
Interconnected Multiple Software-Defined Network Domains with Loop Topology

Jen-Wei Hu

National Center for High-performance

Computing &

Institute of Computer and

Communication Engineering

NARLabs & NCKU

Tainan, Taiwan

hujw@narlabs.org.tw

Chu-Sing Yang

Institute of Computer and

Communication Engineering

NCKU

Tainan, Taiwan

csyang@mail.ee.ncku.edu

Te-Lung Liu

National Center for High-performance

Computing

NARLabs

Tainan, Taiwan

tlliu@narlabs.org.tw

Abstract—With the trends of software-defined networking

(SDN) deployment, all network devices rely on a single

controller will create a scalability issue. There are several novel

approaches proposed in control plane to achieve scalability by

dividing the whole networks into multiple SDN domains.

However, in order to prevent broadcast storm, it is important

to avoid loops in connections with OpenFlow devices or

traditional equipments. Therefore, one SDN domain can only

have exactly one connection to any other domains, which will

cause limitation when deploying SDN networks. Motivated by

this problem, we propose a mechanism which is able to work

properly even the loops occurred between any two controller

domains. Furthermore, this mechanism can also manage link

resources more efficiently to improve the transfer performance.

Our evaluation shows that the transmissions between hosts

from different areas are guaranteed even if the network

topology contains loops among multiple SDN domains.

Moreover, the proposed mechanism outperforms current

method in transferring bandwidth.

Keywords-Software-defined networking; OpenFlow; multiple

domains; loop topology.

I. INTRODUCTION

During the last decades, numbers of innovative protocols
are proposed by researchers in network area. However, it is
hard to speed up the innovation because network devices are
non-programmable. The software defined networking (SDN)
approach is a new paradigm that separates the high-level
routing decisions (control plane) from the fast packet
forwarding (data plane). Making high-speed data plane still
resides on network devices while high-level routing
decisions are moved to a separate controller, typically an
external controller. OpenFlow [1] is the leading protocol in
SDN, which is an initiative by a group of people at Stanford
University as part of their clean-slate program to redefine the
Internet architecture. When an OpenFlow switch receives a
packet it has never seen before, for which it has no matching
flow entries, it sends this packet to the controller. The
controller then makes a decision on how to handle this
packet. It can drop the packet, or it can add a flow entry
directing the switch on how to forward similar packets in the
future.

Moving local control functionalities to remote controllers
brings numerous advantages, such as device independency,

high flexibility, network programmability, and the possibility
of realizing a centralized network view [2]. However, with
the number and size of production networks deploying
OpenFlow equipments increases, there have been increasing
concern about the performance issues, especially scalability
[3].

The benchmarks on NOX [7] showed it could only
handle 30,000 flow installs per second. However, in
[2][4][5][6], authors mention fully physically centralized
control is inadequate because relying on a single controller
for the entire network might not be feasible. In order to
alleviate the load of controller and achieve more scalability,
there are several literatures proposed their solutions.
DevoFlow [8] which addresses this problem by proposing
mechanisms in data plane (e.g., switch) with the objective of
reducing the workload towards the controller [6]. In contrast
to request reducing in data plane, the other way is to propose
a distributed mechanism in control plane. A large-scale
network should be divided into multiple SDN domains,
where each domain manages a relatively small portion of the
whole network, such like that many data centers may be
located on different areas for improving network latency.
However, if separating to multiple SDN domains, we will
lose the consistent centralized control. Currently, there is no
protocol for solving this issue [9]. Thus, there are some
proposed frameworks [4][5][6] in which create a specific
controller to collect information (e.g., states, events, etc.)
from multiple domain controllers. They all focus on solving
controller scalability issues and facilitating a consistent
centralized control among multiple controller domains.

Figure 1. Looped example of a topology with SDN devices and traditional

equipments.

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

mailto:hujw@narlabs.org.tw
mailto:csyang@mail.ee.ncku.edu
mailto:tlliu@narlabs.org.tw

For increasing reliability and transmission rate, multiple
links are often deployed between nodes in ordinary network
design, which practically create loops in topology. The loop
leads to broadcast storms as broadcasts are forwarded by
switches out of every port, the switches will repeatedly
rebroadcast the broadcast packets flooding the network.
Since the Layer 2 header does not support a time to live
(TTL) value, if a packet is sent into a looped topology, it can
loop forever and bring down the entire network. Border
gateway protocol (BGP) can handle the loop topology in
current Internet, but it is designed based on Layer 3. Thus,
BGP still cannot prevent broadcast storm. In order to tackle
broadcast storm issue, the spanning tree protocol (STP) is
usually used to only allow broadcast packets to be delivered
through the STP tree. This design avoids broadcast storm but
reduces the overall utilization of the links as a consequence.
When in a single SDN domain, controller has the complete
knowledge over the entire network topology, thus the tree
can be easily built. However, when the SDN network has
been split into SDN islands, with the traditional network in
between, the controller no longer knows the complete
topology, resulting in the inability to build an effective tree,
as shown in Figure 1. In this case, the existence of the loop
may block the communication between two islands because
the broadcast packets transmitted in the topology would
mislead the controller to believe that the two hosts in
communication are from the same island, thus wrong flow
entries are incorporated. The situation will become even
more complex in multiple SDN domains. In this paper, we
focus on Layer 2 and propose a mechanism which can work
properly even the loops occurred between any two SDN
domains. Furthermore, this mechanism can also more
efficiently in using link resources to improve the transfer
performance.

The remainder of the paper is organized as follows.
Section 2 presents a brief review of relevant research works
focus on solving scalability issue in control plane. In Section
3, we define the preliminaries which will be used in
proposed mechanism. Then, we briefly describe proposed
mechanism for solving the loop limitation between multiple
SDN domains and traditional networks in Section 4. In
Section 5, we evaluate our mechanism in a real environment
among multiple SDN domains and experiments are reported
and compared with the current approach. Finally, the paper is
concluded.

II. RELATED WORKS

Onix [5] is a control plane platform, which was designed
to enable scalable control applications. It is a distributed
instance with several control applications installed on top of
control plane. In addition, it implements a general API set to
facilitate access the Network Information Base (NIB) data
structure from each domain. However, authors mention this
platform does not consider the inter-domain network control
due to the control logic designer needs to adapt the design
again when changed requirements.

HyperFlow [4] is a distributed event-based control plane
for OpenFlow. It facilitates cross-controller communication
by passively synchronizing network-wide view among

OpenFlow controllers. They develop a HyperFlow controller
application and use an event propagation system in each
controller. Therefore, each HyperFlow controller acts as if it
is controlling the whole network. In addition, each
HyperFlow controller processes and exchanges these self-
defined events and the performance gets poor when the
number of controllers grows [4].

HyperFlow and Onix assume that all applications require
the network-wide view; hence, they cannot be of much help
when it comes to local control applications. In Kandoo [6],
authors design and implement a distributed approach to
offload control applications over available resources in the
network with minimal developer intervention without
violating any requirements of control applications. Kandoo
creates a two-level hierarchy for control planes. One is local
controller which executes local applications as close as
possible to switches in order to process frequent requests,
and the other is a logically centralized root controller runs
non-local control applications. It enables to replicate local
controllers on demand and relieve the load on the top layer,
which is the only potential bottleneck in terms of scalability.

The above proposals focus on network control, which
proactively create the inter-domain links. Thus, these
approaches are able to provision cross-domain paths but the
complexity of maintaining global proactive flow rules can be
minimized. However, loops may form between controller
domains and need to be dealt with carefully. To meet this
requirement, we develop a mechanism which dynamically
forwards packets in the reactive way and solves the loop
limitation between multiple controller domains and
traditional networks.

III. PRELIMINARIES

We assume the network topology as an undirected graph
 , where is a finite set, the
elements of which are called vertices, and
 is a finite set, the elements of which are called edges,
where each edge can be represented by , with

 .

In order to limit the propagation of edge information that
is only relevant in certain portions of the network and to
improve scalability, we group vertices into structures called
areas, denoted as . Each vertex is assigned a label
 that is taken from a set L, describing the area that
 belongs to. Each area has a controller which is charged to

coordinate vertices to exchange edge information with its
connected areas. As shown in Figure 2, vertices , , and
 are on the same area . is the controller of area

 . is a special label used to represent the area is not

belong to any controller domains (e.g., legacy network). That
is, area do not have a controller which can

communicate with other areas. There is another special area,
called Root Area (RA), which is the root of all areas whose
starting item of label match to the label of RA. The controller
of RA, called Rooter, collects edge information from its area
controllers. Therefore, the Rooter owns a global relationship
among its controlled areas.

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

Figure 2. A sample network where vertices have been assigned to areas,

represented by rounded boxes.

A vertex incident on an edge , such that

 is called a border vertex for , and is in charge

of exchanging the edge information to other connected area
 where . If a vertex has an edge

 , such that , we call and as inner vertices.

An inner vertex only exchanges edge messages to other inner
vertices in the same area.

There are two different edge information messages. one
is exchanged among border vertices in network ,
called where is the vertex
which fires this edge information message; is the port
of vertex that sends the outgoing edge information; is
the label of to represent the area that belongs to;
(possible empty) is the set of parameters of the port (e.g.,
priority), which can realize some simple link utilization
functions. Each area controller disseminates the other edge
message, called , to its Rooter. As
illustrated in Figure 2, will receive from , ,

and respectively. There are three fields in , is a

composition field which includes vertex , its label ,
and port ; the definition of is same as but the
vertex such that is the end vertex; is the set
of parameters of the port.

Each area controller owns full edge information of
neighbor areas via all its border vertices. If there exists a port
on one border vertex, it receives the edge information of a
specific area which is the same as its area controller, we call
this port of the vertex is a Representative Port (RP) for this
neighbor area. As illustrated in Figure 2, and

 are two RPs for in area .

IV. PROPOSED MECHANISM

In this section, we describe the design philosophy and
implementation of our approach. In general SDN network

environment, all vertices in the same area will exchange edge
information to each other. This is well defined in OpenFlow
specification and all popular controllers have already
implemented it. However, extended edge information that
beyond this area will not be exchanged. In order to compose
edge information across different areas, the border vertex
which resides in one area will exchange the edge information
to its neighbor border vertices that may be directly connected
or through one or more area . These operations are

formalized in Figure 3. First of all, area controller calls

sub-procedure to update its data structures according to the
received message , such as its neighbor area list and
connected edges list for areas. Then, it creates and
disseminates edge information that are newly appeared in
 . After processing all new edge information,

disseminates edge information that updated the set of
parameters. Finally, the procedure updates the list of RP, that
is used when area controller determines which ports allowed
to forward broadcast packets to all connected areas. Note that,
in each area controller we have a background process to
check the validity of edge information. If it exceeds the
timeout , all related information of edge will be

removed.

01: procedure UpdateBorderVertexEdges ()

02: is a set stores all border vertices and ports in

03: is the set of all connected areas in

04: is the map of that

stores the information of all discovered border vertices

according to different connected areas.

05: is the map of , where

and are resided in two different controller areas

respectively.

06: is the map of

which represents if sending packets to specific area, we can

choose one vertex-port pair in the list.

07: for each

08: UpdateElements ()

09: Initialize to a configured edge timeout

10: Create a new

11:

12: ;

13: Send to the Rooter

14: UpdateRepresentativePorts ()

15: end for

16: for each

17: if

18: is an updated instance of in

19: ; ; renew

20: Send to the Rooter

21: end if

22: end for

23: end procedure

24: subprocedure UpdateElements ()

25: }

26: if

27: }

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

28: if

29:

30: if)

31:
32: end subprocedure

33: function UpdateRepresentativePorts ()

34: for each

35: for each

36: if

37:
38: end for

39: end for

40: end function

Figure 3. Algorithm used for updating the set of known edge

information in area controller when the new edge information

arrived at a border vertex .

As we described in Section 3, each area controller will

send edge information to its Rooter periodically. In our
proposal, this Rooter is responsible for providing the
network-wide topology. Although our mechanism works
well even eliminating the Rooter, we still keep this element
for preserving the control flexibility to network management
system in the upper layer, such as altering the original flow
path and so on. We now illustrate the operations undertaken
by Rooter to update its controlled area topology according to
received . These operations are formalized as the
procedure UpdateAreaTopology () in Figure 4. First of
all, Rooter composes any newly edge information from area
controllers. If received is already existed in edge
information of Rooter, this process only updates the new
parameter and the timeout of this edge. Last, the Rooter will
refresh the area topology according to updated and

keep this data structure for computing the area path in the
future.

Both area and in Figure 2 have two border

vertices. Take vertex in area as an example, it

receives edge information from area by two paths,

 and (. Similar to vertex ,
we also can discover two paths. Therefore, four edges are
discovered between the area and in Rooter. After

processing the algorithm of Figure 4, the area topology is
delivered, as shown in Figure 5.

01: procedure UpdateAreaTopology ()

02: is a new or an updated edge from controlled areas

03: for each

04: Update by and initialize

05: end for

06: for each

07: if

08: ; renew

09: end for

10: Refresh area topology according to

11: end procedure
Figure 4. Algorithm to update area topology at Rooter according to the

received edge information from controller areas.

Figure 5. The logical network reduced from the sample network in Figure 2.

We illustrate the operation undertaken by area controller

 when it receives a broadcast packet from any vertex in

the controlled domain. These operations are formalized in
Figure 6. The input parameters are composed of all
connected areas (), the representative port list generated in
Figure 3, and the broadcast packet (packet). This procedure
goes through the set and checks how many vertex-port
pairs in of . If there contains two or more pairs, it uses
the function to
determine the ports of border vertices for forwarding this
broadcast packet.

01: procedure HandleBroadcastPacket ()
02: is the flow tables of vertex

03: is the set of all connected areas in

04: is the map of

05: in

06: for each

07: if size of

08:

09: else // only one item in

10:

11:

12:
13: end if

14: end for

15: end procedure

16: function PickForwardingVertexPorts ()

17:

18: for each

19: if or

20:

21: end for

22:

23: return

24: end function
Figure 6. Algorithm used for determining which ports on its all border

vertices will be used to forward broadcast packets to other areas.

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

Figure 7. An example of forwarding packets from a host to different areas.

Figure 8. An example of selecting one port in the receiver according to

arriving time of the same request packet.

To show an example of process in Figure 6, we consider

the area in Figure 5 and let one host H1 connect to

vertex in this area, as shown in Figure 7. There are three

vertex-port pairs on all border vertices in , two of them

can reach to area and the other is for area .

Assume that H1 sends a broadcast packet (e.g., an ARP
request). In the meantime, the area controller triggers the
procedure HandleBroadcastPacket and determines the
forwarding ports on its border vertices to transmit the packet
to other areas. Note that we only consider RPs on all border
vertices, if there exists other type of ports, such as access
ports (e.g., connecting to hosts) or intra-switch ports (e.g.,
the port on connecting to), our mechanism also
forwards the broadcast packet to these ports.

In Figure 7, both and are RPs for area
 , according to the algorithm in Figure 6 we will select

only one RP and forward the broadcast packet. As shown in
Figure 7, we choose the port 3 of vertex to forward the
broadcast packet of host H1 to area while using the

port 2 of vertex to transmit the same packet to area .

In this way, we can decrease the number of packets in
network to offload area controllers. Moreover, selecting the
forwarding edge from one single area can ensure the
effective usage of the links without conflicts with other hosts
which target the same area. We choose the RP to forward
packets according to the parameter on the port (e.g.,). If
this port is selected this time, it will adjust the priority to
ensure we can choose another ports next time. This priority
value will be restored when the flow is released.

In addition, to ensure that the receiver H2 only replies via
one of the ports, the arrival time of the request is recorded
and used to determine the returning port of H2’s reply. In
Figure 8, area receives the same broadcast packet from

three different ports, P1, P2, and P3. Assume the arrival
times are tP1, tP2, and tP3 respectively and tP1 is the minimum
of them. Thus, host H2 chooses the P1 to send its reply
packet.

V. EVALUATION

In this section, we describe the performance evaluation of
our mechanism. We simulate physical network connection
between TWAREN and Internet2 as our experiment
topology. There are 2 physical servers equipped with 64G of
RAM and 2 Intel Xeon(R) L5640 CPUs. Each of them runs a
Mininet [10] to emulate OpenFlow network topology in
TWAREN (e.g.,) and Internet2 (e.g.,). In

addition, we create another domain, called , with 2

physical OpenFlow switches and 1 physical host. There are 4
controllers, one of them represents the Rooter controller and
the others install Floodlight (version 0.9) and manage their
own areas. The topology of our experiment is shown in
Figure 9.

Figure 9. Experiment topology.

As we described in Section 1, controller can handle loop

topology in a single domain but not multiple domains.

Therefore, we only consider the loops across two or more

domains. A loop is represented as a series of edge nodes

(e.g., TP-CHI-LA-HC-TP).

Figure 10. Ping successful rate with four different cases.

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

Figure 11. Comparison of transferring bandwidth in two methods when

there are two pairs of hosts transferring packets at the same time.

In the first experiment, we evaluate the ping successful

rate of our method by comparing with the original
forwarding method. There are four cases in this experiment.
In each case, we run 10 times on host pairs (e.g., H1-H2, H1-
H3, H1-H4, and H1-H5) and compute the ping successful
rate. In Case 1, we remove two inter-domain links (e.g., HC-
LA and V2-LA) to construct the topology with no loops. As
depicted in Figure 10, both our proposed method and the
original method have 100% ping successful rate. In the
second case, we add the link HC-LA to form one loop (e.g.,
TP-CHI-LA-HC-TP) between domain and . We

note that there are 2 paths from CHI to LA (e.g., CHI-SEA-
LA and CHI-SLC-LA). But in our experiment, we only
require that there is at least one path between these 2 edge
nodes to assure the connectivity in a single domain. Thus,
this is not regarded as a failure. The Case 2 in Figure 10
shows our method reaching 100% ping successful rate while
the original method is only 40%. We add link V2-LA in the
third case to create the topology with 3 loops (e.g., TP-CHI-
LA-HC-TP, HC-LA-V2-V1-TN-HC, and TP-CHI-LA-V2-
V1-TN-HC-TP). Our proposed method still reaches 100%
but the original forwarding method is lower than 30%,
shown as Figure 10. In the final case, we add an extra link
between HC and LA. The result is illustrated in Case 4 of
Figure 10. This experiment shows that our method is
working regardless the number of loops in the topology. We
can guarantee any host can successfully communicate with
hosts in other areas.

Next, we compare our proposal with STP protocol. We
use two pairs of hosts (e.g., H1-H2 and H3-H4) to measure
the performance when these hosts transferring packets at the
same time. Host H2 and H4 are selected as the iperf servers
while the others are the clients of iperf. In order to simulate
STP protocol, we remove two inter-domain links (e.g., HC-
LA and V2-LA) to build a tree structure in a looped topology.
Figure 11 demonstrates the throughput results from STP and
our method. We observe our proposed is performing
considerably better than STP, offering 77% increasing
throughput compared to STP. The reason is STP has only

one path between domain and . Thus, two pairs

of hosts share this inter-domain link TP-CHI. But in our
proposed method, if there exists another link between these

two domains, they will all be used to improve the transfer
performance.

VI. CONCLUSION

In this paper, we have proposed a mechanism for solving
transmission problem among SDN domains with loops. The
proposed algorithms select one port for each connected area
to forward broadcast packets. It decreases the number of
packets in network to offload area controllers. In addition,
the area controller uses our method to filter the repeated
broadcast packets at a border vertex and do not forward these
packets to avoid broadcast storm. Besides, as compared with
original forwarding method, our method can efficiently use
multiple edges in loops topology to improve the transferring
bandwidth.

Our future work is to improve path compute by defining
more granular parameters across multiple SDN domains. In
addition, our proposal use the Advanced Message Queuing
Protocol (AMQP) to exchange edge information between the
Rooter controller and area controllers. We can integrate our
approach with other event-based frameworks (e.g., Kandoo)
for resources management among multiple domains.

REFERENCES

[1] N. McKeown et al., “Openflow: Enabling Innovation in
Campus Networks,” ACM SIGCOMM Computer
Communication Review, vol. 38, no. 2, pp. 69-74, Apr. 2008.

[2] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On
Scalability of Software-Defined Networking,” IEEE Commun.
Mag., vol. 51, no. 2, pp. 136-141, Feb. 2013.

[3] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A.
Feldmann, “Logically Centralized? State Distribution Trade-
offs in Software Defined Networks,” Proc. ACM Workshop
Hot Topics in Software Defined Networks (HotSDN '12),
Aug. 2012, pp. 1-6, ISBN: 978-1-4503-1477-0.

[4] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed
Control Plane for OpenFlow,” Proc. Internet Network
Management Workshop/Workshop on Research on Enterprise
Networking (INM/WREN '10), USENIX Association, Apr.
2010, pp. 3-3.

[5] T. Koponen et al., “Onix: A Distributed Control Platform for
Large-scale Production Networks, ” Proc. USENIX Symp. on
Operating Systems Design and Implementation (OSDI '10),
Oct. 2010, pp. 351-364, ISBN: 978-1-931971-79-9.

[6] S. H. Yeganeh and Y. Ganjali, “Kandoo: A Framework for
Efficient and Scalable Offloading of Control Applications,”
Proc. ACM Workshop Hot Topics in Software Defined
Networks (HotSDN '12), Aug. 2012, pp. 19-24, ISBN:978-1-
4503-1477-0.

[7] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker,
“Applying NOX to the Datacenter,” Proc. ACM Workshop on
Hot Topics in Networks (HotNets '09), Oct. 2009, pp. 1-6.

[8] A. R. Curtis et al., “DevoFlow: Scaling Flow Management for
High-Performance Networks,” Proc. ACM SIGCOMM 2011
Conference (SIGCOMM '11), Aug. 2011, pp. 254-265, ISBN:
978-1-4503-0797-0.

[9] H. Yin et al., “SDNi: A Message Exchange Protocol for
Software Defined Networks (SDNS) across Multiple
Domains,” IETF Internet-Draft, draft-yin-sdn-sdni-00, Jun.
2012.

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a
Laptop: Rapid Prototyping for Software-Defined Networks,”
Proc. ACM Workshop on Hot Topics in Networks (HotNets
'10), Oct. 2010, pp. 1-6.

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-377-3

AFIN 2014 : The Sixth International Conference on Advances in Future Internet

