Low-Power and Shorter-Delay Sensor Data Transmission Protocol in Mobile Wireless Sensor Networks

Sho Kumagai and Hiroaki Higaki

Department of Robotics and Mechatronics, Tokyo Denki University, Japan Email: {kuma,hig}@higlab.net

Abstract-In a sensor network, sensor data messages reach the nearest stationary sink node connected to the Internet by wireless multihop transmissions. Recently, various mobile sensors are available due to advances of robotics technologies and communication technologies. A location based message-by-message routing protocol, such as Geographic Distance Routing (GEDIR) is suitable for such mobile wireless networks; however, it is required for each mobile wireless sensor node to know the current locations of all its neighbor nodes. On the other hand, various intermittent communication methods for a low power consumption requirement have been proposed for wireless sensor networks. Intermittent Receiver-driven Data Transmission (IRDT) is one of the most efficient methods; however, it is difficult to combine the location based routing and the intermittent communication. In order to solve this problem, this paper proposes a probabilistic approach with the help of one of the solutions of the secretaries problem. Here, each time a neighbor sensor node wakes up from its sleep mode, an intermediate sensor node determines whether it forwards its buffered sensor data messages to it or not based on an estimation of achieved pseudo speed of the messages. Simulation experiments show that the proposed probabilistic method achieves shorter transmission delay than the two naive combinations of IRDT and GEDIR in sensor networks with mobile sensor nodes and a stationary sink node.

Keywords-Wireless Sensor Networks, Routing Protocol, Intermittent Communication, Low Power Consumption, Mobile Sensor Nodes, Probabilistic Approach.

I. INTRODUCTION

A sensor network is anticipated to play an important role of a fundamental infrastructure for Internet of Things (IoT) and the big data support. A sensor network consists of multiple wireless sensor nodes and a stationary sink node connected to the Internet. Sensor data messages are transmitted along a wireless multihop transmission route which is a sequence of wireless sensor nodes to the sink node. Then, the sensor data messages reach a dedicated server computer through the Internet [1]. Since only limited battery capacity is available in each sensor node, it is not reasonable for each sensor node to transmit sensor data messages directly to the sink node. Hence, each sensor node transmits sensor data messages to one of its neighbor nodes within its wireless signal transmission range. In order for the sensor data messages to reach the sink node, intermediate sensor nodes forward the received sensor data messages. For such wireless multihop transmissions, various ad-hoc routing protocols have been proposed [9]. In most of such routing protocols, it is assumed that all wireless nodes are always active; i.e., the wireless nodes can send and receive data messages anytime. However, in wireless sensor networks, due to limitation of battery capacity and difficulty

for continuous power supply, low-power communication is required. Especially, for support of mobile wireless sensor networks, such as mobile robot networks with various sensors, human centric sensor networks and vehicle-mounted sensor networks for Intelligent Transport Systems (ITS), the lowpower consumption requirement is serious.

Intermittent communication technique is widely introduced in sensor networks for reduction of power consumption. In each wireless sensor node, its wireless communication module should be active when it observes objects and creates sensor data messages as a source sensor node and when it forwards sensor data messages in transmission as an intermediate sensor node. Otherwise, i.e., while the wireless sensor node is not engaged in any sensor data transmissions, it gets in its sleep mode to reduce its battery consumption for longer lifetime. In order to realize the intermittent communication, it is difficult for each intermediate sensor node to synchronize with its previous- and next-hop sensor nodes. In a source sensor node, its wireless communication module is required to be active only after the sensor node observes certain objects and achieves its sensor data. Hence, it simply enters its active mode. On the other hand, in an intermediate wireless sensor node, it is required to be active before it receives sensor data messages from one of its neighbor sensor nodes. Hence, it is difficult for the intermediate wireless node to determine when it gets in its active mode.

Intermittent Receiver-driven Data Transmission (IRDT) is an asynchronous intermittent communication protocol for sensor networks [4]. In IRDT, an intermediate wireless sensor node with sensor data messages in transmission waits for its next-hop neighbor wireless sensor node to be active without continuous transmissions of control messages which is required in various Low Power Listening (LPL) [6] protocols. Though it is a power-efficient communication method, it is difficult for conventional ad-hoc routing protocols to be applied since the protocols are designed to support only wireless networks consisting of always-on stationary wireless sensor nodes. In order to realize power-efficient routing with intermittent communication in wireless sensor networks, this paper proposes IRDT-GEDIR under an assumption that a location acquisition device, such as a GPS module is in each sensor node. IRDT-GEDIR is a combination of IRDT and a well-known location-based greedy ad-hoc routing protocol Geographic Distance Routing (GEDIR) [8]. GEDIR is based on the message-by-message routing, which is suitable for various sensor networks where short sensor data messages are usually transmitted and especially for dynamic sensor networks whose topology is not stable due to mobility of sensor nodes

and their removal caused by battery consumption and failure. An asynchronous intermittent communication reduces power consumption; however, the transmission delay of sensor data messages usually gets longer by synchronization overhead in each intermediate sensor node with its previous- and nexthop sensor nodes. In addition, for combination of IRDT and GEDIR, location acquisition overhead for next-hop selection is not negligible in mobile wireless sensor networks. In IRDT-GEDIR, introduction of a novel probabilistic next-hop selection method reduces the transmission delay of data messages.

This paper is organized as follows: Section II shows the related works for intemittent sensor data transmission protocols. In Section III, we propose IRDT-GEDIR which combines intermittent sensor data transmissions and a geographical adhoc routing protocol. Section IV evaluates the performance of IRDT-GEDIR. Section V concludes this paper and shows the future works.

II. RELATED WORKS

Battery capacity in sensor nodes consisting of wireless sensor networks is limited and usually there is no continuous power supply to them. Hence, intermittent communication is introduced where sensor nodes switch between their active and sleep modes [11]. Their communication module works only in the active modes. In order for sensor data messages to be transmitted to the sink node along a wireless multihop transmission route, each intermediate sensor node should be in the active mode when its previous-hop node forwards a sensor data message. Such intermittent communication methods are classified into synchronous and asynchronous. In the synchronous methods, all the sensor nodes are closely synchronized and each sensor node transmits sensor data messages according to a predetermined schedule as in Traffic-Adaptive Medium Access Protocol (TRAMA) [10] and Lightweight Medium Access Protocol (LMAC) [5]. However, they are based on the close synchronization among sensor nodes which requires frequent exchange of control messages as the distributed clock synchronization protocols [3]. Even though the required clock synchronization overhead is acceptable, additional control messages are required to be transmitted to update their sleepwakeup schedules consistently to follow the unstable network topology due to the mobility of the wireless sensor nodes.

On the other hand, in the asynchronous methods, synchronization among neighbor nodes is required only when a sensor node forwards a sensor data message to its next-hop sensor node. In LPL [6], when a sensor node requests to transmit a sensor data message to its next-hop sensor node, it continues transmissions of a preamble message during a mode switching interval and all its neighbor nodes receiving the preamble message should be in an active mode even if they are not the next-hop sensor node as shown in Figure 1. In IRDT [4], a current-hop sensor node N_c waits for receipt of a polling message from its next-hop sensor node N_n as in Figure 2. Every sensor node switches between its active and sleep modes in the same interval and broadcasts a polling message with its ID each time when it changes its mode active. Then, it waits for a transmission request message Sreq from its previous-hop node in its active mode. If it does not receive Sreq, it goes into its sleep mode. Otherwise, i.e., if N_c receives a polling message from N_n which enters its active mode and transmits Sreq to N_n with its ID, N_n transmits an acknowledgement message Rack back to N_c and a virtual connection is established between them. Then, data messages are transmitted from N_c to N_n . Different from LPL, a current-hop node N_c does not transmit a preamble message continuously but only waits for receipt of a polling message in IRDT. Therefore, low-overhead, i.e., low battery consuming intermittent communication among wireless sensor nodes is realized.

Figure 1. LPL Intermittent Communication.

Figure 2. IRDT Intermittent Communication.

In [7], a wireless multihop routing protocol for IRDTbased sensor networks has been proposed. It is a proactive routing protocol where each sensor node keeps its routing table for the shortest transmission route to a sink node up-todate. In order for the sensor nodes to determine their next-hop neighbor sensor node, a flooding of a control message initiated by the sink node is applied. Though it works well in usual ad-hoc networks consisting of always-on mobile nodes, it is difficult for sensor networks with intermittent communication since a control message is not always received by all the neighbor sensor nodes due to their sleep mode. Thus, the control message is required to be retransmitted. Hence, in the worst case, a sensor node unicasts the control message to all its neighbor nodes one by one. In addition, in order to support mobile wireless sensor networks, it is difficult for proactive routing protocols to keep the routing tables consistent to the current network topology especially with the intermittent communication among the mobile sensor nodes.

III. PROPOSAL

A. Next-Hop Selection

As discussed in the previous section, for wireless multihop transmissions of sensor data messages to reach a stationary sink node with the intermittent communication in mobile

wireless sensor nodes, a novel routing protocol is required to be developed. In order to reduce the communication overhead and transmission delay for sensor data message transmissions with intermittent communication, this paper proposes a combination IRDT-GEDIR of IRDT and GEDIR [8] which is one of the well-known location-based ad-hoc routing protocols with low communication overhead for synchronization among sensor nodes. GEDIR is a message-by-message based routing protocol. That is, an intermediate node determines its next-hop node for each data message according to the most up-to-date locations of itself, its neighbor nodes and the destination node. Each sensor node with a GPS-like location acquisition device broadcasts its current location information in a certain interval and thus it achieves location information of its neighbor nodes. The original GEDIR is designed for always-on wireless nodes and the broadcasted location information is surely received by all the neighbor nodes. Only the localized information, i.e., location information of not all but only neighbor nodes, is required to determine its next-hop node according to the following method.

[Next-Hop Selection in GEDIR]

An intermediate wireless sensor node N_c selects one of its neighbor sensor node N_n as its next-hop node where the distance $d_n = |N_n S|$ to the sink node S is the shortest among all its neighbor sensor nodes as shown in Figure 3. \Box

Figure 3. GEDIR Overview.

In IRDT, each sensor node transmits a polling message each time it enters its active mode. Thus, by piggybacking its location information to the polling message as in Figure 4, its location information is broadcasted without additional communication overhead and notified to its possible previoushop nodes. However, the polling message is not surely received by all its neighbor sensor nodes since they might be in their sleep mode where their network interfaces do not work. If the sensor nodes are stationary, a neighbor node which receives the polling message by chance holds the location information and uses it for its next-hop determination. However, in a mobile sensor network, the achieved location information gets stale and the most up-to-date location information is required for the next-hop selection.

An intermediate sensor node N_c requires location information of its neighbor nodes only when it has a sensor data message to be transmitted to the sink node through its nexthop sensor node. Thus, in our proposal, based on the location information piggybacked to the received polling messages, N_c determines its next-hop sensor node. Here, since a neighbor sensor node N waits for receiving an *Sreq* message only for a

Figure 4. Location Information Propagation by Polling Messages.

predetermined interval after transmission of a polling message from N, N_c should determine during this interval whether it selects N as its next-hop node or not.

In order to solve this problem, according to a certain criterion, N_c evaluates N and compares the evaluation result and an expected evaluation where one of the later activating neighbor sensor nodes are selected as its next-hop node. In GEDIR, the distance to the destination sink node is applied as the criterion for selection of its next-hop node for achieving shorter transmission route to the sink node. On the other hand in IRDT-GEDIR, since wireless sensor nodes communicate intermittently, forwarding to the neighbor sensor node nearest to the destination sink node does not always reduce the transmission delay. Even when a sensor node N is not the nearest to the sink node, shorter transmission delay might be achieved by forwarding it to N being active currently. Thus, this paper introduces a novel criterion pseudo speed of sensor data message transmission which is achieved by division of difference of distance to the sink node S, i.e., $|N_cS| - |NS|$, by the time duration between the transmission request and receipt of the polling message as shown in Figure 5. It is a reasonable criterion for selection of a next-hop sensor node in intermittent communication environments for shorter transmission delay to the sink node.

Pseudo Speed $sv_i = (d_c - d_i)/w_i$ in N_i

Figure 5. Next-Hop Selection based on Pseudo Speed.

Due to IRDT intermittent communication, an intermediate

sensor node N_c should determine whether it selects a neighbor sensor node N as its next-hop node soon after it receives a polling message from N since N_c should transmits an *Sreq* message to N while N is in its active mode. That is, N_c cannot compare all pseudo speed sv_i each of which is achieved in case that N_c forwards a sensor data message to a neighbor node N_i since each sv_i is only achieved when N_i wakes up and broadcasts its polling message containing its current location information. This is almost the same setting as in the secretaries problem [2].

The secretaries problem is one of the famous problems of the optimal stopping theory. It has been studied extensively in the fields of applied probability, statistics and decision theory. The basic form of the problem is as follows:

- An administrator is willing to hire the best secretary out of *n* rankable candidates.
- The candidates are interviewed one by one in an random order.
- A decision about each particular candidate is to be taken immediately after the interview.
- Once rejected, a candidate cannot be recalled.
- During the interview, the administrator can rank the candidate among all candidates interviewed so far; however, it cannot rank the candidate among unseen forthcoming candidates.
- The problem is about the optimal strategy to maximize the expectation of the rank of the selected candidate.

In our next-hop selection, neighbor nodes get active one by one and an intermediate sensor node with sensor data messages in transmission can evaluate the pseudo speed of data messages to them at that time. It should immediately determine whether it selects the currently active neighbor node as its next-hop node or not even though it cannot evaluate the pseudo speed of data messages to the forthcoming active neighbor nodes. Thus, the solution of our next-hop selection problem is expected to be achieved based on the secretaries problem.

 N_c evaluates the pseudo speed sv where it forwards a sensor data message to N from which N_c receives a polling message and the expected pseudo speed \overline{sv} where it forwards it not to N but to one of the later activating sensor nodes. If $sv > \overline{sv}$, N_c transmits an *Sreq* message to N; i.e., it selects N as its next-hop node. Otherwise, i.e., $sv < \overline{sv}$, N_c does not transmit an *Sreq*.

B. Expectation of Pseudo Speed

In the proposed method in the previous subsection, an intermediate sensor node determines whether it forwards a sensor data message to a currently active neighbor sensor node from which it receives a polling message by comparison of pseudo speed of transmission of a data message. For the comparison, this subsection discusses the method to evaluate the expected pseudo speed of transmission of a data message not to the currently active neighbor node but to one of the later activating nodes. Here, let T be the constant interval of activations in sensor nodes, i.e., the interval of consecutive transmissions of polling messages and n be the number of neighbor sensor nodes of an intermediate sensor node N_c with a sensor data message in transmission.

First, we investigate the distribution of distances |NS| from neighbor nodes N of N_c to the destination sink node S. As shown in Figure 6, let r, d_c and d be a wireless transmission range of N_c , the distance from N_c to S ($d_c > r$) and the distance from N to S ($d_c - r \le d \le d_c + r$). Under an assumption that sensor nodes are distributed with the same density, the probability DP(d) where the distance |NS| is shorter than d is as follows:

Figure 6. Area of Candidates of Next-Hop Node.

$$DP(d) = \frac{S(d)}{\pi r^2}$$

= $\frac{2}{\pi r^2} \Big(\int_{d_c-d}^{x'} \sqrt{d^2 - (x - d_c)^2} dx + \int_{x'}^r \sqrt{r^2 - x^2} dx \Big)$ (1)
(where $x' = (d_c^2 + r^2 - d^2)/2d_c$)

Since DP(d) is the distribution function of d, the probability density function dp(d) where |NS| equals to d is as follows:

$$dp(d) = \frac{d}{dd}DP(d) = \frac{2}{\pi r^2} \frac{d}{dd} \left(\int_{d_c-d}^{x'} \sqrt{d^2 - (x - d_c)^2} dx + \int_{x'}^r \sqrt{r^2 - x^2} dx \right)$$
(2)

The probability density function p(l) of the reduction of distance $l = d_c - d$ to S achieved by forwarding a sensor data message from N_c to N is as follows:

$$p(l) = dp(d_c - l)$$

$$= -\frac{2}{\pi r^2} \frac{d}{dl} \left(\int_{l}^{x''} \sqrt{(x - l)(2d_c - l - x)} dx + \int_{x''}^{r} \sqrt{r^2 - x^2} dx \right)$$
(where $x'' = ((2d_c - l)l + r^2)/2d_c$) (3)

Next, we examine the distribution of time duration from the transmission request of a sensor data message in N_c to the receipt of a polling message from N. Here, the transmission is supposed to be requested at t = 0. Let t_i be the time when the *i*th polling message is transmitted from one of the neighbor nodes of N_c . Thus, i-1 neighbor sensor nodes transmit polling messages in an interval $[0, t_i)$ and the rest n - i neighbor sensor nodes transmit polling messages in an interval (t_i, T) . Under an assumption that the transmission time t of the polling messages from the n-i neighbor sensor nodes are distributed in the interval (t_i, T) according to the unique distribution, the probability density function pp(i, j, t) where jth $(i < j \le n)$ polling message is transmitted from one of the neighbor sensor nodes of N_c at time $t \in (t_i, T)$ is as follows:

$$pp(i, j, t) = {}_{n-i}C_{j-i-1} \left(\frac{t-t_i}{T-t_i}\right)^{j-i-1} \times {}_{n-j+1}C_1 \frac{1}{T-t_i} \times \left(\frac{T-t}{T-t_i}\right)^{n-j} = {}_{n-i-1}C_{j-i-1} \frac{(n-i)(t-t_i)^{j-i-1}(T-t)^{n-j}}{(T-t_i)^{n-i}}$$
(4)

Since the location of a neighbor sensor node and the time when it transmits a polling message are independent each other, the probability density function g(i, j, t, l) where N_c transmits a sensor data message to a neighbor sensor node Nwhich transmits the *j*th $(i < j \le n)$ polling message at time t $(t_i < t < T)$ and the distance to the sink node S is reduced l by this forwarding is induced by (3) and (4) as follows:

$$g(i, j, t, l) = pp(i, j, t) \cdot p(l)$$
(5)

Here, the pseudo speed sv of transmissions of sensor data messages is l/t.

In case that N_c does not select a neighbor sensor node which transmits the *i*th polling message at t_i as its next-hop node, N_c selects another sensor node which transmits the *j*th $(i < j \le n)$ polling message at t_j $(t_i < t_j < T)$ or a sensor node transmitting its second polling message after t = T. In the latter case, kth $(1 \le k \le i)$ polling messages are transmitted at t_k $(0 \le t_k \le t_i)$ and the distance reduction by forwarding to the neighbor node is l_k . Thus, the pseudo speed achieved by forwarding on receipt of the second polling message is $sv_k = l_k/(t_k + T)$. Since N_c has already achieved both t_k and l_k $(1 \le k \le i)$, the expected pseudo speed where N_c forwards a sensor data message at $t \ge T$ is as follows:

$$\overline{sv}_n = \max_{1 \le k \le i} sv_k = \max_{1 \le k \le i} \frac{l_k}{t_k + T} \tag{6}$$

This is an expected pseudo speed in case that N_c does not forward a sensor data message to a neighbor node transmitting the *n*th polling message. Based on (6), we evaluate the expected pseudo speed \overline{sv}_j when N_c does not forward a sensor data message to a neighbor node transmitting the *j*th ($i \le j \le n$) polling message.

In case of j = n, p(l) and $pp(i, n, t_n)$ are defined in an area $(-r \leq l \leq r \text{ and } t_i < t_n < T)$ as shown in Figure 7 and $g(i, n, t_n, l) = pp(i, n, t_n) \cdot p(l)$. Here, the area is divided into S and S' by a line $l = \overline{sv}_n t_n$. In S, since the pseudo speed l/t_n is higher than \overline{sv}_n , N_c forwards a sensor data message to a neighbor node transmitting the *n*th polling message. On the other hand, since the pseudo speed l/t_n is lower than

 \overline{sv}_n in S', N_c forwards a sensor data message to the node transmitting not *n*th but *k*th polling message which gives the maximum $l_k/(t_k + T)$ in (6). Therefore, \overline{sv}_{n-1} is evaluated by the following formula:

Figure 7. Expected Pseudo Speed where Transmitter of n-1th Polling Message is not Selected as Next-Hop Node.

Generally, the expected pseudo speed when N_c does not forward a sensor data message to a neighbor node transmitting the *j*th $(i \le j < n)$ polling message is also evaluated as in the same way. That is, the area $(-r \le l \le r \text{ and } t_i < t_{j+1} < T)$ in which $g(i, j+1, t_{j+1}, l)$ is defined is divided into sub-areas S and S' by a line $l = \overline{sv}_{j+1}t_{j+1}$ as in Figure 8. In S, since

Figure 8. Expected Pseudo Speed where Transmitter of *j*th Polling Message is not Selected as Next-Hop Node.

the pseudo speed l/t_{j+1} is higher than \overline{sv}_{j+1} , N_c forwards a sensor data message to a neighbor node transmitting the j + 1th polling message. On the other hand, since the pseudo speed l/t_{j+1} is lower than \overline{sv}_{j+1} in S', N_c forwards a sensor data message to the transmitting node of not j + 1th polling message but a later transmitted polling message. Therefore, \overline{sv}_j is evaluated by the following formula:

$$\overline{sv}_{j} = \int_{S} \frac{l}{t_{j+1}} g(i, j+1, t_{j+1}, l) dS + \int_{S'} \overline{sv}_{j+1} g(i, j+1, t_{j+1}, l) dS' \quad (8)$$

According to (6) and (8), N_c calculates \overline{sv}_i . Thus, if a neighbor sensor node N which is l_i nearer to the sink node S than N_c transmits the *i*th polling message at time t_i , N_c determines whether it selects N as its next-hop node as follows:

If l_i/t_i ≥ sv_i, N_c forwards a sensor data message to N.
Otherwise, i.e., if l_i/t_i < sv_i, N_c does not forward a sensor data message to N.

In our proposed protocol, only ID and location information of mobile sensor nodes are piggybacked. In a wireless sensor network with stationary sensor nodes, it is enough for precisely estimate the pseudo speed of its neighbor nodes. However, in a mobile wireless sensor network, since no mobility information is piggybacked, it is impossible for an intermediate node to estimate future locations of its neighbor nodes. Thus, it may possible that the achieved locations are changed when the next polling messages are transmitted. That is, l_k might be changed and in the worst case the neighbor node goes out of the wireless transmission range of the intermediate node when it transmits the next polling message. The effect is later discussed in the performance evaluation and the conclusion sections.

IV. EVALUATION

First, we evaluate the 1-hop transmission performance achieved by the proposed IRDT-GEDIR next-hop selection method. Here, pseudo speed is evaluated in IRDT-GEDIR and two conventional naive methods. A wireless transmission range of a wireless sensor node is assumed 10m and the distance from an intermediate node N_c currently holding a sensor data message to the sink node is 100m. 5–20 neighbor sensor nodes are randomly distributed in a wireless signal transmission range according to the unique distribution randomness. All sensor nodes are assumed stationary. The interval of activations in each sensor node is 1s and the initial activation time is also randomly determined. The proposed IRDT-GEDIR is compared with the following two conventional methods and an unrealistic locally optimum method;

- N_c forwards a sensor data message to the neighbor node which transmits the first polling message after the transmission request in N_c . (Greedy Conventional)
- N_c forwards a sensor data message to the neighbor node which provides the highest pseudo speed determined after receiving polling messages from all the neighbor nodes of N_c . (Conservative Conventional)
- N_c forwards a sensor data message to the neighbor node which provides the highest pseudo speed determined by the information of locations and activation times in all the neighbor nodes. (Locally Optimum)

Locally Optimum is evaluated only for comparison since it is impossible for N_c to achieve location information of its neighbor nodes without any overhead. If N_c is a dead-end node which cannot select its next-hop node, the pseudo speed is evaluated as 0m/s.

Figures 9–12 show the results of simulation experiments. Here, the value of the distribution function f(sv) = p(sv' < sv) of probability where pseudo speed sv' is lower than sv. In all the results, higher pseudo speed is achieved in the order IRDT-GEDIR, Greedy Conventional and Conservative Conventional. Locally Optimum provides the ideal pseudo speed, since N_c achieves all the required information to determine its next-hop node in advance. The performance of Conservative Conventional is low since the overhead to receive all the polling messages is too high. Though the performance of Greedy Conventional and IRDT-GEDIR is almost the same in low density environments, higher pseudo speed is achieved by IRDT-GEDIR in more dense environments. In IRDT-GEDIR, no additional control messages are required to determine its next-hop nodes as discussed in the previous section. Therefore, IRDT-GEDIR is expected to realizes low-power shorter-delay transmissions of sensor data messages in intermittent wireless sensor networks.

Figure 9. 1-Hop Transmission Performance (5 Neighbor Nodes).

Figure 10. 1-Hop Transmission Performance (10 Neighbor Nodes).

Next, we evaluate the multihop transmission performance in mobile wireless sensor networks. In a 100m \times 100m square simulation field, 1,000 mobile wireless sensor nodes with 10m wireless signal transmission range are randomly distributed according to the unique distribution randomness. It is assumed that the interval of activations in each sensor node is 1.0s, communication overhead for 1-hop transmission is 0.1s and the activation time offset is also randomly determined in each sensor node according to the unique distribution in [0s, 1s). The speed of mobile wireless nodes is 0.1– 2.0m/s and their mobility is according to the Random-Way-Point model. A location of a stationary sink node is also randomly determined, which is assumed to be advertised to all the mobile sensor nodes in advance. In IRDT-GEDIR, for

Figure 11. 1-Hop Transmission Performance (15 Neighbor Nodes).

Figure 12. 1-Hop Transmission Performance (20 Neighbor Nodes).

calculation of expectation of pseudo speed, the number of neighbor nodes n is needed; however, it is difficult for an intermediate sensor nodes to determine n in an intermittent communication environment. Hence, the average number of mobile sensor nodes in its wireless transmission range is applied as n in the simulation experiments. Thus, in this experiment, $n = 1,000 \div (100 \times 100) \times (10 \times 10 \times \pi) = 31$. End-to-end transmission delay and hop counts of a sensor data message is evaluated in IRDT-GEDIR, Greedy Conventional, Conservative Conventional and Locally Optimum. Figures 13–17 and Figures 18–22 show the simulation results of 1,000 trials of end-to-end transmission delay and hop counts, respectively. The x-axis represents distances between a source mobile sensor node and the stationary sink node when the multihop transmission is initiated.

Though an intermediate sensor node transmits a sensor data message soon after it receives a polling message from one of its neighbor sensor nodes in Greedy Conventional and Locally Optimum. However, it determines its next-hop sensor node after receipt of all the polling message always in Conservative Conventional and sometimes in IRDT-GEDIR. In such cases, due to the interval between the receipt of the polling message and the transmission of a sensor data message and mobility of the sensor nodes, it may fail to forward the sensor data message if the neighbor node moves out of the wireless transmission range. In our simulation results, only Conservative Conventional fails to forward as shown in Table 1. Thus, it is not suitable especially for high speed mobility.

TABLE I. RATIO OF FORWARDING FAILURE IN CONSERVATIVE CONVENTIONAL.

Mobility Speed [m/s]	0.1	0.2	0.5	1.0	2.0
Failure Ratio [%]	15.9	26.1	64.6	74.0	88.3

As shown in Figures 13-22, independently of the mobility speed of wireless sensor nodes, all the simulation results, i.e., both end-to-end transmission delay and hop counts are proportional to the distance between a source sensor node to the destination sink node. The order of transmission delay is Locally Optimum, IRDT-GEDIR, Greedy Conventional and Conservative Conventional and the order of hop counts is Conservative Conventional, Locally Optimum, IRDT-GEDIR and Greedy Conventional. Though Conservative Conventional achieves the smallest hop counts, which means the lowest power consumption transmissions are realized, it requires too long transmission delay and suffers too high transmission failure ratio. The relation among Locally Optimum, IRDT-GEDIR and Greedy Conventional is almost the same in all the results. In IRDT-GEDIR and Greedy Conventional, 18.56% and 23.06% additional transmission delay and 21.70% and 35.64% additional hop counts are required to those of Locally Optimum. Hence, IRDT-GEDIR achieves improvement in both power consumption and end-to-end transmission delay.

Figure 13. End-to-End Delay in Wireless Multihop Transmissions (0.1 m/s).

Figure 14. End-to-End Delay in Wireless Multihop Transmissions (0.2 m/s).

Figure 17. End-to-End Delay in Wireless Multihop Transmissions (2.0 m/s).

Figure 15. End-to-End Delay in Wireless Multihop Transmissions (0.5 m/s).

Figure 18. Hop Counts of Data Message Transmissions (0.1 m/s).

Figure 16. End-to-End Delay in Wireless Multihop Transmissions (1.0 m/s).

Figure 19. Hop Counts of Data Message Transmissions ($0.2 \mbox{ m/s}$).

Figure 20. Hop Counts of Data Message Transmissions (0.5 m/s).

Figure 21. Hop Counts of Data Message Transmissions (1.0 m/s).

Figure 22. Hop Counts of Data Message Transmissions (2.0 m/s).

V. CONCLUSION

This paper proposes IRDT-GEDIR which is combination of IRDT intermittent communication protocol with lower power consumption and GEDIR location-based message-by-message ad-hoc routing protocol. In intermittent communication, it is difficult for an intermediate node to select its next-hop node due to difficulty to achieve location and activation time information from neighbor nodes. By introduction of a solution of the secretaries problem and a pseudo speed criterion, a novel next-hop selection method is induced. The 1-hop simulation experiments in a stationary sensor network show that the proposed method achieves better next-hop selection with higher pseudo speed. In addition, the wireless multihop transmission experiments in a mobile sensor network show that it is expected for IRDT-GEDIR to achieve shorter end-to-end transmission delay and smaller hop counts of sensor data messages even with the sleep mode in intermediate sensor nodes due to the intermittent communication. Here, no forwarding failure occurs even without mobility information of neighbor nodes. Therefore, IRDT-GEDIR improves the performance of mobile sensor networks.

In this paper, all the mobile sensor nodes assume to have the same activation interval. However, it is required for mobile sensor nodes to have different activation intervals, e.g., depending on the battery capacity. In our future work, the nexthop selection method is extended to support variation of the activation interval in sensor nodes.

REFERENCES

- D. E. Culler and W. Hong, "Wireless Sensor Networks," Communications of the ACM, Vol. 47, No. 6, 2004, pp. 30–33.
- [2] J. Gilbert and F. Mosteller, "Recognizing the Maximum of a Sequence," Journal of the American Statistical Association, Vol. 61, 1966, pp. 35–73.
- [3] A. Giridhar and P. R. Kumar, "Distributed Clock Synchronization over Wireless Networks: Algorithms and Analysis," Proceedings of the 45th IEEE Conference on Decision and Control, 2006, pp. 4915–4920.
- [4] T. Hatauchi, Y.Fukuyama, M. Ishii, and T. Shikura, "A Power Efficient Access Method by Polling for Wireless Mesh Network," Transactions of IEEJ, Vol. C-128, No. 12, 2008, pp. 1761–1766.
- [5] L. F. W. Hoesel and P. J. M. Havinga, "A Lightweight Medium Access Protocol for Wireless Sensor Networks," Proceedings of the 1st International Conference on Networked Sensing Systems, 2004, pp. 205–208.
- [6] R. Jurdak, P. Baldi, and C. V. Lopes, "Adaptive Low Power Listening for Wireless Sensor Networks," IEEE Transaction on Mobile Computing, Vol. 6, No. 8, 2007, pp. 988–1004.
- [7] D. Kominami, M. Sugano, M. Murata, T. Hatauchi, and Y. Fukuyama, "Performance Evaluation of Intermittent Receiver-Driven Data Transmission on Wireless Sensor Networks," Proceedings of the 6th International Symposium on Wireless Communication Systems, 2009, pp. 141–145.
- [8] X. Lin and I. Stojmenovic, "Geographic Distance Routing in Ad Hoc Wireless Networks," Technical Report in University Ottawa, TR-98-10, 1998.
- [9] C. E. Perkins, "Ad Hoc Networking," Addison-Wesley, 2001.
- [10] V. Rajendran, K. Obraczka, and J. J. Garacia-Luna-Aceves, "Energy-Efficient Collision-Free Medium Access Control for Wireless Sensor Networks," Proceedings of the 1st ACM International Conference on Embedded Networked Sensor Systems, 2003, pp. 181–192.
- [11] S. Methley, "Essentials of Wireless Mesh Networking," Cambridge University Press, 2009.