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Abstract—This paper focuses on the concept of Network
Function Virtualization (NFV): the implementation of requests
consisting of various service functions on servers located in
data centers. This paper attempts to minimize both the cost
of routing and service function assignment of requests from
source to destination node on a network. This problem falls
under the class of Integer Linear Programming (ILP), which
is NP-Hard and cannot be solved in polynomial time. Towards
developing a solution, it is proposed to split the problem into two
separate optimization subproblems: shortest path routing and
service function assignment. We utilize Dijkstra’s Shortest Path
algorithm and a Greedy method for service function assignment
to propose a new heuristic algorithm that minimizes the total cost
of routing and service functions assignment. The experimental
results suggest that the proposed algorithm matches the optimal
ILP solution within acceptable limits.

Keywords – Network Function Virtualization; Integer
Linear Programming; Dijkstra’s Shortest Path Algorithm;
Greedy Heuristic.

I. INTRODUCTION

In the last few years, the rise of powerful new networking
technologies and big data has generated a strong need for
equally powerful, versatile network services. Internet traffic
is higher than it has ever been, and continues to grow in
an exponential fashion. The current technologies available to
respond to this increased need are inflexible, featuring rigid
physical servers that host several separate packages of an
operating system with its respective network functions. These
functions, such as Deep Packet Inspection, Firewalls, and Con-
tent Delivery Network (CDN) Servers, are chained to exactly
one operating system, dramatically reducing the efficiency of
their host. Servers are forced to run at efficiencies far below
their optimal rate, and as the demand for traffic increases
has become more and more dynamic in nature, this current
technology is simply inadequate. The concept of Network
Function Visualization (NFV) has risen as a solution to these
presented challenges. NFV, at its core, involves the deployment
of several network functions in the form of software on high
volume shared servers in data centers. Network controllers
dictate the route of this flow from the source node, through
the data centers, and to the destination. This concept allows
for the programmability of network control, thus allowing the
network to adapt flexibly to the required functions. Also, NFV
greatly increases the efficiency of each of these servers, and
while there remains room for improvement, the decoupling
of function and operating system offers versatility with the

potential to break through the current limitations. The process
of implementing virtual network functions onto a single server
and allocating the necessary resources to carry it out is called
service function chaining (SFC). SFC creates a chain of dif-
ferent services to be carried out in an appropriate order, taking
available resources, size, and other factors into consideration.
This process may be automated to provide the fastest and most
efficient execution of a set of assigned services, and this has
been the focus of much of the previous work regarding the
topic.

Section II delves into the contributions of this paper with
respect to existing solutions. Section III establishes the math-
ematical model of the problem, including the constraints
and objective function that are to be minimized. Section
IV introduces and explains the algorithm we have devised
using pseudo-code and a run-time analysis in comparison with
existing solutions. The experimental results are graphed and
explained in Section V, and Section VI contains the conclusion
and final remarks.

II. RELATED WORK AND PAPER CONTRIBUTION

Previous authors have utilized an ILP based solution in order
to place virtual network functions into appropriate data centers.
These authors have also provided heuristics and several ap-
proximation algorithms to solve this problem. However, unlike
this proposed model, few of them have taken into consideration
the routing cost from source to its destination while assigning
and placing network functions.

Blenk et al. [1] delved into the placement of hypervisors,
which serve as a layer between a Software Defined Network
(SDN) controller and networks, consisting of various neces-
sary functions. The authors stated the importance of a ”good
placement” of these hypervisors. Amaya et al. [2] explored
the specifics of service chaining, creating a model that allows
various orderings to be ranked and evaluated. They also derive
a route from their ordering and apply various constraints to the
data centers. Ghasem et al. [3] explored the details of service
chaining and the concept of network function virtualization,
while Addis et al. [4] focused on the benefits of optimizing
the route taken by function virtualization requests. Crichigno
et al. [5] considered a routing and placement scheme like the
one proposed in this work, however they propose a different
heuristic to solve the problem. Subsequent analysis in this
paper suggests that the proposed algorithm has superior run
time complexity as compared to Crichingo et al. [5]. Cohen,
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et al. [6] proposed a near optimal placement of virtual net-
work functions using approximation algorithms guaranteeing
a placement with theoretically proven performance. Luizelli et
al [7] formulated a network function placement and chaining
problem and proposed an ILP model to solve it. Moens et
al. [8] proposed a formal model for virtual network function
placement (VNF-P) with focus on a hybrid scenario with part
of services provided by dedicated physical hardware and the
rest provided using virtualized service instances. Gupta et al.
[9] provided a mathematical model for the placement of VNFs
which ensures the service chaining as required by the traffic
flows.

This paper is unique in attempting to explore a solution
toward minimizing cost by splitting the problem into two
subproblems: optimization of both network service function
assignment among data centers and the routing cost. Since the
problem is ILP, which is NP-Hard and cannot be solved in
polynomial time, we search for a solution of lower complex-
ity. Utilizing a Greedy method and Dijkstra’s shortest path
algorithm [10][11], we create a heuristic algorithm in order to
minimize both costs. The algorithm provides complete source
to destination route for all requests along with the assignment
of the network functions requested.

III. MATHEMATICAL FORMULATION OF THE PROBLEM

A. Model

We represent the network using a graph G = (V,E), where
V represents the set of nodes on the graph and E represents the
links that connect each node. In this set V of nodes, we define
derived subset D ⊆ V as the set of data centers where each
network function will be virtualized. Each network function
is denoted by f ∈ F . A request r ∈ R from source node
srcr to destination node dstr contains a group of n functions
fr,1, fr,2, . . . , fr,n ∈ Fr to be implemented by the network.
For a pair of nodes (i, j) ∈ E, ci,j is the predetermined
cost of traversing that link, from node i to node j. xri,j is
a binary variable (either 0 or 1) that denotes whether that
link is traversed or not by request r. For each data center
d ∈ D, Wd is the maximum capacity available on data center
d to virtualize the network function. There are many types
of resources that may be denoted by this variable, including
storage, memory, and CPU cores. We denote the resource
required to virtualize network function f ∈ F from data
center d ∈ D as wd,f , and the cost of virtualizing the network
function on the data center is denoted by cd,f . We define yrd,f
as another binary variable, specifying whether or not a function
in f is virtualized or not on a specific data center d on a certain
request r.

B. Objective

This problem involves routing and assignment, so it requires
two functions to optimize the problem.

First, we aim to minimize the total Service Function Assign-
ment cost across the given request. That is, the sum, across
all services f ∈ F and data centers d ∈ D, of the cost of

implementing a given function multiplied by whether or not
the service is implemented (crd,f · yrd,f ).

min
∑
r∈R

∑
f∈F

∑
d∈D

crd,f · yrd,f (1)

Next, we aim to minimize the routing cost for all requests
r ∈ R, given as the sum across all pairs (i, j) ∈ E of the
product of associated cost and whether that link is traversed
or not (ci,j · xri,j).

min
∑
r∈R

∑
(i,j)∈E

ci,j · xri,j (2)

The overall objective function is to minimize both the
service function assignment cost, as well as total routing cost.

min
∑
r∈R

∑
(i,j)∈E

ci,j · xri,j + min
∑
r∈R

∑
f∈F

∑
d∈D

crd,f · yrd,f (3)

C. Constraints

We constrain decision variable xri,j to equal 1 when the link
is traversed from node i to node j in a route r and 0 when
not traversed:

xri,j =

{
1 if traversed
0 else (4)

Similarly, decision variable yrd,f is set to 1 when a service
function f is assigned to the data center d in a route r and 0
when it is not:

yrd,f =

{
1 if assigned
0 else (5)

The third constraint governs the virtualization of each net-
work function f for a route r, allowing each to be implemented
only once on a data center.∑

d∈D

yrd,f ≤ 1,∀r ∈ R, f ∈ F (6)

Additionally, we must ensure the balance of inflow and
outflow for each node. Thus, we create a flow constraint for
each node traversed in a particular route. The source node must
have an outflow of 1, while the destination has an outflow of
-1. Every node in between must have a net flow of 0, where
the inflow equals outflow.

∑
(i,j)∈E

xri,j −
∑

(i,j)∈E

xrj,i =

 1, i = srcr
−1, i = dstr
0, otherwise

(7)

Each data center has a maximum ability to implement
functions, and we attempt to prevent possible overuse of a
data center d by adding a capacity constraint to each d. This
constraint prevents each data center from virtualizing functions
whose total resource requirement exceeds the given capacity
of the center.∑

f∈F

wd,f · yrd,f ≤Wd,∀r ∈ R, d ∈ D (8)
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We must ensure that there is both an inflow and outflow
out of an assigned data center. Therefore, we require the
outflow at each data center to be greater or equal to the binary
variable denoting its activation. A data center d that virtualizes
a function f for route r, for example, will have a yrd,f value
of 1; this constraint requires its outflow to also be at least 1. A
data center that is unused, meanwhile, may carry any outflow.

∑
j∈V

xri,j ≥ yrd,f ,∀i ∈ V, d ∈ D, r ∈ R (9)

D. Proposed Solution

The above problem belongs to the class of ILP problems,
which are NP-Hard problems that cannot be solved in poly-
nomial time. In order to develop a heuristic solution to the
problem, we propose splitting the overall problem into two
separate optimization subproblems: a) find the shortest route
from a source to a destination node, and b) assignment of the
network functions through appropriate data center from source
to destination node. This novel approach leads us to propose
a heuristic that will utilize Dijkstra’s shortest path algorithm
and a Greedy network function assignment algorithm to solve
the problem.

First, we have an assignment problem, with an objective
function given by (1). We also utilize (5) governing data center
use, (6) limiting service functions to be implemented just once,
and (8) that applies the capacity constraint.

We can then model the remainder of the problem as a pure
shortest path problem, using Dijkstra’s algorithm to develop a
solution. For this, we have an objective function given by (2),
and constraints (4) and (7).

Finally, we can tie the two problems together using (9),
giving us a solution to the overall problem.

IV. ALGORITHM FOR MODIFIED ROUTING AND GREEDY
ASSIGNMENT

Based on the above problem split, we propose an algorithm
using Dijkstra’s shortest path and a Greedy heuristic algorithm
to assign network functions to solve the problem.

A. Proposed Modified Dijkstra’s Algorithm with Greedy Ser-
vice Function Assignment

We propose a heuristic algorithm that may be utilized on
networks. The algorithm requires an input of a graph G with
vertices V and edges E. In addition, we specify the costs
of implementing a service on each data center (crd,f ) and the
cost of routing services from all nodes i to j (ci,j). Finally,
we set the capacity of each data center (Wd) and the resources
taken by each network function on a data center (wd,f ). The
algorithm returns values for xri,j which dictate the route taken
by the network functions, as well as yrd,f , which denotes the
data centers that are assigned to implement each network
function. The algorithm also assumes the use of an adjacency
matrix to implement the network graph and allow us to easily
find the neighbors of a node in the graph through lookup.

We begin by going through each of the requests in a set R.
Using the source and the destination nodes of this request, we
use Dijkstra’s algorithm to discover the shortest path for the
request, returning the list of nodes that make up the path as
SPr. From here, we create two separate lists: the first, PDCr,
will store data centers found on the shortest path given by
Dijkstra’s, while the second list, NDCr, will store data centers
that are neighbors along the shortest path. The shortest path is
iterated through and data centers found on the path are added
to the first list. Using an adjacency matrix, we define a function
neighbors(n) to return all nodes that are linked to node n.
Any data centers found among these neighbors are added to
NDCr.

Next, we provide network function assignment for the
functions requested by r. For each, we use a Greedy heuristic
algorithm in order to select a data center from all those
detected by the previous scan, using the list comprised of
the union of PDCr and NDCr. This is done by comparing
the different costs of crd,f for each data center and ensuring
that the necessary resources are available for implementation.
Once the lowest cost data center d has been located, we set the
corresponding value of yrd,f to equal 1, signifying the use of
that data center for the function. We then update the available
resources of the data center by reducing its capacity Wd by
wd,f . If the data center is on the path, the shortest path SPr

does not need to be updated. However, if the data center is
found from the neighbors list, we insert a one-link detour to
that node into SPr. This process is repeated for every function
in the request. This is the key modification to the shortest path
algorithm, hence we call it the modified Dijkstra’s algorithm.

By the process described above, we expect a majority of
the network functions requested to have been assigned and
virtualized at an appropriate data center. However, there is a
possibility that the request still has unassigned functions, in
which case we propose the use of a breadth-first search (BFS)
to locate a capable data center. Once a data center is located
by BFS, if it contains the necessary resources, we assign to it
the remaining functions and update its capacity, yrd,f , and SPr

accordingly. This is the worst-case scenario of the algorithm.
Once all functions have been assigned, we use SPr to

update the values of xri,j for the route, setting the variable
to 1 when the link is traversed. After this process has been
repeated for every request, the algorithm return xri,j and yrd,k,
for all r ∈ R.

The proposed heuristic algorithm utilizes Dijkstra’s shortest
path algorithm and a Greedy method in order to calculate an
optimal route for a set of requests R. The first component
of the algorithm uses the shortest path algorithm to find a
path SPr from the source node srcr to the destination node
dstr. The second uses a Greedy method to find an optimal
data center d ∈ D along the previously discovered path for
each service function f ∈ Fr. The Greedy method runs with
a linear complexity, while Dijkstra’s algorithm implemented
with a binary heap will run in logarithmic time. Additionally,
the neighbor search is implemented as a simple table lookup
due to the adjacency matrix implementation of the network
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Algorithm 1 Modified Dijkstra’s Algorithm with Greedy
Service Function Assignment

Input: G(V,E); ci,j∀(i, j) ∈ E ; Wd∀d ∈ D ;
wd,f , cd,f∀d ∈ D

Output: yrd,f , xri,j∀r, d, f
for all r ∈ R do
srcr = source node of request
dstr = destination node of request
SPr = Dijkstra(srcr, dstr)
initialize PDCr (set of data centers found on shortest
path SPr) as φ
initialize NDCr (set of data centers found among path
neighbors) as φ
for node n ∈ SPr do

if n ∈ D then
PDCr = PDCr ∪ n

end if
for node m ∈ neighbors(n) do

if m ∈ D then
NDCr = NDCr ∪m

end if
end for

end for
for all f ∈ Fr do

Select d ∈ PDCr ∪ NDCr, the data center that im-
plements function f at lowest cost, contains necessary
resources (Greedy Assignment)
set yrd,f = 1
update resources for d appropriately
if d ∈ NDCr then

update SPr, insert d
end if

end for
if any f ∈ Fr remains unimplemented then

run breadth-first search (BFS) starting from the most
connected node ∈ SPr

if data center d is found by BFS then
implement f ∈ Fr (provided d has necessary re-
sources available)
update yrd,f
insert path to d into SPr

end if
end if
update all xri,j using SPr

end for
return xri,j , y

r
d,f ∀r, d, f

and is O(|V |). Therefore, we may conclude that the total
algorithm is dominated by the first stage Dijkstra’s algorithm
run-time complexity. The worst case running time of our
implementation of Dijkstra’s algorithm with a binary heap is
given by O(|E|log|V |), and we call the Dijkstra’s once for
each request R in a scenario. Therefore, our total run time for
the proposed heuristic algorithm is O(|R||E|log|V |). Notably,
as a comparison, the algorithm of Crichigno et al. [5] utilizes
Dijkstra’s algorithm twice, resulting in a worst-case run-time
of O(|R||D||E|log|V |), where D is the total number of data-
centers contained in the topology. Thus the proposed heuristic
algorithm is able to run at a faster run time by a factor of |D|
as compared to the algorithm proposed by Crichigno et al. [5].

V. EXPERIMENTAL RESULTS

A. Simulation Setup

We tested the algorithm using two different network topolo-
gies. The simulations were carried out using a Python script
running on a 2.70 GHz. The first is the NSF-Net graph, form-
ing an approximate outline of the United States of America and
placing nodes at major cities, including Chicago, New York,
Atlanta, and Los Angeles. The second is a fully connected
hexagon graph with a central node connecting the 6 vertices.
The graphs of the same topologies differ from each other
in network configuration and data center specifications. For
example, Figure 1 features an NSF-Net graph, but with various
link costs. Figure 2 features the same topology, however, each
of its links has a cost of 1, and the graph denotes different data
centers. Each of these data centers implements functions at a
different price than Figure 1. Similarly, Figures 3-5 correspond
to a fully connected hexagon graph with one data center B (in
Figure 3), data centers B and C (in Figure 4) and data centers
B, C and T (in Figure 5).

For each topology, we generated 4 requests r ∈ R consisting
of a group of functions f ∈ F to be virtualized. Each
one of these requests had a different source and destination
node found across the topology that the route must traverse
between. These routes are designated by Route 1-4 in the
results (Figures 6 to 10).

For every request within each topology, we only changed
the source and the destination nodes (srcr, dstr) of the route
with respect to the various data centers. These costs of
implementing the network function on the data centers were
randomly distributed among a set of target values to provide
a more reliable testing set. The evaluation metrics for the
results are as follows: for each test case using the selected
topology configuration (from Figures 1-5), the simulation
compares the costs for the routes (Routes 1-4) as given by
the proposed heuristic algorithm with that of the optimal ILP
solution. Figures 6-10 depict the comparison of the routing
cost, assignment cost and the overall cost, given by the sum
of the routing and assignment cost, for the algorithmic and
optimal ILP solution. The next section discusses the results in
detail, in particular the gap between the proposed algorithm
and the optimal ILP solution.
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Fig. 1. NSF 1 Network Graph

Fig. 2. NSF 2 Network Graph

Fig. 3. HEXAGON 1 Network Graph

Fig. 4. HEXAGON 2 Network Graph

Fig. 5. HEXAGON 3 Network Graph

B. Simulation Results and Discussion

The first test involved the NSF-Net with routing costs
randomly generated from 1 through 5. Data centers were
placed at Nodes 12, 8, 7, and 5, with implementation costs
given by Figure 1. The data centers were chosen to emulate
central locations in the continental United States, allowing
direct access to a larger set of nodes on the graph. The
algorithm was able to compute a solution that equals the
optimal total cost in Route 1, and was within 23% over the
optimal cost in the remaining 3 routes.

In the second test using the NSF-Net, we set each route
link to 1 and increased the weights of the data center cost,
simulating an assignment cost-dominated scenario. Data cen-
ters were moved to 14, 10, 5, and 0 as seen by Figure 2. The
algorithm matched the optimal net cost in two of the routes
and was able to come close to reaching the optimal overall
cost, within 22%.

The third test involved the fully connected hexagonal net-
work, as shown in Figure 3. We designated one of the nodes on
the periphery, B, as the data center and gave the assignment
and routing costs an approximately equal weight. Since we
assigned only 1 data center, the requests were able to meet the
optimal assignment cost on each route. The overall algorithmic
cost was an acceptable range of 20% within optimal cost.

The fourth test added another data center to node C, as
shown in Figure 4. These tests were designed to add variation
to the routing costs, as the request may route through multiple
centers, incurring a different cost each time. Overall, as shown
in Figure 9, the results of the algorithm come within 24% of
the optimal case in each scenario.

The final test incorporated another data center at node T
and increased the cost of assigning each function on a node,
as shown in Figure 5. In addition, the cost of implementation
for each function was increased. In this trial, as shown in
Figure 10, the algorithm was able to come the closest to the
optimal ILP solution, within 2.9%.

Overall, we find that the proposed heuristic algorithm
produces solutions over the five different configurations that
match the optimal ILP solutions within an acceptable range,
while providing an efficient practical solution.
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Fig. 6. NSF-Net 1 route, assignment and total cost comparison for Algorithm
vs ILP Optimized
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Fig. 7. NSF-Net 2 route, assignment and total cost comparison for Algorithm
vs ILP Optimized
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Fig. 8. HEXAGON 1 route, assignment and total cost comparison for
Algorithm vs ILP Optimized
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Fig. 9. HEXAGON 2 route, assignment and total cost comparison for
Algorithm vs ILP Optimized
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Fig. 10. HEXAGON 3 route, assignment and total cost comparison for
Algorithm vs ILP Optimized

VI. CONCLUSIONS

This paper poses an optimization problem of service func-
tion assignment and shortest path for network function virtual-
ization and proposes a solution that splits the problem into two
separate optimization subproblems: shortest path and service
function assignment. The algorithm uses the combination of
a modified Dijkstra’s shortest path algorithm and Greedy
heuristic algorithm for network function assignment. Some of
the key challenges lie in thoroughly validating the algorithm
performance on larger networks. In future work, we propose
to expand the scope of testing to validate the algorithm
against larger network configurations, using more complex
optimization packages such as Gurobi, CPLEX, etc.
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