
Proactive and Reactive Mechanisms for ProtectingAds on the Internet fromAdware and
Malware

Abinash Sarangi
Bing, Artificial Intelligence and Research

Microsoft
Redmond, USA

absarang@microsoft.com

Abstract— Ads on websites and search engines help keep the
Internet services free and accessible to all. These ads are
vulnerable to malicious attacks by adware, malware on user’s
machine and user agent. A webpage has several limitations in
its ability to protect its integrity on the user agent. The
proposed solution provides the webpage with the ability to
incorporate a two-layer protection in preventing malware and
restoring the webpage’s integrity.

Keywords-adware prevention; javascript; page validation
rules; mutation observer; malicious code injection; malware
prevention; Web security.

I. INTRODUCTION

With the Internet’s growth, adwares are adopting
sophisticated mechanism, running as browser plugins or as
background service in order to attack on selective websites.
Adware and malware attack is a several millions-dollar
industry [2][3] and is being democratized by advanced tools,
such as black hole exploit kit [3][4]. A simple adware acting
as a browser plugin can manipulate the DOM (Document
Object Model) of any website (e.g. Bing or Google) and
replace the original ads with its own fraudulent ads. This
results in loss of revenue for the affected website. Our
research for the work, discussed in this article, suggested at
least 4.5% of Bing users had some form of an adware or
malware, which inserted unwanted content into Bing’s
search engine results page, resulting in several million
dollars of revenue impact [1][5]. This is true for Google,
Facebook and any such Internet service which monetizes
using ads [7]. The real challenge of this problem is, the
malicious program is running on the user’s machine and
Internet services are accessed using Web browsers on that
machine, limiting what such a service provider can do to
prevent the adware from within the webpage itself. This is
the very reason why Web services have not been successful
in dealing with malware/adwares [5].

The rest of the paper is structured as follows: in Section
II, we discuss the problem in detail. In Section III, we
discuss the technological and functional aspect of the
solution. In Section IV, we discuss the proposed solution, its
effectiveness as observed during the research and
experimentation. Finally, we conclude the article in Section
V.

II. DETAILED PROBLEM DESCRIPTION

Viruses, malwares, adwares and ransomware are getting
sophisticated and performing selective attack on websites to
generate revenue for themselves by hijacking ads. Search
engines and content portals primarily rely on ads on their
results page for revenue. When the Web page is loaded on a
browser on a machine which is infected with malwares and
adwares, the Web page is systematically attacked, and its
content is modified. The page’s ads are removed, and
malware’s ads are injected. All of it happens right on the
user’s browser after the page loads. The search engine or the
Web page loses revenue. There is very little the page can do
to defend itself on the user’s browser. Some important
questions to ask when looking for a solution to this problem
include: how does the page ensure the page is rendered on
the browser as it was emitted by the server? How to ensure
the integrity of its content on the client?

Figures 1 and 2 show malware attacks on Bing and
Google, respectively.

III. FUNCTIONAL INSTRODUCTION TO SOLUTION

We researched and experimented several mechanisms
and built a JavaScript based framework which can consume
a rule set generated by server to validate the state of the
website and ensure its integrity. The framework, being
JavaScript based, can run from within the website seamlessly
on all (modern) browsers and devices and protect the
webpage from malicious programs running on the user’s
machine at a higher privilege. The framework uses the
unique rule set pertaining to the current page and allows only
valid mutation to the DOM from known sources to the
website. If any mutation fails the validation, the DOM is
restored to the state prior to the mutation. This mechanism
ensures that, even if a user’s machine has malicious
programs or adwares attempting to inject fraudulent ads, the
attempt is prevented because the webpage can protect itself
from within and ultimately save significant ad revenue. This
research has been implemented and thoroughly measured for
success and effectiveness through A/B testing at scale [1][5].

Security of websites and services is a growing challenge,
and the future Internet needs more research and awareness in
the field to deal with any vulnerabilities or exploits that may
exist.

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

IV. SOLUTION

Our research for the work discussed in this article
indicates up to 4.3% of search engine users have
plugin/malware that modifies the search engine’s results
page in a way that interferes with the original content [1].
The problem is wide spread in all markets and more on
browsers that support plugins or extensions.

A. How does adware work

On an infected machine, the adware either executes as a
background process or injects itself as a browser extension.
Once active, the adware monitors each browser navigation
and executes its checks and monitoring. For example, on
Chrome browser, it executes the content scripts to validate if
the website being loaded is a target. Once a targeted website
e.g. google.com, bing.com. amazon.com etc. is detected, the
adware downloads scripts and content (ad images, videos,
text, flash objects) specific to the targeted site. The scripts
are added to the original page using DOM injection as Script
tag. HTML (Hypertext Markup Language) elements are in
turn added by the script to the targeted page’s DOM.
Depending on how severe the interference is, the injected
elements could take up part of the site using HTML elements
like: DIV, LI, Object, IMG, IFRAME etc. or cover the entire
viewport with elements such as modal dialogues. Once
elements are injected, the user sees a mixture of content from
the original website and the adware. Stolen styles result in
deceiving the user to not being able to discern the original
content from adware’s fraudulent content. Injected ads are
contextual and based on the user query as seen in Figures 1
and 2 below.

Usually, the adware code is Polymorphic [8] and encoded
e.g:

var
l3=(0x12<(0xF5,17.)?'B':(47,22)<=(111.,53.6E1)?(13.83E2,"
a"):(0x1AA,116.7E1));

B. Impact of the problem

• Slower Web pages leading to bad user experience

• Ad revenue loss for websites and search engines

• Privacy and security threat for the users

• Unusable website due to clickjacking

C. Proposed solution

The solution that we propose to this problem is a two-
step approach. We call the approaches the proactive defense
and the reactive defense. Server-side solutions and code
have very limited ability as the problem persists on the client
side, on the user’s machine. We developed a JavaScript
based framework which can run on the browser and leverage
on the fact that, when the page is generated on the server, we
have the knowledge of what the page’s content is. The
framework utilizes the server generated knowledge to
validate the page once it is rendered on the client and either

prevents proactively or removes reactively, any anomalies
detected.

1. Proactive defense
Adware and malware use the browser APIs using

languages such as JavaScript to manipulate the DOM
(Document Object Model) of a page. APIs like
insertBefore(…), appendChild(…) are used to insert both
user interface elements as well as scripts and style elements.
In this proposed approach, we override these browser
defined functions to user defined functions much before the
onload event is fired on the document. In the user-defined
avatar of the functions, we validate the element being
inserted, with an allowed list or a baseline and either allow or
disallow the insertion. For example, if it’s a script tag with a
source we do not recognize, disallow the insertion. If we
know all images on the current page are base64 encoded
images, we can disallow all IMG tags with source attribute
set to some 3rd party domain. Figure 4 below demonstrates
the proactive mechanism with a block diagram.

2. Reactive defense
Our second step of solution is reactive defense. When

coupled with the proactive mechanism, the proposed
framework provides a two-layer defense, but each of these
mechanisms is independent of each other and can be used
stand alone. The reactive mechanism in our experiment has
proven to be more effective and robust. As the name
suggests, this technique requires a rule set generated at the
server for the current page. The rule-set is a table that defines
the page layout for consumption by the framework, to
validate the page and provide a baseline. The rule-set table is
generated at server as a map of relative distance of all page
components from a static / fixed point on the page, e.g. the
search box on a search engine’s results page is usually fixed
and rest of the content on the page is dynamic, that may
change during the page life cycle. So, the map would look
something like:

Data-tag: ads_top: [{x:30,y:60,h:80,w:40}, {ads_bgr,
img}]

Here, it defines the element with data tag keyword
ads_top with its relative position to the fixed point on the
page, its dimensions and some metadata attributes, such as
any class names and if it has any children element such as
IMG, Object etc.

When this map is populated for all the business-critical
components of the page, the reactive frame work can add
observers on these elements and validate any mutations, i.e.
insertion, deletion, style change, visibility change.

Whenever the mutation observer [9] detects a change and
the subsequent validation with respect to the rule-set fails,
the reactive framework rejects that change and restores the
element to the previous state. In our experiment, the 75th
percentile performance number for this operation was about
20ms for a series of 20 mutations. Hence, it is not perceived
by the user and the page’s perceived performance is not
impacted. Refer to Figure 3 below for execution steps and
flowchart.

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

D. Experiment details and outcome

A/B testing experiment [10] was done online on a control
and treatment group. Treatment and control both had 1
million users, each in markets across en-US, de-DE, en-CA,
fr-Fr, en-GB. The experiment was running for a duration of 2
weeks, while revenue and user engagement data were
collected. Revenue, as well as user engagement metrics,
were statistically significant in positive move in treatment
with p-Values in the order of 10^-15.

As much as 0.6% of revenue increase [1] was achieved.
In addition, session success rate and click through rates were
positively impacted. Overall, it was a successful experiment
from a user as well as business value perspective.

E. State of the art review

Existing solutions to mitigate malwares are primarily at
operating system and network security level. The user is
required to install antimalware applications or turn on
security features in the operating system. Antimalware
applications rely on a malware and virus signature database
which needs constant updates. Malwares can exploit
vulnerabilities and affect the user’s machine. Another
problem with the existing application based solutions is that
many users do not have these applications running on their
machines. The proposed solution has no action on the user
and protects the website from malicious injections from
within the Web site. It protects the website (in our research
Bing.com) that incorporates this technique and it remains
protected even on an infected machine.

V. CONCLUSION AND FUTURE WORK

This paper presented two approaches to protect websites
against malwares: Proactive defense, which prevents
malicious script injection and Reactive defense, which
detects unauthorized change to the website and removes the
change to restore the website to its integral state. Though
both approaches can work independently, they are most
effective when used in combination, resulting in revenue
loss prevention and better user experience.

Planned future improvements to this work include
making this generic and building this into the browser as a
security feature.

ACKNOWLEDGMENT

This work was developed with help from Windows
defender research team: Sarvesh Nagpal, Rahul Lal, Marcelo
De Barros. Manish Mittal from Bing search engine team
helped with research, implementation and experimentation of
the solution.

REFERENCES

[1] Windows defender research, “Malware Protection Center”,
Microsoft Threat Intelligence Journal, pp. 19-21
https://download.microsoft.com/download/D/C/A/DCACBABC-
1711-456B-98E1-
180E88BFDC68/MMPC%20Threat%20Intelligence%20October%
202015.pdf [accessed July 2017]
[2] Sara Yin, “Flashback Malware Robs Google of $10,000/Day in
Ad Revenue”, PCMag, May 2012
http://securitywatch.pcmag.com/none/297323-flashback-malware-
robs-google-of-10-000-day-in-ad-revenue [accessed July 2017]
[3] Technofaq, “An In-depth Look at the Malware Industry”,
Technofaq.org, May 2015
https://technofaq.org/posts/2015/05/an-in-depth-look-at-the-
malware-industry [accessed July 2017]
[4] Jon Oliver, Sandra Cheng, Lala Manly, Joey Zhu, Roland Dela
Paz, Sabrina Sioting, “Blackhole Exploit Kit:A Spam Campaign,
Not a Series of Individual Spam Runs”, Trend Micro Incorporated
research paper, 2012, pp. 1-12
https://www.trendmicro.de/cloud-content/us/pdfs/security-
intelligence/white-papers/wp_blackhole-exploit-kit.pdf [accessed
July 2017]
[5] Ronny Kohavi, Alex Deng, Roger Longbotham, Ya Xu, “Seven
Rules of Thumb for Web Site Experimenters”, KDD 2014, p. 4
http://www.academia.edu/18352920/Seven_Rules_of_Thumb_for_
Web_Site_Experimenters [accessed July 2017]
[6] Robert Siciliano, “Business Identity Theft; Big Brands, Big
Problems”, HuffingtonPost, Oct 2014
http://www.huffingtonpost.com/robert-siciliano/business-identity-
theft-b_b_5643934.html [accessed July 2017]
[7] Larry Dignan, “Google: Click Fraud Costs Us $1 Billion A
Year”, zdnet, March 2007
http://www.zdnet.com/article/google-click-fraud-costs-us-1-
billion-a-year/ [accessed July 2017]
[8] Carey Nachenberg, “Understanding and Managing
Polymorphic Viruses”, Symantec enterprise papers, volume XXX,
pp. 1-4, https://www.symantec.com/avcenter/reference/striker.pdf
[accessed July 2017]
[9] Mozilla API Documents, “MutationObservers”, July 2017,
document explains the API use
https://developer.mozilla.org/en-
US/docs/Web/API/MutationObserver [accessed July 2017]
[10] Ron Kohavi and Roger Longbotham, “Online Controlled
Experiments and A/B Tests”, Encyclopedia Of Machine Learning
and data Mining, April 2015
http://www.exp-
platform.com/Documents/2015%20Online%20Controlled%20Exp
eriments_EncyclopediaOfMLDM.pdf [accessed July 2017]

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

Figure 1. Adware injected ads on Bing’s search page. The Ads style (css) mimics that of Bing’s styles.

Figure 2. Adware injected ads on Google’s search page. The Ads style (css) mimics that of Google’s styles.

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

Figure 3: Execution flow of the reactive defense mechanism.

Figure 4: A block diagram explaining where the proactive and reactive defense mechanisms fit in.

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-583-8

AFIN 2017 : The Ninth International Conference on Advances in Future Internet

