
Generic Security Services API authentication
support for the Session Initiation Protocol

Lars Strand

Norwegian Computing Center
Oslo, Norway

lars.strand@nr.no

Josef Noll

UniK-University Graduate Center
Kjeller, Norway

josef.noll@unik.no

Wolfgang Leister

Norwegian Computing Center
Oslo, Norway

wolfgang.leister@nr.no

Abstract—The mandatory and most deployed authentication
method used in the Session Initiaton Protocol, the Digest Access
Authentication method, is weak. Other, more secure authentica-
tion methods have emerged, but have seen little adoption yet. In
this paper, support for using a generic authentication method, the
Generic Security Services API, is added to the Session Initiaton
Protocol. When using this method, the Session Initation Protocol
does not need to support nor implement other authentication
methods, only use the provided API library. This enables the
Session Initiation Protocol to transparently support and use
more secure authentication methods in a unified and generic
way. As the suggested method includes a modification of the
Session Initiation Protocol, an initial deployment strategy towards
the Generic Security Services API authentication methods is
added. To negotiate an authentication service, we use the pseudo
security mechanism Simple and Protected GSS-API Negotiation
Mechanism.

Keywords—VoIP, SIP, authentication, GSS-API, SPNEGO.

I. INTRODUCTION

Voice over IP (VoIP) is taking over for the traditional Public
Switched Telephony Network (PSTN). At the end of 2009,
29.1 % of the private market in Norway was using VoIP (not
including mobile phones). There has been a steady increase in
the number of VoIP users since 2002, as well as a decrease in
PSTN [1]. With two billion users worldwide having access to
the Internet by the end of 2010 [2], the VoIP growth potential
is huge.

Several proprietary and non-proprietary VoIP protocols have
been created, but the protocol pair Session Initiation Protocol
(SIP) and Real-time Transport Protocol (RTP) is emerging as
the industry standard. RTP transfers the media content (voice),
while SIP handles the signaling, i.e., setup, modification and
termination of sessions between two or more participants. SIP
is an open standard developed by the Internet Engineering
Task Force (IETF) and specified in RFC3261 [3]. Additional
functionality is specified in numerous Request For Comments
(RFC) standard documents, making the SIP standard large and
complex [4].

PSTN is a mature and stable technology providing 99.999%
uptime [5], and users will expect VoIP to perform at similar
service level. But with an increasing number of VoIP users,
VoIP will become a target for attackers looking for financial
gain or mischief. A clear threat taxonomy is given by the

“VoIP Security Alliance” [6] and is discussed by Keromytis
[7]. Several vulnerabilities exist [8] and securing SIP based
installation is far from trivial [9].

In the EUX2010sec research project [10], we revealed, in
close collaboration with our project partners, that most VoIP
installations only use the mandatory, but weak, Digest Access
Authentication (DAA) method [11]. In two case studies,
with a VoIP installation supporting 3000 and 4700 phones
respectively, the public tender for those VoIP installations
greatly emphasized security and authentication requirements;
requirements that DAA does not cover adequately. We have
replicated the project partner’s VoIP installation in our VoIP
lab [12]. An attack against authentication has been analyzed
[13] and countered [14].

The main contribution of this paper is to present and add
support for the Generic Security Services Application Program
Interface (GSS-API) to SIP. Different security requirements
may require different authentication mechanisms. Instead of
adding support for many different authentication mechanisms
in SIP, support for GSS-API will provide a generic interface
that makes different authentication methods transparent to the
SIP protocol. To negotiate the best available authentication
service between two peers, the Simple and Protected GSS-
API NEGOtiation (SPNEGO) mechanism is used on top of
GSS-API.

The rest of the paper is organized as follows: a brief
overview of other SIP authentication methods is given in Sec-
tion II. The GSS-API and SPNEGO as a GSS-API mechanism
are explained in Section III and how the GSS-API can be
supported and implemented in SIP is shown in Section IV.
The industry evolution uptake strategy is briefly discussed in
Section V before future work and the conclusion are presented
in Section VI.

II. AUTHENTICATION IN SIP

When SIP was designed, functionality — and not security
— was the primary goal. The results today are a number of
uncovered vulnerabilites and attacks [15], [16]. SIP supports
a wide range of functionalities that can be utilized, ranging
from mobile handsets to high-end servers, each with dif-
ferent security requirements. Different security requirements
may use different authentication methods depending on the

117

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

usage and threat scenario. For example, a mobile handset
may have different requirements for authentication than that
authentication between SIP servers. Additional requirements
like power consumption and computational power must also
be considered. Thus, adding new security services to SIP
to improve the security design and meet different security
requirements can be challenging.

The Digest Access Authentication (DAA) method is the
mandatory and most used authentication method used with
SIP [17]. DAA is heavily influenced by HTTP digest au-
thentication. It relies on a cryptographic verification of a
plaintext password shared between client and server. The client
computes a MD5 hash value using the password, a nonce
value received from the server, and a few SIP header values.
The server computes the same digest, which then is compared
against the one received from the client. If these digests are
identical, the client has proven its identity and is authenticated.
Unfortunately, the DAA is considered weak and is vulnerable
to a series of attacks [8], including registration hijacking [14].

A more secure authentication method can be achieved by
using Secure MIME (S/MIME) [18]. There, the entire SIP
message is encapsulated in a MIME body that is signed and
optionally encrypted. When the S/MIME header is received,
the receiver checks whether the sender’s certificate is signed
by a trusted authority. A client must support multiple root
certificates since there is no consolidated root authority that is
trusted by all clients. This and other certificate handling issues
like revoking and renewing complicates the use of certificates.
Industry support for S/MIME has been limited [19].

Two other authentication methods have emerged within the
Internet Engineering Task Force (IETF):

1) The Asserted Identity [20] is intended to work within
a trusted environment. An additional, unprotected SIP
header is sent in clear that informs that the identity of
the client has been checked. Since the SIP header is sent
in clear rather than protected by cryptography methods,
it can easily be removed by an attacker without any of
the communicating peers noticing this.

2) The SIP Strong Identity [21] introduces a new SIP ser-
vice, the “authentication service”, which signs a hash over
selected SIP header values, and includes the signature
as a SIP header along with a URI that points to the
sender’s certificate. The receiver computes the same hash
and compares the results. Using this method, only the
client is authenticated. As above, an attacker can remove
these headers without implications.

Note that both of these authentication methods rely on a
successful DAA authentication to be applicable. These are also
applied by the SIP servers rather than the clients themselves,
and are thus only providing indirect authentication of the client
since the server is authenticating on behalf of the client.

III. GSS-API WITH SPNEGO
The GSS-API [22] provides a generic interface for appli-

cation layer protocols like SIP, with a layer of abstraction
for different security services like authentication, integrity or

Figure 1: The GSS-API protocol stack with the SPNEGO
negotiation mechanism and underlying security mechanisms.

confidentiality. With the GSS-API, an application does not
need to support or implement every authentication method, but
use the provided security API [23]. The GSS-API is developed
by the IETF and has been scrutinized by security professionals
over the years. It has been extensively tested, and is now
classified as a mature standard by the IETF. Further extensions
and improvements to GSS-API are done by IETF’s “kitten”
Working Group [24].

The GSS-API is not a communication protocol in itself, but
relies on the application to encapsulate, send, and extract data
messages called “tokens” between the client and server. The
tokens’ content are opaque from the viewpoint of the calling
application, and contain authentication data, or, once the
authentication is complete, portion of data that the client and
server want to sign or encrypt. The tokens are passed through
the GSS-API to a range of underlying security mechanisms,
ranging from secret-key cryptography, like Kerberos [25], to
public-key cryptography, like the Simple Public-Key GSS-API
Mechanism (SPKM) [26]. For an application, the use of the
GSS-API becomes a standard interface to request authentica-
tion, integrity, and confidentiality services in a uniform way.
However, GSS-API does not provide credentials needed by the
underlying security mechanisms. Both server and client must
aquire their respective credentials before GSS-API functions
are called.

To establish peer entity authentication, a security con-
text is initialized and established. After the security con-
text has been established, additional messages can be ex-
changed, that are integrity and, optionally, confidentially
protected. To initiate and manage a security context, the
peers use the context-level GSS-API calls. The client
calls GSS_Init_sec_context() that produces a “out-
put token” that is passed to the server. The server then calls
GSS_Accept_sec_context() with the received token
as input. Depending on the underlying security mechanism,
additional token exchanges may be required in the course
of context establishment. If so, GSS_S_CONTINUE_NEEDED
status is set and additional tokens are passed between the client
and server until a security context is established, as depicted
in Figure 4.

After a security context has been established, per-message
GSS-API calls can be used to protect a message by adding

118

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Figure 2: The GSS-API interface in SIP.

a Message Integrity Code (MIC) with GSS_GetMIC() and
verifying the message with GSS_VerifyMIC(). To encrypt
and decrypt messages, the peers can use GSS_Wrap() and
GSS_Unwrap(). Thus, two different token types exist:

1) Context-level tokens are used when a context is estab-
lished.

2) Per-message tokens are used after a context has been
established, and are used to integrity or confidentiality
protect data.

In addition to send and receive tokens, the application is
responsible to distinguish between token types. This is neces-
sary because different tokens types are sent by the application
to different GSS-API functions. But since the tokens are
opaque to the application, the application must use a method
to distinguish between the token types. In our solution, we use
explicit tagging of the token type that accompanies the token
message.

SPNEGO [27] is a pseudo security mechanism that enables
peers to negotiate a common set of one or more GSS-
API security mechanisms. The GSS-API stack with SPNEGO
is shown in Figure 1. The client sends a prioritized list
of supported authentication mechanisms to the server. The
server then chooses the preferred authentication method based
on the received list from the client. The client initiates
GSS_Init_sec_context() as with an ordinary GSS-API
security mechanism, but requests that SPNEGO is used as
the underlying GSS-API mechanism (“mech type”). The SP-
NEGO handshake between client and server is communicated
by sending and receiving tokens. After the handshake, the
client and server initiate and set up a security context (au-
thentication) using the agreed GSS-API security mechanism.

IV. GSS-API SUPPORT FOR SIP

Instead of adding numerous different authentication meth-
ods to SIP based on different security requirements, it is
desirable to keep the changes to the SIP standard to a mini-
mum. The industry might also be reluctant to adopt immature
and non-standardized security services, like different authen-
tication methods. Adding support for the GSS-API requires
only one small change to the SIP standard, and will open up

for a wide range of different authentication methods. In the
following subsections, we outline how to include support for
the GSS-API into the SIP authentication to replace the original
weak DAA.

A. SIP authentication using DAA

When a SIP client is authenticated to a server using
DAA, the authentication handshake data is encapsulated in
the WWW-Authenticate header from server to client, and
the Authorization header from client to server. We
reuse these headers for GSS-API support, and instead of
encapsulate DAA data, we send the GSS-API tokens. An
example of both DAA Authorization header and the new
Authorization header with GSS-API data is depicted in
Figure 3.

During the initialization of a security context it is necessary
to identify the underlying security mechanism to be used.
The caller initiating the context indicates at the start of the
token the security (authentication) mechanism to be used. The
security mechanism is denoted by a unique Object Identifier
(OID). For example, the OID for the Kerberos V5 mechanism
is 1.2.840.113554.1.2.2. However, there is no way
for the initiating peer to know which security mechanism
the receiving peer supports. If an unsupported “mech type”
is requested, the authentication fails. The GSS-API standard
resolves this by recommending to manually standardizing on
a fixed “mech type” within a domain. Since SIP addresses are
designed to be global [28], and not confined to a local domain,
a GSS-API negotiation mechanism is required. The SPNEGO
is such a GSS-API negotiation mechanism.

B. SIP authentication using GSS-API and SPNEGO

When using GSS-API with the SPNEGO mechanism, the
number of SIP messages between client and server during
authentication needs to be increased. During a DAA authen-
tication, the client sends a REGISTER message to the server.
The server, upon receiving a REGISTER, challenges the client
with a nonce. The client then generates a digest response,
a hash value computed over several SIP header values, the
nonce, and a shared secret. The client then re-sends the
REGISTER message with the digest response embedded. The
message flow of a SIP DAA handshake is shown in the first
four messages depicted in Figure 4.

In the following paragraphs, the numbers in parentheses
refer to the numbers in Figure 4. When a client comes online
and registers itself to a “location service” (SIP server), it does
so by sending a SIP REGISTER message (1). We define the
token type in the variable ttype. In the following messages,
the ttype is set to “context” indicating that these tokens are
context-level tokens. The first message (1) does not contain
any Authorization header. The server responds with an
empty WWW-Authenticate header (3):

REGISTER SIP/2.0
WWW-Authenticate: GSSAPI ttype="context"
token=""

119

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Figure 3: A SIP REGISTER message with the original DAA Authorization header to the left, and the same header
carrying GSS-API data to the right.

The client then calls GSS_Init_sec_context() with
SPNEGO as underlying GSS-API mechanism to negotiate
a common authentication mechanism (4). The GSS-API
“mech type” is set to SPNEGOs OID 1.3.6.1.5.5.2.
The token data might be in binary format, depending on the
security mechanism used. Since the SIP headers are in ASCII
string format, the token data is base64 encoded:

SIP/2.0 401 Unauthorized
Authorization: GSSAPI ttype="context"

token="0401000B06092A864886F7120..."

The server retrieves the GSS-API data, the token, and
passes this to the SPNEGO GSS-API mechanism. In this
first initial token, the client embeds authentication data for
its first preferred authentication mechanism. This way, should
the server accept the clients preferred mechanism, we avoid an
extra SIP message round trip. If the client’s preferred method
was accepted by the server, the server passes the relevant
authentication data to the selected authentication mechanism
in a 401 SIP message (5). The selected authentication method
continues to pass tokens between client and server as many
times as necessary to complete the authentication (6-7-N)
and establish a security context. Once the security context is
established, it sends a 200 OK SIP message (N+2). Should
the server have some last GSS-API data to be communicated
to the client to complete the security context, it can be carried
in a WWW-Authenticate header embedded in the 200 OK
message:

SIP/2.0 200 OK
WWW-Authenticate: GSSAPI ttype="context"

token="dd02c7c2232759874e1c20558701..."

If the client’s preferred mechanism is not the server’s most
preferred mechanism, the server outputs a negotiation token
and sends it to the client embedded in a new 401 SIP
message (5). The client processes the received SIP message
and passes the authentication data to the correct authentication
mechanism. The GSS-API then continues as described in the
previous paragraph.

V. EVOLUTION STRATEGY

Industrial uptake of new ideas and protocols requires an
evolution strategy, especially in the telecom world where
standards are used to serve more than four billion people.

TCP/IP, IPv6, and UMTS are all examples of technologies
where the evolutionary path was not clearly identified, and
the technological uptake was significantly delayed.

Authentication for SIP-based services will not only be
limited to mobile handsets and SIP authentication servers, it
will be used for sensors and devices in the future Internet
of Things (IoT). Thus the basic requirement of an advanced
authentication scheme is modularity and flexibility: both of
these are provided by the suggested approach. Support for
the GSS-API will extend the SIP protocol with an improved
security mechanism that offers more flexibility in different
scenarios.

An industrial uptake will first be envisaged for mobile
devices such as smartphones or tabs, where SIP clients can
be provided with the new functionality. Discussions with
industrial actors are ongoing to ensure the compatibility on
the server side. After this initial phase, an extension of the
approach is envisaged including access to services in a sensor
network.

VI. CONCLUSION AND FUTURE WORK

Since the only mandatory and widely deployed Digest
Access Authentication method in SIP is weak, other more
secure authentication methods are desired. In this paper, we
have added support for GSS-API in SIP, as well as for the
SPNEGO mechanism that is used to negotiate the preferred
GSS-API security mechanism supported by both client and
server. The required change to the SIP protocol has been kept
to a minimum, and the authentication header from DAA has
been reused to prevent adding additional SIP headers to the
standard.

Different VoIP installations have different security require-
ments that may require different security services. We have
shown that the use of the GSS-API provides SIP with a
wide range of different authentication methods in a uniform
and standardized way. Different authentication methods can
be used depending on the different security requirements for
each SIP installation. This adds to the flexibility of SIP, like
adding a new authentication method, without requiring further
changes to the SIP standard, once the GSS-API is supported.

In our earlier work, we have shown that the DAA is weak
[14]. Therefore, we want to replace DAA with support for a
better, more robust authentication scheme that authentication
methods like GSS-API supports. This implies that we replace

120

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

Figure 4: SIP REGISTER message flow with GSS-API security context establishment (authentication).

the original DAA header content with GSS-API data content.
However, since the GSS-API only is an interface to underlying
security mechanisms, the use of the GSS-API does not in
itself provide any security service. Thus, the security of the
GSS-API is no stronger than the weakest security mechanism
acceptable to the client and server using the GSS-API. So,
if the underlying GSS-API authentication mechanism does
not protect relevant SIP headers, it might be as vulnerable
to the attack shown previously with the DAA. We still need
to examine what kind of SIP message integrity protection is
offered by the different GSS-API authentication mechanisms.

The credential acquisition between peers must also be
completed before initiating the GSS-API. Also, if the SP-
NEGO negotiation is not integrity-protected, the negotiation
is vulnerable to a man-in-the-middle “down-grade” attack. An
attacker can intercept and modify the negotiation messages so
that the least favorable authentication method is used.

Future work will look into different GSS-API security
mechanisms and their implications for SIP, including overhead
evaluation benchmark. Implementing a proof of concept with
GSS-API support for SIP is also desired. We plan to co-
operate with the IETF and the “kitten” WG to further elaborate
the GSS-API for SIP. Further challenges are the Simple
Authentication and Security Layer (SASL) [29] for SIP, and
a comparison of SASL with GSS-API, as well as the support
for using GSS-API mechanisms within SASL [30].

ACKNOWLEDGMENT

This research is funded by the EUX2010SEC project in
the VERDIKT framework of the Norwegian Research Council
(Norges Forskningsråd, project 180054). The authors would
like to thank Trenton Schulz and the anonymous reviewers
for valuable comments on earlier drafts of this paper.

REFERENCES

[1] “Det norske markedet for elektroniske kommunikasjonstjenester 2009
(The Norwegian market for electronic communication services 2009),”
Post- og teletilsynet (The Norwegian Post and Telecommunications
Authority), 2010. [Online]. Available: http://www.npt.no/ikbViewer/
Content/119027/Ekomrapport 2009 .pdf 10. Jan 2011

[2] Telecommunication Development Sector (ITU-D), “The world in 2010,”
ITU-T ICT facts and figures, 2010.

[3] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session Initiation
Protocol,” RFC 3261 (Proposed Standard), Internet Engineering Task
Force, Jun. 2002, updated by RFCs 3265, 3853, 4320, 4916,
5393, 5621, 5626, 5630, 5922, 5954, 6026. [Online]. Available:
http://www.ietf.org/rfc/rfc3261.txt 10. Jan 2011

[4] H. Sinnreich and A. B. Johnston, Internet communications using
SIP: Delivering VoIP and multimedia services with Session Initiation
Protocol, 2nd ed. New York, NY, USA: John Wiley & Sons, Inc.,
August 2006.

[5] D. Kuhn, “Sources of failure in the public switched telephone network,”
Computer, vol. 30, pp. 31–36, 1997.

[6] VoIPSA, “VoIP security and privacy threat taxonomy,” Public
Realease 1.0, Oct. 2005. [Online]. Available: http://voipsa.org/
Activities/VOIPSA Threat Taxonomy 0.1.pdf 1. Nov 2011

[7] A. D. Keromytis, “Voice over IP: Risks, Threats and Vulnerabilities,”
in Proceedings of the Cyber Infrastructure Protection (CIP) Conference,
New York, June 2009.

[8] H. Dwivedi, Hacking VoIP: Protocols, Attacks, and Countermeasures,
1st ed. No Starch Press, Mar. 2009.

[9] A. D. Keromytis, “Voice-over-IP security: Research and practice,” IEEE
Security & Privacy Magazine, vol. 8, no. 2, pp. 76–78, 2010.

[10] “Research project: EUX2010SEC – Enterprise Unified Exchange
Security”.” [Online]. Available: http://www.nr.no/pages/dart/project
flyer eux2010sec 1. Nov 2011

[11] L. Fritsch, A.-K. Groven, L. Strand, W. Leister, and A. M. Hagalisletto,
“A Holistic Approach to Open Source VoIP Security: Results from the
EUX2010SEC Project,” International Journal on Advances in Security,
no. 2&3, pp. 129–141, 2009.

[12] L. Strand, “VoIP lab as a research tool in the EUX2010SEC project,”
Norwegian Computing Center, Department of Applied Research in
Information Technology, Tech. Rep. DART/08/10, April 2010.

[13] A. M. Hagalisletto and L. Strand, “Formal modeling of authentication
in SIP registration,” in Second International Conference on Emerging

121

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

http://www.npt.no/ikbViewer/Content/119027/Ekomrapport_2009_.pdf
http://www.npt.no/ikbViewer/Content/119027/Ekomrapport_2009_.pdf
http://www.ietf.org/rfc/rfc3261.txt
http://voipsa.org/Activities/VOIPSA_Threat_Taxonomy_0.1.pdf
http://voipsa.org/Activities/VOIPSA_Threat_Taxonomy_0.1.pdf
http://www.nr.no/pages/dart/project_flyer_eux2010sec
http://www.nr.no/pages/dart/project_flyer_eux2010sec

Security Information, Systems and Technologies SECURWARE ’08.
IEEE Computer Society, August 2008, pp. 16–21.

[14] L. Strand and W. Leister, “Improving SIP authentication,” in Accepted
for publication in The Tenth International Conference on Networks
(ICN 2011), Jan 2011.

[15] A. M. Hagalisletto and L. Strand, “Designing attacks on sip call
set-up,” International Journal of Applied Cryptography, vol. 2, no. 1,
pp. 13–22(10), July 2010. [Online]. Available: http://inderscience.
metapress.com/link.asp?id=jh437k6747064307 10. Jan 2011

[16] A. D. Keromytis, “A Survey of Voice Over IP Security Research,” in
Proceeding of the 5th International Conference on Information Systems
Security (ICISS), December 2009, pp. 1 – 17.

[17] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach,
A. Luotonen, and L. Stewart, “HTTP Authentication: Basic and
Digest Access Authentication,” RFC 2617 (Draft Standard), Internet
Engineering Task Force, Jun. 1999. [Online]. Available: http:
//www.ietf.org/rfc/rfc2617.txt 10. Jan 2011

[18] J. Peterson, “S/MIME Advanced Encryption Standard (AES)
Requirement for the Session Initiation Protocol (SIP),” RFC 3853
(Proposed Standard), Internet Engineering Task Force, Jul. 2004.
[Online]. Available: http://www.ietf.org/rfc/rfc3853.txt 10. Jan 2011

[19] D. Sisalem, J. Floroiu, J. Kuthan, U. Abend, and H. Schulzrinne, SIP
Security. WileyBlackwell, Mar. 2009.

[20] C. Jennings, J. Peterson, and M. Watson, “Private Extensions to
the Session Initiation Protocol (SIP) for Asserted Identity within
Trusted Networks,” RFC 3325 (Informational), Internet Engineering
Task Force, Nov. 2002, updated by RFC 5876. [Online]. Available:
http://www.ietf.org/rfc/rfc3325.txt 10. Jan 2011

[21] J. Peterson and C. Jennings, “Enhancements for Authenticated Identity
Management in the Session Initiation Protocol (SIP),” RFC 4474
(Proposed Standard), Internet Engineering Task Force, Aug. 2006.
[Online]. Available: http://www.ietf.org/rfc/rfc4474.txt 10. Jan 2011

[22] J. Linn, “Generic Security Service Application Program Interface
Version 2, Update 1,” RFC 2743 (Proposed Standard), Internet
Engineering Task Force, Jan. 2000, updated by RFC 5554. [Online].
Available: http://www.ietf.org/rfc/rfc2743.txt 10. Jan 2011

[23] D. Todorov, Mechanics of User Identification and Authentication:
Fundamentals of Identity Management, 1st ed. Auerbach Publication,
Jun. 2007.

[24] “IETF Common Authentication Technology Next Generation (kitten).”
[Online]. Available: http://datatracker.ietf.org/wg/kitten/charter/ 1. Nov
2011

[25] L. Zhu, K. Jaganathan, and S. Hartman, “The Kerberos Version
5 Generic Security Service Application Program Interface (GSS-
API) Mechanism: Version 2,” RFC 4121 (Proposed Standard),
Internet Engineering Task Force, Jul. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4121.txt 10. Jan 2011

[26] C. Adams, “The Simple Public-Key GSS-API Mechanism (SPKM),”
RFC 2025 (Proposed Standard), Internet Engineering Task Force, Oct.
1996. [Online]. Available: http://www.ietf.org/rfc/rfc2025.txt 10. Jan
2011

[27] L. Zhu, P. Leach, K. Jaganathan, and W. Ingersoll, “The Simple
and Protected Generic Security Service Application Program Interface
(GSS-API) Negotiation Mechanism,” RFC 4178 (Proposed Standard),
Internet Engineering Task Force, Oct. 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4178.txt 10. Jan 2011

[28] L. Strand and W. Leister, “A Survey of SIP Peering,” in
NATO ASI - Architects of secure Networks (ASIGE10), May 2010.

[29] A. Melnikov and K. Zeilenga, “Simple Authentication and Security
Layer (SASL),” RFC 4422 (Proposed Standard), Internet Engineering
Task Force, Jun. 2006. [Online]. Available: http://www.ietf.org/rfc/
rfc4422.txt 10. Jan 2011

[30] S. Josefsson and N. Williams, “Using Generic Security Service
Application Program Interface (GSS-API) Mechanisms in Simple
Authentication and Security Layer (SASL): The GS2 Mechanism
Family,” RFC 5801 (Proposed Standard), Internet Engineering Task
Force, Jul. 2010. [Online]. Available: http://www.ietf.org/rfc/rfc5801.txt
10. Jan 2011

122

AICT 2011 : The Seventh Advanced International Conference on Telecommunications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-123-6

http://inderscience.metapress.com/link.asp?id=jh437k6747064307
http://inderscience.metapress.com/link.asp?id=jh437k6747064307
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc3853.txt
http://www.ietf.org/rfc/rfc3325.txt
http://www.ietf.org/rfc/rfc4474.txt
http://www.ietf.org/rfc/rfc2743.txt
http://datatracker.ietf.org/wg/kitten/charter/
http://www.ietf.org/rfc/rfc4121.txt
http://www.ietf.org/rfc/rfc2025.txt
http://www.ietf.org/rfc/rfc4178.txt
http://www.ietf.org/rfc/rfc4422.txt
http://www.ietf.org/rfc/rfc4422.txt
http://www.ietf.org/rfc/rfc5801.txt

	I Introduction
	II Authentication in SIP
	III GSS-API with SPNEGO
	IV GSS-API support for SIP
	IV-A SIP authentication using DAA
	IV-B SIP authentication using GSS-API and SPNEGO

	V Evolution strategy
	VI Conclusion and future work
	References

