
In-Network Support For Over-The-Top Video Quality of Experience

Francesco Lucrezia, Guido Marchetto and Fulvio Risso

Department of Control and Computer Engineering
Politecnio di Torino, Italy

Email: name.surname@polito.it

Abstract—This paper discusses the effects of the network conges-
tion on the goodness of a streaming video session and proposes
a solution that the network itself can adopt to recover from
the possible Quality of Experience degradation. We consider a
Broadband Access Network scenario, where congestion is most
likely to occur in current communication networks. In particular,
we concentrate on the Asymmetric digital subscriber line (ADSL)
technology, which is predominant in the last-mile link toward
the user machine. The proposed solution is based on an on-
line heuristic evaluation of the mismatch between the bandwidth
requirements of the video and the throughput actually offered
in the bottleneck link. When a possible Quality of Experience
degradation is observed, our tool reacts by limiting the concurrent
traffic. The YouTube application is used as a reference throughout
the entire paper due to its wide popularity. Moreover, High
Definition videos are mainly considered as they are the most
bandwidth demanding and hence the most sensitive to network
impairments.

Keywords–HTTP streaming; Quality of Experience; YouTube;
TCP splitting.

I. INTRODUCTION

Since web-content providers started to make available a
very huge amount of data, the Internet traffic is inevitably
growing, especially the one related to multimedia applications.
In particular, HTTP-based streaming traffic is growing steadily
due to the increasing popularity of content providers such
as Netflix, Hulu, and YouTube. Over-The-Top (OTT) videos
embedded in the Internet applications can be watched by
each individual equipped with an Internet connection and
this also makes customers more and more demanding. For
example, the spread of High Definition (HD) video retrieving
is continuously increasing. For these reasons, the delivery of
OTT content is one of the current challenges that network
operators have to deal with.

One of the most important key points for the support of
this kind of service is the provision of an adequate Quality
of Experience (QoE) to the users. Namely, users have to be
satisfied when watching the video, otherwise they are induced
to switch to other providers for future content retrieves
or, even worse, to suddenly leave before the end of the
video. In both cases, this may cause a swift decrease of the
provider revenues, e.g., due to advertisement fee losses. User
satisfaction can be measured in several ways [1], ranging
from the quality of the offered content to the experience
offered by the deployed user interface. The former is clearly
the most difficult to control as it actually depends on the
network condition, which is variable in time and, in general,
cannot be deterministically predicted.

Some solutions have been proposed [2][3], which target

the mapping between the source of impairments and the final
user QoE. However, they are closely related to the specific
application under study. Specific solutions are then necessary
for the HTTP-streaming case, which is the focus of our work.
For such kind of application, the two main QoE metrics are
the starting playback delay and the stalling events [4]. Hence,
the main source of impairment to consider is the possible
congestion of bottleneck links between the server and the
clients, especially for the bandwidth demanding HD videos.
In the current Internet, this problem might basically reside in
the Broadband Access Networks providing the connectivity
to final users, where the ADSL is predominant as last-mile
technology. In these links, congestion might be due to the
connection sharing among different users (e.g., tens in a small
office sharing a single ADLS connection, as well as hundreds
connected to different DSLAMs, or even both) or also when
a single customer produces a lot of additional TCP traffic
due to Internet applications that run automatically when host
devices are connected to the network (e.g., BitTorrent file
transfers).

Some solutions also exist for QoE provisioning in the
OTT video streaming scenario, e.g., [5][6]. These all are
effective, but require software modifications in the client
machine, which is often unfeasible. In this paper we focus on
an in-network solution, i.e., a countermeasure that the network
itself can adopt to avoid OTT video QoE degradation. In other
words, our solution is transparent to the video application,
thus avoiding user intervention or client modifications. A
trivial approach would clearly be the prioritization of video
streaming traffic. However, this would be a static Quality of
Service (QoS) solution — rather than one addressing users’
QoE — and furthermore would suffer from the well-known
starvation problem. At the same time, reservation-based
techniques (e.g., [7][8][9] might be helpful in solving the
problem, but these are not currently deployed in the Internet.
Instead, the idea is to make use of the TCP splitting technique
[10] in order to dynamically measure the throughput of the
video session and possibly react to avoid stalls when it is
lower than expected, thus really addressing a QoE problem.
We consider the YouTube application as a reference in the rest
of the paper as it is probably the most popular video content
provider worldwide. However, it is worth noticing how the
solutions described here might be easily extended to other
HTTP-streaming services or, even more in general, to other
TCP-based streaming applications (e.g., remote visualization
tools [11]) as the main operating principles are similar.

The paper is organized as follows. Section II presents
the YouTube service and a preliminary characterization work
we performed on this application to specifically identifies its

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

internals, since they are continuously evolving. Section III
discusses the proposed solution, while Section IV describes
our testbed and reports on some experimental results. Finally,
Section V concludes the paper.

II. YOUTUBE

YouTube is a website created in 2005 and that rapidly
became one of the most popular video-sharing application. It
uses HTTP streaming for video content delivery (in particular,
it recently adopted the Dynamic Adaptive Streaming over
HTTP (MPEG-DASH) protocol), while it supports both
Adobe Flash Player and HTML5 for video visualization at the
client side. The transfer of the video content occurs by means
of HTTP requests sent by the client for each chunk in which
the entire video is divided according to the short-duration
media segments (also called fragments) of the MPEG4 video
format specifications. Concerning the service architecture,
YouTube is based on a front-end Web server providing the
home page of the website, while it relies on external resources
for content delivery. In particular, when clicking on a link to
watch a video, the web server redirect the first HTTP request
to a specific video server selected according to the client
position, RTT timing and other performance factors [12].

The main factors that characterize the transfer mode from
a network perspective are the size of the data chunks, the
frequency of the HTTP GET messages and the number of TCP
connections used to transfer the chunks during the session.
An extensive YouTube traffic characterization is available in
literature (e.g., [13], [14]), which can provide an overview of
such mechanisms. For example, it is well known that, like
in other OTT services, video transfers start with a buffering
phase during which a large amount of byte is downloaded by
means of short-spaced HTTP GET messages and then proceed
with a more smoothed download phase (i.e., the steady state)
[15]. However, since YouTube internals are continuously
evolving, we performed a characterization work to extract
up-to-date information concerning the specific parameters that
are of interest in our context. The Google Chrome Desktop
browser is considered for this characterization work and in
the rest of the paper.

The analysis of some capture files created by means of the
tcpdump network analyzer led as to conclude that as soon as a
request for a video is sent, the client opens a variable number
from two to four different TCP connections with the server
and the same applies for the entire duration of the video.
This behavior is part of the logic that the application uses to
react to a change in the network conditions or to a specific
user action (e.g., when he pauses the video). In particular,
the number of parallel TCP connections opened by the client
plays a fundamental role in the observed performance. Indeed,
it is the mean YouTube uses to counter the side effect of
the ACK-driven congestion-control of the TCP protocol that
causes the throughput lowering of a single TCP connection
when dealing with traffic flows experiencing large RTT,
packet losses, or congestions. In this way, the video session
also becomes more robust and more aggressive with respect
to the other competing applications that use a single TCP
connection. It is worth noticing that the usage of parallel TCP
connections is currently adopted also by several other OTT
video applications.

Our analysis also pointed out that the number of chunks

transferred by each connection, the size of the chunks, the
amount of data downloaded during the buffering phase, as
well as the precise pattern following by the variable bitrate
in the steady state, strongly depend on the specific video
considered and on its resolution. However, all videos analyzed
had in common the fact that chunks are of two types: smaller
chunks of dimension less than 500 KB and bigger chunks,
larger than 1 MB. The same applies for HD videos with the
only difference that the larger chunks can be bigger than
7MB for 1080p resolution and bigger than 4MB for 720p. A
very common dimension (for any resolution) of the smaller
chunks is 479232 bytes; this is an indication of the fact that
chunks of smaller dimension actually belong to the audio
stream and are transferred by one of the parallel connections
opened by the system. Figure 1 details the specific behavior
of two videos we used during our analysis.

III. IN-NETWORK QOE SUPPORT

Despite the abovementioned robustness of YouTube due
to the utilization of parallel TCP connections, the presence
of additional TCP traffic that contends for network resources
might be a source of impairment. This might cause congestion
over bottleneck links, with possible throughput decrease and
consequent QoE degradation for video streaming users, espe-
cially when HD videos are considered. For this reason, our
target is to guarantee an adequate bitrate to YouTube flows
when they compete with other applications.

The specific problem statement is the following.
Problem statement. Given the bottleneck link capacity, the
number of YouTube TCP flows and the number of competing
TCP flows:

• Find the minimum bitrate that must be guaranteed for
the streaming session in order to avoid stalling events
(or a switching to a lower video resolution);

• Detect the instant in which congestion treats the video
session;

• Act accordingly.

As stated in the previous sections, the bottleneck links in the
current Internet infrastructure are in the access portion of the
network. In particular, in this paper we consider a Broadband
Access Network scenario, and the bottleneck links are then
represented by last-mile links based on the ADSL technology.

We also point out that in the rest of this study we consider
to know in advance which connections carry video streaming
traffic and hence must be protected. The identification of these
sessions is in fact a completely orthogonal problem and is
outside the scope of the paper. Some possible solutions might
rely on well-known traffic classification techniques (e.g., [16])
or further extensions of them.

A. Splitting the TCP connection
A TCP splitter [10] is a process able to intercept TCP

connections and put itself in the middle of a communication.
This is done by redirecting incoming SYN packets to a
specific port where the splitter is listening (used to handle the
connection with the sender) and then opening another TCP
connection with the original recipient of the SYN packet. The
splitter is responsible to pass data from one TCP connection to
the other and vice versa, transparently to the end users. This

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

video	 dura*on:	 5.08	 minutes	

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

480p	 720p	 1080p	

TCP	 connec2ons	

parallel	 TCP	

tot.	 #	 chunks	

max	 #	 chunks	 per	 TCP	

(a)

video	 dura*on:	 2.18	 minutes	

0	

5	

10	

15	

20	

25	

480p	 720p	 1080p	

TCP	 connec2ons	

parallel	 TCP	

tot.	 #	 chunks	

max	 #	 chunks	 per	 TCP	

(b)

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

7000000	

8000000	

9000000	

480p	 	 720p	 1080p	

video	 chunk	

audio	 chunk	

video	 dura*on:	 5.08	 minutes	
bytes	

(c)

Video	 dura*on:	 2.18	 minutes	

0	

1000000	

2000000	

3000000	

4000000	

5000000	

6000000	

7000000	

8000000	

480p	 	 720p	 1080p	

video	 chunk	

audio	 chunk	

bytes	

(d)

Figure 1. YouTube video characterization in terms of number of chunks, number of TCP connections, chunks per TCP connection and parallel TCP
connections.

is usually adopted to increase TCP performance in the case
of long end-to-end delays, which might reduce TCP overall
throughput. The basic idea is that with two TCP connections
instead of one, the weaker link has less influence on the whole
path and the end-to-end segment established by the connection
is broken into two segments shortening the overall RTT.

In our case, instead, the TCP splitter can be used for
a totally different purpose. The idea is based on the fact
that if the TCP splitter is located between the server and
the bottleneck link — specifically, on the Broadband Remote
Access Server (BRAS) of the ADSL system, the data received
by the splitter from the server cannot be delivered toward
the client at the same rate. In fact, since the receiver socket
of the splitter continuously acknowledges packets coming
from the server through a high-speed backbone network, the
speed of data transfer remains higher than the speed in the
bottleneck link. In this way, the splitter becomes the manager
of a ”virtual” flow control driven by the bottleneck link and
by the related speed with which the TCP socket delivers
packets into this link. In a normal file transfer, the splitter
receiver is faster than the splitter transmitter for the entire
connection duration, because the file is by nature transferred
at the maximum speed offered by the network. In a streaming
video, instead, after the initial buffering phase (similar to a file
transfer from this point of view), the download is throttled by a

more sophisticated application logic, mentioned in the previous
section. In particular, the server transmits only necessary data,
i.e., the video chunks at the defined video bitrate, or a bit
faster. Hence, in a given time unit, the amount of data received
from the server should be the same of that sent to the client
through the bottleneck link, even if at different speed. This
is key to assure that the video is actually delivered with the
expected bitrate to the client. If this condition is not satisfied,
it means that the throughput offered by the bottleneck link is
not sufficient to support that video bitrate.

This is the key point of our solution: if a process running
on the BRAS is able to compare the throughput of the
video session in the server-splitter link with that obtained
in the splitter-client link, this process can infer when the
video session is suffering and hence react to protect it, thus
potentially avoiding stalls (or decreases in encoding quality in
the case of DASH streaming). To better clarify these concepts,
we report on some results we obtained in our emulated ADSL
scenario, depicted in Figure 7 and better described in Section
IV-A. Figure 2 and Figure 3 compare the video delivery pattern
at an emulated BRAS with and without a TCP splitter running
on it, when there is no congestion in the bottleneck link.
In particular, Figure 2 shows the progress of received and
transmitted bytes of a YouTube HD video at 1080p resolution
into the emulated BRAS, without the splitter, while Figure 3

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

0	

200000	

400000	

600000	

800000	

1000000	

1200000	

1400000	

1	 4	 7	 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

by
te
s	

seconds	

Internet	 link	

ADSL	

Figure 2. Video delivery pattern at the BRAS without TCP splitting

0	

500000	

1000000	

1500000	

2000000	

2500000	

3000000	

3500000	

4000000	

4500000	

1	 4	 7	 10
	

13
	

16
	

19
	

22
	

25
	

28
	

31
	

34
	

37
	

40
	

43
	

46
	

49
	

52
	

55
	

58
	

61
	

64
	

67
	

70
	

73
	

76
	

79
	

82
	

85
	

88
	

91
	

94
	

97
	

10
0	

10
3	

10
6	

10
9	

by
te
s	

seconds	

Internet	 link	

ADSL	

Figure 3. Video delivery pattern at the BRAS with TCP splitting

shows the progress of the same HD video with the action of
the splitter. The emulated ADSL capacity is set to 7 Mbps in
downstream and 400 Kbps in upstream. As said, the network
is not congested.

The red line is the quantity of bytes injected at every second
into the bottleneck link, while the blue line is the amount of
byte received from the YouTube server.

The particular shape of the second pattern stems from the
two main factors mentioned above: the peaks represent the
download of each chunk characterizing the HTTP streaming,
while the trend of the two series is due to the TCP splitting
functioning, which permits to exploit the capacity of the fast
Internet link by breaking the path of the TCP self-clocking
mechanism within the network node. Notice the different
maximum amplitude of the peaks between Figure 2 and Figure
3: without the splitter, the maximum amount of received bytes
clearly depends on the bottleneck link capacity. In both cases,
it is evident how, given a proper time unit (9 seconds in this
specific case), the amount of bytes received from the server is
equal to the one sent to the client, i.e., the application is not
suffering.

Figure 4, instead, shows the video delivery pattern when
the bottleneck link is congested. The video was the same of
the previous graphs at the same resolution of 1080p. Notice
how the traffic pattern significantly changes in the bottleneck
link and how the amount of bytes forwarded to the client
no longer follows in any way the pattern received from the
YouTube server. In fact, we experienced two stalls during this
experiment.

B. Video suffering detection
In order to detect when a video session is suffering and

needs protection, it is necessary to keep track of the periodic
throughput at the splitter. In particular, it is necessary to
evaluate the difference between the number of received bytes
from the server and the number of transmitted bytes to the
client, in the same time interval. Since both the minimum

0	

500000	

1000000	

1500000	

2000000	

2500000	

3000000	

3500000	

4000000	

4500000	

1	 5	 9	 13	 17	 21	 25	 29	 33	 37	 41	 45	 49	 53	 57	 61	 65	 69	 73	 77	 81	 85	 89	 93	 97	 101	 105	 109	 113	

by
te
s	

seconds	

Internet	 link	

ADSL	

Figure 4. Video delivery pattern at the BRAS with TCP splitting and
congested bottleneck link

Figure 5. Heuristic

required data rate and the correct time interval to consider
cannot be known in advance, we propose a simple heuristic
to determine such condition: the area described by the amount
of received and transmitted bytes should be the same in the
time interval defined by the spaced chunk download in the
steady state phase of the video session (Figure 5). The idea
is that if the area described by the received bytes is greater
than the one described by the transmitted ones, it is likely
that the bottleneck link is congested and cannot support the
video bitrate of the session. When video suffering is detected,
the system reacts by launching a QoS script (described in the
next section) that protects the video session. The throughput
evaluation has to start after that the buffering phase is finished.
In our heuristic, this is detected by observing when the server
stops transmitting for some seconds.

The heuristic relies on two vectors rx[n] and tx[n]
where n is the discrete time in seconds. Figure 6 details this
procedure. The variable max_attempts is introduced to be
more conservative and avoiding to react in case of temporary
congestion.

C. Corrective actions

After having realized that the video is suffering from
a situation of congestion, the system should be able to
react with some actions. At this point, it is possible to map
our QoE problem to a simpler QoS one. In fact, we can
control the bandwidth consumption on the link connecting
the BRAS to the clients by means of proper scheduling and
shaping algorithms applied at the network interface on that
link. In essence, we can specify the bitrate to assign to a
given streaming flow (which is dynamic and given by the
rx_thrgh value described in the previous subsection) and

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

1: congestion = 0
2: Each second n:
3: if rx[n] >0 and rx[n− 1] == 0 then
4: T ← n - n0

5: rx thrgh = (
n∑

i=n0

rx[i])/T

6: tx thrgh = (
n∑

i=n0

tx[i])/T

7:
8: if rx thrgh >tx thrgh then
9: congetion++

10:
11: if congestion >= max attempts then
12: launch QoS script
13: end if
14: else
15: congestion = 0
16: end if
17: n0 ← n
18: end if

Figure 6. Heuristic to detect video suffering

guarantee it through shaping and scheduling of the traffic.
The algorithms for such a task are various and well-known.
All have in common the definition of classes and a proper
packet marking scheme, so that incoming packets can be put
in the correct queue before being scheduled for transmission.

Although different solutions are possible, we adopted the
Hierachical-Token-Bucket algorithm, a classful shaper and
scheduler available in the Linux kernel that can efficiently
provide bandwidth sharing. The required parameters are the
IP addresses of the flows to control and the related rates to
be assigned.

IV. EXPERIMENTS

A. Test environment
In order to evaluate our solution, we realized a test environ-

ment in our lab, emulating an ADSL scenario. Figure 7 depicts
this testbed. The set of elements involved are the following:

• A laptop acting as client PC.
• A desktop PC running the Linux operating system,

which emulates a BRAS node.
• Proper tools to emulate the last-mile ADSL link

characteristics: ipfw and dummynet in the client-side
machine and the Linux module NetEm in the network
node.

• A tcp-splitter written in C language, pepsal [17],
installed in the emulated BRAS.

• The Linux Traffic Control (tc) tool for QoS actions

A client browser running on the laptop automatically
generates both YouTube traffic and competing file transfer
flows while a dummynet script is used to limit the upstream
bandwidth on the emulated last-mile link. The desktop PC
emulating the BRAS is a GNU/Linux machine with two
Ethernet cards, one connected to the client PC and the other to
the Internet through the high-speed access connection available
in our University. At this node, dummynet is used for limiting
the downstream bandwidth on the emulated last-mile link,

en0	 	 eth0	

eth4	

Office LAN	

Simulated ADSL	

Figure 7. Laboratory environment

throughput querier	

update	

list	

move 	

data	
 rx	

byte counters	

update	

read	

TCPs list	

listener
loop	

HTB	

QoS	 script	

launch	

pcap	
pcap	

tx	

poller
loop	

Thread	

Memory	

Figure 8. Main components of the tool

while a tc script is used for QoS actions.
We linked the TCP splitter, the heuristic video suffering

detection, and the tc QoS script control in a unique, multithread
program depicted in Figure 8. In essence, an ad-hoc thread
is used for reading packets belonging to the streaming flows
coming from the Internet toward the external interface of the
splitter and outgoing to the client toward the internal interface.
The cumulative number of bytes read from these two sniffers
are saved in two global variable, rx_bytes and tx_bytes,
and used by another thread that wakes up every second and
stores in its memory space the instantaneous data rates. After
reading the cumulative bytes from the interfaces, this thread
resets the global variables to zero so that they become ready
for the next sample. The sampling interval of 1 sec is selected
as compliant with the YouTube dynamics, in particular with the
idle time between chunks download in the steady state and the
download time of each chunk, which involve some seconds.

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

TABLE I. EXPERIMENTAL RESULTS

With Without
tool tool

No stalls 92% 0
Stalls 8% 100%

Figure 9. At istant t = 65 the process runs the QoS script

B. Results

In order to evaluate the effectiveness of our solution, we run
some experiments considering several HD videos, which are
the most bandwidth demanding and hence the most sensitive to
the network congestion. In particular, we consider 50 different
HD YouTube video sessions, established one at a time in the
testbed. In each test, the selected HD video flow competes
for the emulated ADSL link with additional file transfers.
We analyzed the occurrence of video playback stalls with
and without our tool running on the emulated BRAS. Table I
reports on the results. First of all, we can see how congestion
can significantly affect the perceived QoE of HD videos as
at least one stall is observed in all the experiments when our
tool is not active on the BRAS. Moreover, we can observe how
our heuristic actually reacts to congestion situations in 92% of
cases, avoiding stalls and thus increasing perceived QoE. For
the sake of completeness, Figure 9 shows the video delivery
pattern in a case where the video is suffering from congestion
caused by two additional TCP connections; at instant t = 65
the reaction mechanism is triggered by our heuristic and it
can be noted how the streaming transmission rate increases
consequently, thus avoiding stalls.

For what concern the overhead caused by our tool, we have
to consider that it is a splitter process working in user-space
implementing the computation of the areas described by the
download pattern over the time. The evaluation of the area
is a simple sum of bytes counted every second. The major
constraint is on the number of flows being able to analyze.
Since the splitter works in user-space as a single process, the
number of open sockets may be constrained by the machine
operating system. Moreover, the main memory could be
over-loaded before the splitter reaches the maximum number
of opened connections. The limitation on the maximum
number of opened sockets can be overcome by implementing
the tool in the kernel-space. This might be considered for
a possible commercial solution. The amount of resources
involved depends on the number of flows to be tracked. In
our tests we ran one session at a time and the resources
consumed was negligible.

V. CONCLUSION AND FUTURE WORK

The paper investigates a possible solution for protecting the
overall video quality of an HTTP streaming service under the
scenario of congestion caused by competing and concurrent
TCP flows. The developed tool exploits the particular traffic
pattern of HTTP-based videos, which is maintained at the
entrance of the bottleneck link if a TCP splitter is used.
By comparing incoming and outgoing patterns, the tool is
able to detect when the video is suffering and reacts by
protecting video downloads, thus limiting stalling events at
the client. Our experimental results showed the effectiveness of
the proposed approach, which was able to avoid video stalls in
92% of the considered cases. Possible future work regards the
improvement of our heuristic method to detect video suffering,
for example by also considering the pattern of HTTP GET
messages flowing in the opposite direction, and in particular
the time spacing among them during the steady state in both
congested and uncongested scenarios.

REFERENCES

[1] K. ur Rehman Laghari and K. Connelly, “Toward total quality of
experience: A qoe model in a communication ecosystem.” IEEE Com-
munications Magazine, vol. 50, no. 4, 2012, pp. 58–65.

[2] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A generic quantitative
relationship between quality of experience and quality of service,”
Network, IEEE, vol. 24, no. 2, March 2010, pp. 36–41.

[3] S. Jelassi, G. Rubino, H. Melvin, H. Youssef, and G. Pujolle, “Quality
of experience of voip service: A survey of assessment approaches and
open issues,” Communications Surveys Tutorials, IEEE, vol. 14, no. 2,
Second 2012, pp. 491–513.

[4] R. Schatz, T. Hossfeld, and P. Casas, “Passive youtube qoe monitoring
for isps,” in Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2012 Sixth International Conference on, July 2012,
pp. 358–364.

[5] H. Hu, X. Zhu, Y. Wang, R. Pan, J. Zhu, and F. Bonomi, “Qoe-based
multi-stream scalable video adaptation over wireless networks with
proxy,” in Communications (ICC), 2012 IEEE International Conference
on, June 2012, pp. 7088–7092.

[6] M. Jarschel, F. Wamser, T. Hohn, T. Zinner, and P. Tran-Gia, “Sdn-
based application-aware networking on the example of youtube video
streaming,” in Software Defined Networks (EWSDN), 2013 Second
European Workshop on, Oct 2013, pp. 87–92.

[7] M. Baldi and G. Marchetto, “Pipeline forwarding of packets based on
a low-accuracy network-distributed common time reference,” Network-
ing, IEEE/ACM Transactions on, vol. 17, no. 6, Dec. 2009, pp. 1936
–1949.

[8] M. Baldi, M. Corra, G. Fontana, G. Marchetto, Y. Ofek, D. Severina,
and O. Zadedyurina, “Scalable fractional lambda switching: A testbed,”
Optical Communications and Networking, IEEE/OSA Journal of, vol. 3,
no. 5, 2011, pp. 447–457.

[9] M. Baldi and G. Marchetto, “Time-driven priority router implemen-
tation: Analysis and experiments,” Computers, IEEE Transactions on,
vol. 62, no. 5, 2013, pp. 1017–1030.

[10] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby, RFC 3135:
Performance Enhancing Proxies Intended to Mitigate Link-Related
Degradations, Internet Engineering Task Force, Jun. 2001.

[11] G. Paravati, V. Gatteschi, and G. Carlevaris, “Improving bandwidth and
time consumption in remote visualization scenarios through approxi-
mated diff-map calculation,” Computing and Visualization in Science,
vol. 15, no. 3, 2013, pp. 135–146.

[12] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. Munafo, and
S. Rao, “Dissecting video server selection strategies in the youtube cdn,”
in Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, June 2011, pp. 248–257.

[13] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic characteriza-
tion: A view from the edge,” in Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, ser. IMC ’07, 2007, pp. 15–28.

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

[14] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, and S. G. Rao,
“Youtube everywhere: Impact of device and infrastructure synergies
on user experience,” in Proceedings of the 2011 ACM SIGCOMM
Conference on Internet Measurement Conference, ser. IMC ’11. New
York, NY, USA: ACM, 2011, pp. 345–360. [Online]. Available:
http://doi.acm.org/10.1145/2068816.2068849

[15] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous,
“Network characteristics of video streaming traffic,” in Proceedings of
the Seventh COnference on Emerging Networking EXperiments and
Technologies, ser. CoNEXT ’11, 2011, pp. 25:1–25:12.

[16] K. Takeshita, T. Kurosawa, M. Tsujino, M. Iwashita, M. Ichino, and
N. Komatsu, “Evaluation of http video classification method using
flow group information,” in Telecommunications Network Strategy and
Planning Symposium (NETWORKS), 2010 14th International, Sept
2010, pp. 1–6.

[17] C. Caini, R. Firrincieli, and D. Lacamera, “Pepsal: a performance
enhancing proxy designed for tcp satellite connections,” in Vehicular
Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd, vol. 6,
May 2006, pp. 2607–2611.

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

