thinking.
More capacity is required, so existing frequency bands should
be used more efficiently. One possibility is to utilize cognitive
radio systems (CRS) [1][2][3][4]. In CRS, secondary (S)
users can temporarily use unused white spaces aka holes
in time/frequency domain where primary (P) users are non-
active. In addition, more band is required. Future solution for
wider frequency band demand is to use higher frequencies like
millimetric waves, i.e., bands from 10 GHz-70 GHz. However,
those bands require a lot of investigation and possible whole
new technologies.

In CRS, unused white spaces in the spectra can be found
using spectrum sensing. Even though there are also other
techniques as databases, sensing is very attractive because
it can be done blindly and easily. Even though the Federal
Communication Commission (FCC) has decided that sensing
is not required defining TV white spaces [5], sensing has a

 
Figure 1: Agilent E4446A spectrum analyzer.

future, for example, in other frequency areas and in wireless
local area network (WLAN)-type solutions when the distances
between the transmitter and receiver are short and transmit
power are small. In addition, public safety applications when
infrastructure is down and there is no connection to databases,
sensing may be needed.

Spectrum use measurements are very important to charac-
terize white spaces for CRS. In many cases, these spectrum
use measurement campaigns have used conventional spectrum
analyzer as, for example, in [6][7]. The classification into
signal and noise has been done with a non-adaptive single
(power) threshold. The performance of this signal classification
is decreased when the noise spectral density is not flat inside
investigated frequency range. In some cases, radio frequency
(RF) sensor has been used [8]. In the future, possible fre-
quencies for CRS operation cover from megahertz to tens
of gigahertz. The problem is that noise properties vary in
different frequency areas. Thus, a critical issue to deal with
that wide operating area is to adapt parameters in the different
environments. Inside of broad operating frequency range there
is a quite large variation in internal noise level of a conven-
tional spectrum analyzer and an RF sensor. For example, in
some sensor applications the aim is to get consistent group
delay, which is a requirement for good Time Difference of
Arrival (TDOA). The downside is that the noise floor inside
of a receiver is not flat inside wide operating frequency range.
In Fig. 1, the internal noise level of spectrum analyzer as a
function of frequency is shown. It can be seen that there is
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over 20 dB difference between the internal noise levels at low
frequency compared to noise level at higher frequencies. It is
also seen that there is some noise level fluctuation also inside
of much narrower bandwidth. This noise fluctuation decreases
the performance of sensing if this fluctuation is not taken into
account.

In this paper, several 100 MHz noise measurements at broad
spectrum range from 10 MHz to 39 GHz were performed and
the characteristics of measured noise at different frequency
areas were analyzed. Theoretically generated noise following
Gaussian distribution was used as a point of comparison.
Histogram, power spectral density (PSD) and cumulative dis-
tribution function (CDF) were studied. In addition, the blind
and adaptive spectrum sensing method called the localization
algorithm based on double-thresholding (LAD) method [9] was
used to find signals present. The LAD method is based on the
assumption that the noise is Gaussian, and it determines the
noise level. Here, we studied how the LAD method is able to
operate in all measured noise areas. Probability of detection
and false alarm were studied for measured noise areas as well
as for theoretically generated noise.

This paper is organized as follows. In Section II, the LAD
method is presented. Section III presents measurement setup.
Noise measurement results are presented in Section IV and
conclusions are drawn in Section V.

II. THE LAD METHOD

The LAD method [9] uses two forward consecutive mean
excision (FCME) thresholds [10]. The adaptive FCME algo-
rithm calculates the detection thresholds using pre-determined
threshold parameter that is calculated based on the distribution
of the noise. It is assumed that the noise is white Gaussian
process with the one-sided power spectral density N0. Thus,
the threshold parameter TCME can be found solving [11] [12]

PFA,DES = e−(TCMEM)
M−1∑
i=0

1

i!
(TCMEM)i, (1)

where PFA,DES is the desired false alarm probability like
in constant false alarm rate (CFAR) systems at M element
antenna array. Note that it does not depend on the variance
[11]. Here, M = 1, so (1) reduces to PFA,DES = e−(TCME),
from which we get that

TCME = −ln(PFA,DES). (2)

Let us assume that there are N samples xi arranged into an
ascending order from smallest to largest so that x1 < x2 <
. . . < xN . Signal samples are found iteratively searching the
smallest k, k ≥ round(0.1N) so that [12]

yk+1 ≥ TCME

k∑
i=1

yi = T, (3)

where yi = |xi|2 (=energy). In the first iteration, k =
round(0.1N) so that

∑k
i=1 yi includes 10% of the smallest

samples (so called initial set assumed to consist only noise
samples). Now, energy of the noise samples yi follow the
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Figure 2: An example of the FCME algorithm. Impulsive
signal, noise and FCME threshold. N = 64 samples.

central chi-square distribution with 2M = 2 degrees of
freedom. In general, the probability density function for the
chi-squared distribution with r degrees of freedom is [11]

Pr(x) =
x

r
2−1e

−x
2

Γ( 12r)2
r
2

, (4)

where Γ is a gamma function. If (3) holds, yk+1 and values
above that are decided to be from signal(s) and yk and values
below that are from the noise, i.e., the FCME algorithm
estimates the noise level (Fig. 2). Thus, the samples have been
divided into two sets using the threshold T :

y1, . . . , yk → noise samples
yk+1, . . . , yN → signal samples

Because of the initial set assumption, the FCME algorithm as-
sumes that at least 10% of the samples are from the noise, so at
most 90% of the samples can be from the signal(s). However,
the less signal samples the better the FCME algorithm operates
[13].

The LAD method [9][13] calculates two FCME thresholds
using two different threshold parameters TCME . After that, all
the adjacent samples above the lower threshold are grouped
together to form a group Gi, i = 1, . . . , h, where h < N .
If at least one sample of each group Gi exceeds also the
upper threshold, the group is accepted to be from the signal.
If not, the group is from the noise and rejected. The number
of accepted groups is l ≤ h. The computational complexity
of the FCME and LAD methods is of the order of N log2 N
[14]. An example of the LAD method is presented at Fig. 3.

III. MEASUREMENT SETUP

In the noise measurements, we used high-performance spec-
trum analyzer (Agilent E4446A) [15]. The input signal was
downconverted and digitized with 14 bit analog to digital
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Figure 3: An example of the LAD method. BPSK signal with
SNR=5 dB and BW=10%, noise and LAD thresholds. N = 64
samples.

converter (ADC). All the signal processing was performed
digitally. Spectrum analyzer was connected to a computer.
Instrument Control Toolbox was used to connect Matlab to
the spectrum analyzer. This enabled direct results analysis. Six
measurements at six different frequency areas were performed
from 10 MHz to 39 GHz. Considered frequency ranges were
10-110 MHz, 1-1.1 GHz, 2.5-2.6 GHz, 9-9.1 GHz, 17-17.1
GHz and 39-39.1 GHz. The parameters are presented at
Table I. There were 1601 frequency points and 1 000 or 10 000
sweeps in time domain. Energy of the samples was measured,
i.e., |xi|2. The internal noise level of spectrum analyzer was
measured in two ways. In the first way, internal noise level was
measured when the 50 ohm wideband load was connected to
the input of the spectrum analyzer (cases a-d). In the second
way, broadband antenna was connected to the input. In this
way, noise level is caused by the analyzer internal noise and
noise coming from the antenna (cases e and f).

IV. NOISE MEASUREMENT RESULTS

Results were analyzed using Matlab simulation software.
The purpose was to study the statistical properties of noise
in different frequency areas, and performance of the LAD
method in the presence of measured noise. As a point of
comparison, theoretical zero mean Gaussian distributed noise
generated from Matlab simulation software was used. Matlab-
generated noise was used because Matlab is widely used in
the computer simulations, and the performance of the LAD
method has already been studied in the presence of Matlab-
generated noise. In this way, these measurement results are
directly comparable to the earlier results. Energy of those
samples was considered, so the used Matlab-generated noise
followed chi-squared distribution. Because of the different
scales between the measured and simulated energies, energies
were normalized.

TABLE I: Measurement parameters. In all cases there were
1601 frequency data points.

Case Frequency Range Bandwidth Sweeps Antenna
a 10− 110 MHz 100 MHz 10 000 No
b 1− 1.1 GHz 100 MHz 10 000 No
c 17− 17.1 GHz 100 MHz 10 000 No
d 39− 39.1 GHz 100 MHz 1 000 No
e 2.5− 2.6 GHz 100 MHz 1 000 Yes
f 9− 9.1 GHz 100 MHz 1 000 Yes
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Figure 4: Measured noise energy at different sweeps at differ-
ent frequency areas.

A. Noise level

From Fig. 4 can be seen that the measured noise levels
[dBm] vary a lot at different frequency levels. For example,
there is about 15 dB difference between 10-110 MHz and
39-39.1 GHz areas. Thus, adaptive method that is able to
estimate the noise level is required when operating at different
frequency areas. Instead, methods that use fixed thresholds are
not able to operate in all frequency areas without measuring
the noise level and defining used threshold based on that
information.

B. Histogram

Figs. 5 – 8 present the elements of data into 10 bars that
are equally spaced. Number of elements in each container
is presented. Cases a, d and e are presented. Therein, the
number of elements in each bar is presented. This describes
the distribution of energies. Number of time domain sweeps
is in y-axis. In Fig. 5, Matlab-generated chi-square distributed
noise is used as a reference. For example, first bar consists
of about 950 of total 1000 samples. It can be seen that the
shapes of histograms are almost equal, so the energies are
almost equally-type distributed.
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Figure 5: Histogram for Matlab noise.

0 1 2 3 4 5 6 7 8

x 10
−9

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 6: Histogram for 10-110 MHz noise.

C. Probability plot and CDF
The performance of the LAD method depend on the distri-

bution of the noise. In the definition of the LAD method it is
assumed that the noise is Gaussian, so variable |x|2 (=energy
of samples) follows the chi-squared distribution. Here, it
is studied how well the measured noise follows that same
distribution, i.e., is there differences between the simulated
and measured noise. Fig. 9 presents the probability plots and
Fig. 10 presents a plot of the cumulative distribution function
(CDF) for the data in the vector x. Empirical CDF (=F (x))
can be defined as the proportion of x values less than, or equal,
to x. Matlab-generated chi-squared noise was used as a point
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Figure 7: Histogram for 39-39.1 GHz noise.
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Figure 8: Histogram for 2.5-2.6 GHz noise.

of comparison. From Figs. 9 and 10 can be seen that there
is no differences between the probabilities and CDFs between
the measured cases a-f and the Matlab-generated noise.

D. Analysis
In this section, the goal is to investigate how the noise at

difference frequency areas affect to the probability of detection
Pd and probability of false alarm Pfa of the LAD method. Also
here, Matlab-generated noise is used as a reference. The goal is
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Figure 9: Probability plots for Matlab noise and cases a-f.
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Figure 10: CDF plots for Matlab noise and cases a-f.

not to study the performance of the LAD method, which has al-
ready been done, see, for example, [16] and references therein.
Here, the purpose is to find out does the measured noise cause
any performance degradation compared to Matlab-generated
noise. In Fig. 11, Pd vs. SNR is presented. Narrowband (0.3%
of the studied bandwidth) theoretical information signal was
used as a detected signal. The used LAD threshold parameters
were 6.9 (upper) and 2.66 (lower) [16]. It can be noticed that
Pd values are approximately on the same level. Note that using
smaller upper threshold parameter, signal is found at 0 dB, but
there will be more falsely detected signals.
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Figure 11: Probability of detecting the signal vs. SNR.

TABLE II: Achieved Pfa values. Desired PFA,DES = 0.01

Case Frequency Range Pfa

Matlab noise - 0.0132
a 10− 110 MHz 0.0064
b 1− 1.1 GHz 0.0062
c 17− 17.1 GHz 0.0061
d 39− 39.1 GHz 0.0072
e 2.5− 2.6 GHz 0.0070
f 9− 9.1 GHz 0.0070

Probability of false alarm results are presented in Table II in
the noise-only case. The LAD thresholds were selected so that
the desired false alarm probability PFA,DES = 0.01, i.e., the
upper and lower threshold parameters were 4.6. It means that
when there is only noise present, 0.01 = 1% of the samples
is above the threshold. Here, 1% corresponds to 16 samples.
There is some difference between the desired noise PFA,DES

and measured noise Pfa values, that is, the measured ones are
slightly lower than the desired one. However, the difference is
only about 0.003, i.e., 5 samples out of a total of 1601 samples.
Performance differences are mainly caused by implementation
restrictions of hardware. Noise properties in the analog part
of spectrum analyzer may slightly vary in different frequency
ranges. In addition, quantization noise affects to the noise
properties.

V. CONCLUSION

Noise measurements were performed at several frequency
areas between 10 MHz and 39 GHz. The goal was to study the
statistical properties of measured noise in different frequency
areas. The measurement results depend on the used equipment.
Measured noise characteristics were analyzed and compared
also with Matlab-generated noise. It was noticed that as
the probability plots were almost equal, there was a great
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difference between the noise levels. Thus, adaptive spectrum
sensing is needed. The LAD spectrum sensing method that is
based on the assumption that the noise is Gaussian was studied
under the measured noise. It was noticed that the noise had
only small effect to the probability of detection and probability
of false alarm.
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