
Risk Based Web Authentication Using Bluetooth Devices

Asad Ali
Digital Identity and Security

Thales
Austin, USA

asad.ali@thalesgroup.com

Darmawan Suwirya
IBM Technology Services

IBM
Austin, USA

dsuwirya@ibm.com

Abstract - There has always been a growing need for online
access solutions that use strong authentication methods
without encumbering the user. Current solutions that are easy
to use and deploy offer weak security, while those that offer
strong security are hard to use and deploy. The solution
architecture presented in this paper allows users to continue
using their existing authentication method, which in itself may
be weak, but can be made stronger by augmenting it with
standard Bluetooth devices that are part of the user’s everyday
work environment. These Bluetooth devices seamlessly offer
additional factors of authentication without any explicit user
intervention. This approach creates opportunities for adaptive,
continuous and risk-based authentication where proximity of
known Bluetooth devices is an input to risk management
policies.

Keywords - bluetooth devices; user convenience; adaptive
online authentication; browser extension.

I. INTRODUCTION

"On the Internet, nobody knows you're a dog" [1] is an
adage and meme about identity verification on the Internet,
or rather lack thereof. It began as a cartoon caption by Peter
Steiner and was published by The New Yorker on July 5,
1993. Ironically, a quarter of a century later, we still seem to
be battling the same challenges of identity verification for
Web applications, though on a different scale. Despite the
collective desire of the security industry to get rid of
knowledge-based authentication, passwords still remain the
primary method of proving a person’s identity on the
Internet. This absence of progress has not been for lack of
trying. There have been several approaches that augment the
single authentication factor based on what-you-know, with a
second factor based on what-you-have, or even a third one
based on what-you-are. All these multi-factor solutions
demand a dedicated hardware token. While these hardware
tokens enhance the level of assurance associated with the
authentication process, they also add complexity, thereby
reducing usability, especially for millennials who are born
and raised in the social media era and shun products that lack
crisp user experience. For this reason, multi-factor
authentication techniques are generally confined to
controlled settings, such as enterprise and office
environments where the possession of dedicated tokens can
be made mandatory. However, the need for strong
authentication is universal and is equally applicable in
everyday Internet use outside these controlled environments.

This paper describes a technique of authenticating users
based on their typical surroundings and work environment,

by checking the presence of known or expected Bluetooth
devices in the proximity of the user. The list of what devices
to look for can either be explicitly specified by the user, or it
can be implicitly learned by the system through previous
successful logins.

The rest of the paper is organized as follows. Section II
provides a background to the authentication challenge, and
explains why the industry is still looking for a solution.
Section III describes the detailed design, architecture and
implementation of one such solution. Section IV offers an
analysis of this proposed architecture in terms of security and
user experience. We then offer our conclusions in Section V.

II. BACKGROUND

When using a Web browser to authenticate to an online
service provider, a user typically enters his/her credentials
into the Web page. In most cases, these login credentials are
username and password. This single (what-you-know) factor
is very easy to deploy, but universally considered weak. To
improve the security of authentication, a second factor is
added. This factor can be a smart card connected to the
computer, a One-Time Password (OTP) generated on a
dedicated device, a numeric code sent to the user’s phone,
etc. In all cases, the user has possession of this hardware
token (what-you-have) that constitutes the second factor.

This second-factor hardware token has to be issued or
configured by the service provider, thereby adding to the cost
and complexity of deployment. The user cannot unilaterally
select his/her own hardware tokens, such as one or more of
the following devices: mobile phone, wireless keyboard,
wireless mouse, wearable devices, wireless speaker, or any
other Bluetooth enabled device and then use them as second-
factor when authenticating online. These devices have to be
issued by the Identity Provider. The reason for this restriction
lies in the underlying authentication technology that
demands a tight coupling of cryptographic algorithm
between the client device and the backend authentication
server. For example, the use of OTP or Public Key
Infrastructure (PKI) requires both the device and the server
to be updated together. How do the secret algorithm and the
counter get exchanged between the device and the server?
Will authentication flow use OATH Challenge-Response
Algorithm (OCRA) [2], a challenge-response flavor of OTP?
Similar complexities arise when using public key
cryptography protocols.

The Fast Identity Online (FIDO) standard [3] addresses
some of these issues by relaxing the tight binding between
edge devices and backend authentication servers. However,

17Copyright (c) IARIA, 2019. ISBN: 978-1-61208-747-4

AFIN 2019 : The Eleventh International Conference on Advances in Future Internet

this adds a new constraint of only using devices that have
FIDO stack built into them. The list of such devices, though
slowly growing, is still a tiny fraction of the otherwise
abundantly available Bluetooth devices.

There are additional usability concerns with existing
approaches. For example, one-time numeric codes pushed to
user’s phone assume the phone is on the network and then
also require manual action for the user to type the codes into
a browser window. Biometric systems need specialized
scanners and backend modifications. FIDO Universal Two
Factor (U2F) [3] tokens require an action on the part of the
user, such as pushing a button manually on the device.

Our solution enables an adaptive authentication
framework so that the user’s login is controlled by the
presence of Bluetooth devices that can be preselected by the
user. This authentication solution works without any explicit
user action or interaction with hardware tokens, thereby
addressing the following shortcomings identified in other
existing approaches:

1. Devices for two-factor authentication have to be
customized. They are also selected at the discretion
of the authentication server or identity provider.

2. The deployment of these two-factor authentication
devices is costly for merchants. Most often than not,
this cost is indirectly passed to the user.

3. Users are required to carry these devices, which
negatively impacts user experience.

4. The turn-around time to replace a device is long.
User cannot select a new device unilaterally.

III. PROPOSED SOLUTION

This section describes the philosophy, architecture and
implementation of the proposed solution.

A. Approach Overview

The solution presented in this paper can enable an
adaptive authentication framework so that the user’s login is
controlled by the presence of Bluetooth or Bluetooth Low
Energy (BLE) devices that are explicitly or silently selected
at user’s discretion, and not dictated by the Identity Provider.
In addition to the primary authentication method (e.g.,
username and password), the presence of such previously
identified Bluetooth devices is also checked. Virtually any
Bluetooth device can be used based on user preference.
Some examples include a user’s mobile phone, wearable
device (such as smart watch or fitness band), wireless
keyboard, wireless mouse, wireless headphone, wireless
speaker, smart pen, modern workout bench, weight scale,
etc.

Risk based authentication already relies on data signals,
such as network information, to confirm user’s location,
typing patterns to confirm user behavior, etc. Similarly,
proximity of known Bluetooth devices can also indicate a
trusted environment and hence allow for a more frictionless
user login experience.

The challenge is to build this data signal handling into
Web applications and enforce them through Web agents

running on the user’s computer. Web browsers can check the
presence of Bluetooth devices in proximity by using Web
Bluetooth Application Programming Interface (API) [5] or
browser extension. One example of such Web browser
extension is SConnect [4] that allows Web applications to
seamlessly connect to security devices using a range of
communication protocols, including Bluetooth.

B. High Level Design

The solution is largely based on common existing Web
authentication system design, with slight enhancements
added on both client and server sides in order to support the
proximity of known Bluetooth devices as second factor
authenticators. Figure 1 illustrates these components.

Figure 1. High-level block diagram of solution components.

These enhancements are simple to implement, yet
powerful in their impact on delivering a seamless and secure
authentication experience.

1) Client Modifications: On the client side, modification
is done to the authentication page where the user would
normally enter his/her username and password. The login
page is augmented through a JavaScript code that uses Web
Bluetooth API to silently scan and retrieve the list of
Bluetooth devices found in proximity of the user’s primary
access device, for example his/her Personal Computer (PC).
This API is currently only available in some modern
browser versions. However, in the cases where Web
Bluetooth API is not yet available on the user’s browser,
browser extension can be used to poly-fill the required
functionality. This is standard practice in Web application
development to compensate for missing browser capability
by using an external library or component.

A list of the Bluetooth devices which are found in
proximity of user, some minimal information about these
devices, and the credentials entered by the user are then sent
to the backend authentication server. The device
information may contain its name, type, signal strength, etc.
The user information can be as simple as user identifier, or
could include actual credentials such as password, OTP or
some other form of challenge-response.

Authentication
Server

Internet

Web Browser

18Copyright (c) IARIA, 2019. ISBN: 978-1-61208-747-4

AFIN 2019 : The Eleventh International Conference on Advances in Future Internet

Figure 2 shows a sample of code snippet that can be
used for scanning Bluetooth devices in proximity using Web
Bluetooth API specification. Once inserted into the login
page, this script is expected to trigger itself when page is
loaded. It makes the necessary API calls to instruct the Web
browser to start scanning for Bluetooth devices. The script
collects some minimal but useful information from every
Bluetooth device detected in proximity of the device on
which this Web browser is running. It then constructs the
authentication request payload using this information. When
the user has completed the login process, the login page
along with this script is unloaded. Just before this unload
step, the script can also do necessary clean up and instruct
the Web browser to stop scanning for Bluetooth devices.

Figure 2. Code snippet for scanning Bluetooth devices.

A sample of the authentication request payload could
look like the data blob shown in Figure 3. The payload
would still contain the user credentials as before, but in
addition it will now also contain information regarding
Bluetooth devices which are found in proximity. Examples
of such information are device identifier (ID), device name,
service IDs, appearance types, transmission power class,
signal strength, and connection status. Individually each
piece of information is minimal, but when used collectively,
they are quite useful and unique enough to distinguish one
device from another. Upon receiving authentication request
payload, the backend authentication server then uses all this
information to determine whether user is really who he
claims to be.

A better alternative design could be to direct the client to
look only for a predetermined collection of Bluetooth
devices, guided through a set of high-level filter criteria.
These criteria are determined by the server and passed to the
client. The client then returns information related to devices

that match these criteria. This design has several benefits,
such as faster scanning time, collection of more relevant
device information, and thereby smaller authentication
request payload sent to the server. Furthermore, this
approach is equally secure since it significantly reduces the
risk of exposing policy or user-device mapping information.

Figure 3. Authentication payload sent by browser to server.

2) Server Modifications: On the server side,
modification is done to the back-end authentication logic
and infrastructure. The server needs to be able to accept
additional payload in the authentication request. It then
processes the information contained in this payload,
including the information about Bluetooth devices. In
addition to matching the username/password against user
database, the authentication logic now also does verification
of Bluetooth device information against the user/device
database using policies that control how this new device
information is expected to contribute to the final
authentication decision. For example, one policy may
require the presence of only one known device in the
proximity of the user, while another policy may mandate
that at least two such devices be present.

This processing not only yields a decision to grant or
deny access to requested resource, but perhaps more
importantly it also feeds the outcome into machine learning
infrastructure that will make future authentication decisions
smarter and more accurate.

C. Environment Initialization

Depending on the expected security level and type of
authentication flow that is offered, the user may be requested
to perform a set of minimal setups prior to using the system.
Performing these optional setups has benefits. It increases
the overall security of device selection and identification
process. It also provides a fine grain control for the users to
choose which devices they want to explicitly trust and use
for this purpose. This is done through two sequences: device
pairing and device binding. The user is free to choose either
of these sequences or both of them, if so desired.

1) Device Pairing: As the name suggests, pairing means
introducing two Bluetooth capable devices to each other.

GET /authenticate HTTP/1.1
{

“username”: “bob”, “password”: “1234”,
“devices”: [

{“id”: “00:11:22:33:FF:EE”,
“serviceIDs”: “0x2a01”,
“appearance”: “0x10”,
“txPower”: “4dBm”,
“rssi”: “-40dBm”,
“connected”: “false”},

{“id”: “00:12:23:34:AB:CD”,
“serviceIDs”: “0x3440”,
“appearance”: “0x20”,
“txPower”: “0dBm”,
“rssi”: “-52dBm”,
“connected”: “true”}

]
}

let btScan;
let btDevices = [];

// scan for BLE devices on page load
window.onload = () => {

let bt = navigator.bluetooth;
let opts = {acceptAllAdvertisements: true};

btScan = bt.requestLEScan(opts).then(() => {

let eventName = ‘advertisementreceived’;
bt.addEventListener(eventName, event => {
let device = event.device;
btDevices.push({
‘name’: device.name,
‘id’: device.id,
‘serviceIDs’: event.uuids,
‘appearance’: event.appearance,
‘txPower’: event.txPower,
‘rssi’: event.rssi,
‘connected’: device.gatt.connected

});
});

});
};

// stop scanning for BLE devices on page unload
window.onunload = () => {
btScan.stop();
};

19Copyright (c) IARIA, 2019. ISBN: 978-1-61208-747-4

AFIN 2019 : The Eleventh International Conference on Advances in Future Internet

After the pairing handshake, each device knows about the
other. For example, pairing a Bluetooth headset with your
smartphone or paring the smartphone with the infotainment
system of your car. In the context of this paper user pairs
one or more Bluetooth devices to his computer. This process
is either done through tools available from the computer OS,
or can be driven through the Web application itself with the
help of either Web Bluetooth API or browser extension.
This step is optional, but preferred as it increases trust level
of the paired device, hence increasing the security of
authentication. Only connection specific information is
retrieved from the device. Device application related data
such as workout history of a fitness band, are neither needed
nor fetched during pairing. This can allay concerns about
security and privacy of user data when such devices are
used for two-factor authentication.

2) Device Binding: By “device binding” we mean the
mapping of a user account to certain Bluetooth devices. This
mapping is maintained on the authentication server. There
are two ways authentication server can construct this map:

1. The user is asked to explicitly select devices.
2. The authentication server implicitly builds this list

of devices over time, by monitoring available
devices at the time of multiple successful logins.

In the first case, once the user has logged in to online
service provider using an existing authentication method,
the Web application will use the Web Bluetooth API or
browser extension to look up for all Bluetooth devices
found in the proximity and (optionally) paired to user’s
computer. The list of these available devices is shown to
user in the Web browser. The user can now select one or
more devices he wants to bind to his account. This
information is stored in authentication server database and
all subsequent access to user account will be granted only
when the selected devices are also present at the time of
authentication.

For risk-based authentication systems where explicit
user involvement is not desired, or for user convenience, the
system can decide not to expose user to device selection
steps and can make device binding process transparent. The
authentication server automatically builds the knowledge of
which devices are relevant and associated to a user based on
the device data silently collected over time, through multiple
successful user authentications. For example, the user will
never explicitly say “I want to associate my mobile phone
and wireless mouse with my account”. However, if on every
login attempt the server notices that these two devices are
present, it will implicitly bind these to the user account.
After a certain number of such logins, as determined by the
policy, device proximity factor can be enabled. At this
point, the user can enter his login user identifier (e.g., email
address) and authentication server will allow access without
asking for any login credential, provided the same two
devices are detected in the proximity.

D. Authentication Flow

This section explains detailed flows of authentication
after the one-time environment initialization has been
completed.

1) Adaptive Silent Authentication: In this flow, all
required proximity devices are present, so the user can login
simply by providing his/her user ID. No additional
credentials such as password or OTP are required. This flow
is illustrated in Figure 4, and outlines the steps taken by a
user as well as authentication application from the initial
intent by user to login to a Web resource, to the final action
to grant access to the requested resource.

Figure 4. Adaptive authentication flow not requiring any user credential.

As shown in Figure 4, the user has two devices, D1 and
D2, in close proximity during the login attempt. The
numbered steps and message exchanges (1 to 10) are
explained below:

1. The user initiates the login process by opening a
Web browser from the access device such as a PC.

2. The Web browser client connects to the login portal
of the authentication server: the Identity Provider.

3. The Authentication server sends back the login page
to be rendered in the browser, asking the user to
enter his UserID, such as username. This login page
content also includes logic to scan for Bluetooth
devices in the proximity of the user’s computer.

4. This logic to scan for Bluetooth devices can be
implemented by some JavaScript code that is
automatically triggered by the Web browser when
the login page is loaded. This code builds a list of
devices it finds in the proximity of the user’s
computer. This is done either through direct use of
the Web Bluetooth API, or through a browser

20Copyright (c) IARIA, 2019. ISBN: 978-1-61208-747-4

AFIN 2019 : The Eleventh International Conference on Advances in Future Internet

extension that invokes operating system level APIs
to search for Bluetooth devices.

5. In parallel, the user enters his/her UserID (not the
login credential, such as password) as required by
the Web application. This information is entered
within the same login page.

6. The Web browser sends this UserID to the
authentication server, along with the list of
Bluetooth devices found in proximity; in this case
D1 and D2.

7. The authentication server looks up the login policy
for this user, identified by UserID. It notices that the
user had previously associated two Bluetooth
devices with his/her account: a keyboard (D1) and a
smartphone (D2).

8. The authentication server analyses the list of
Bluetooth devices found in the proximity received
earlier and verifies that both devices D1 and D2 are
present.

9. The authentication server then determines that,
since both devices are present, no further
authentication credentials are required. It sends back
a “Login OK” message.

10. User is granted access to the requested resource.

The user experience of this silent login flow is similar to
password caching by the browser, or authentication server
storing a cookie in the browser and automatically granting
access to the user once that cookie is presented. However,
the proposed Bluetooth device-proximity based logic offers
a stronger assurance level since it relies on multi-factor
authentication. In addition, it allows Web applications to
create different policies to access resources of varying
security levels, or when not all the expected devices are
found in the vicinity of the access device.

2) Adaptive Step-up Authentication: An alternate flow
can be when devices found in proximity of user are different
from the expected list, thereby forcing the authentication
server to ask for additional credential from the user.
Depending upon the policy set by administrator of the
resource being accessed, this credential could be a simple
password, an OTP or even an elaborate PKI based challenge
response through a dedicated security token. This step-up
authentication flow is also triggered when no device is
found in the vicinity.

3) Continuous Authentication: The Web application can
optionally also perform continuous monitoring of the
Bluetooth devices detected during initial login to make sure
they remain in the proximity of the PC. In case they are
removed, the application can be put in “stand-by” mode
where further interaction is disallowed, until the missing
device returns. Such continuous monitoring is possible
through a browser extension. The user can now be logged in
seamlessly without having to re-enter his primary credential.
As an example of such continuous authentication, a user’s
Web session can be automatically put in “lock” mode when

he/she moves away from his/her computer with device D2
(e.g. smartphone) in his pocket, and then restored when he
returns to his/her computer.

IV. ANALYSIS OF PROPOSED SOLUTION

The design and architecture presented in this paper is a
good compromise between security and usability. It is hard
to find solutions that deliver on both. Most often,
authentication solutions that are usable are not secure, while
those that offer strong security generally do it at the expense
of usability. Similar approach has been promoted in other
reports [6] as well, further validating the value of using
Bluetooth devices for authentication.

A. User Experience

Usability and user experience (UX) are gaining
prominence in all security related products. This is not just
for aesthetics or to merely appease users. Extremely robust
and secure solutions that are not easy to use, end up
degrading overall system security since users stop using
them, and instead may find alternative options. The proposal
identified in this paper is designed to improve UX without
compromising security. It is modeled after “recognize”
rather than ask for user credentials. The intent is to reduce
user interactions with the authentication system. If a user
connects from an office network, using his laptop, during
office hours, and has his two previously identified Bluetooth
device in close proximity, some application may consider
this as sufficient authentication. Why bother the user for any
login credential in this scenario? Some critical applications
may additionally ask for only a single factor, like password.
Still other highly sensitive applications could demand a
higher assurance level of authentication like OTP or PKI
based challenge-response from a dedicated hardware token.
But this choice is based on the sensitivity of the Web
application or the value of resource being accessed. In all
cases, the surrounding environment acts as a silent “second-
factor” to authenticate the user, thereby reducing the friction
of login.

B. Security

As evident through numerous data breaches [7], attackers
can easily compromise the what-you-know factor of a user’s
login credential such as password. If access to protected
resources is controlled by this credential alone, an attacker
can have full access to the resource. The promise of two-
factor authentication (2FA) is to prevent attackers from
having this free access using stolen or shared credentials.
However, as mentioned earlier, the deployment and use of
such dedicated tokens can be cumbersome for service
providers and users alike. The silent use of Bluetooth devices
serves the same purpose, but with far less overhead. As an
attacker sends user’s credential to the server, along with any
Bluetooth devices in the proximity (if any), the server
validates this credential and then matches the list of
Bluetooth devices with the devices either explicitly bound to
the account by user, or implicitly bound by the server based

21Copyright (c) IARIA, 2019. ISBN: 978-1-61208-747-4

AFIN 2019 : The Eleventh International Conference on Advances in Future Internet

on prior repeated successful authentications. Since the
attacker does not have the specified configuration of devices,
the login request is denied.

C. Policy

The proposed solution gives Web applications flexibility
in deciding what authentication method is needed for which
scenario. Similarly, the user is free to bind any number of
devices to his/her account. In case multiple devices are
bound to an account, the user or authentication server can
specify whether all or a specific number of devices are
mandatory for authentication. For example, a user binds
his/her phone, his/her watch, and keyboard to his/her
account, and specifies that any two of these three devices
are needed for authentication. This rule is then enforced by
the server when the user logs in.

Multiple valid login locations can be enabled with
different configurations of known devices. In this way, a
user may have a “work” or “home” configuration of specific
Bluetooth devices that need to be present when logging to
the account from these predefined locations.

D. Advantages

This adaptive and risk-based authentication using the
proximity of user selected devices offers the simplicity of a
single-factor knowledge-based authentication, but with the
added security of multi-factor authentication. It also enables
enterprise administrators to calibrate adaptive authentication
with a range of policy options. Users will see these benefits:

1. User can continue to use the existing authentication
method, e.g., password.

2. The second factor is based on devices picked by the
user, not the device enforced by service provider.

3. Use of second factor is transparent, requiring little
interaction or learning, especially when device use
is automatically detected by server.

4. User can “walk away” from the computer and Web
application is automatically put in stand-by mode.

Authentication servers will see these benefits:

1. Service provider can enforce strong multi-factor
authentication at a very low cost of deployment.

2. There is no need to distribute dedicated 2FA
hardware tokens to user. The user can use any
existing Bluetooth token.

3. Service provider can offer adaptive authentication
policies, based on resource being accessed.

4. Easy adoption by users means increased user base.

A key aspect of the approach in this paper is that
Bluetooth devices can be accessed through a standard Web
browser. There is no need to install a thick client on user’s
computer. Any Bluetooth device can be used, regardless of
what application level software stack it supports. The only
requirement is that the device advertises itself as a Bluetooth
device. This approach is different from FIDO U2F devices,
which rely on FIDO protocol stack in them. In our approach,
any Bluetooth device of user’s choice can be turned into a
two-factor authenticator hardware token. Examples of such

devices are: mobile phone, wearable devices like watch and
fitness band, wireless keyboard, wireless mouse, wireless
headphone, wireless speaker, smart pen, modern workout
bench, weight scale, etc. The list is quite long, further
validating the flexibility offered by this approach.

V. CONCLUSIONS

In the current era of digital transformation, all access
control relies on some form of user authentication. This
makes strong and context-based authentication an integral
part of any system that protects resources and only grants
access to authorized users. As the use of Internet and cloud-
based services evolves, so does the expectation of “proper”
authentication. Users now demand tailor made and fine-
grained solutions that address their needs; nothing more,
nothing less. They expect similar customization from
authentication systems. In order to respond to this trend,
identity providers will have to offer adaptive and risk-based
authentication models. The goals should be to encumber the
user with stronger authentication only if the resources being
protected are worth the effort to use these stricter measures.
The approach presented in this paper is one example of this
adaptive and seamless authentication trend. Its efficacy can
be further augmented by advances in artificial intelligence
and machine learning.

ACKNOWLEDGEMENT

This research was done when the second author was
working at Gemalto. Gemalto has since been acquired by
Thales.

REFERENCES

[1] M. Cavna, “Nobody knows your’re a dog: As iconic Internet
cartoon turns 20, creater Peter Steiner knows the joke rings as
relevant as ever”, Washington Post, July 13, 2013. [Online,
retrieved 10/2019] Available from
https://www.washingtonpost.com/blogs/comic-
riffs/post/nobody-knows-youre-a-dog-as-iconic-internet-
cartoon-turns-20-creator-peter-steiner-knows-the-joke-rings-
as-relevant-as-ever/2013/07/31/73372600-f98d-11e2-8e84-
c56731a202fb_blog.html

[2] Internet Engineering Task Force, “OCRA: OATH Challenge-
Response Algorithm”, Specifications, [Online, retrieved
10/2019] Available from https://tools.ietf.org/html/rfc6287

[3] FIDO Alliance, Specifications, [Online, retrieved 10/2019]
Available from https://fidoalliance.org/specifications

[4] D. Suwirya, H. Lu and L. Castillo, “Managing Access to
Security Hardware in PC Browsers”, Web Applications and
Secure Hardware Workshop (WASH) pp. 3-9, London, UK,
2013, [Online, retrieved 10/2019] Available from http://ceur-
ws.org/Vol-1011/1.pdf

[5] Github Repository. Web Bluetooth API, [Online, retrieved
10/2019] Available from
https://webbluetoothcg.github.io/web-bluetooth

[6] B. Garska, “Two-Factor Authentication (2FA) Explained:
Bluetooth Authentication” [Online, retrieved 2019] Available
from https://blog.identityautomation.com/two-factor-
authentication-2fa-explained-bluetooth-authentication

[7] T. Hunt, “The 773 Million Record Collection #I Data
Breach”, 2019, [Online, retrieved 10/2019] Available from
https://www.troyhunt.com/the-773-million-record-collection-
1-data-reach

22Copyright (c) IARIA, 2019. ISBN: 978-1-61208-747-4

AFIN 2019 : The Eleventh International Conference on Advances in Future Internet

