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Abstract—The cloud computing is an emerging new computing 
paradigm which provides high reliability, high availability, and 
QoS-guaranteed computing services. The reliability and 
stability of power supply is one of the most important factors 
in successful cloud computing. In this paper, we compare three 
different  configurations with imperfect coverage and standby 
switching failures based on the reliability and availability. The 
time-to-repair and the time-to-failure for each of the primary 
and warm standby components are assumed to be 
exponentially distributed. We derive the explicit expressions 
for the mean time-to-failure, MTTF, and steady-state 
availability, for three configurations and perform a 
comparative analysis. Three configurations are ranked based 
on MTTF, steady-state availability, and cost/benefit where 
benefit is either MTTF or steady-state availability. 

Keywords-Reliability; Availability; Imperfect coverage; 
Standby switching failures 

I.  INTRODUCTION 

Uncertainty is one of the important issues in management 
decisions. Maintaining a high or required level of reliability 
and/or availability is especially essential in information 
industry, communication systems, power plants, etc. With 
the increasing demand for computing resources, the 
computing paradigm has evolved from stand-alone 
computing, distributed computing, grid computing, to cloud 
computing. Cloud computing hosts and delivers services 
over the Internet, i.e., information is processed on servers 
located in cloud data center and cached temporarily on 
clients via the Internet. A data center usually consists of 
thousands of servers that are organized in racks and 
interconnected through gigabit ethernet or other fabrics. Data 
center consumes a lot of electricity to maintain its normal 
operation. The power consumption breakdown of a data 
center includes servers and storage systems, power 
conditioning equipment, cooling and humidification systems, 
and networking equipment. In this paper, we discuss the 
optimal configuration of power electricity for data centers in 
terms of reliability and availability. Cao [4] first introduced 
reliability concept into a queueing system with a repairable 
service station which has exponentially distributed lifetime 
and generally distributed repair time. The concept of the 

standby switching failures in the reliability with standby 
system was first proposed by Lewis [6]. The concept of 
coverage and its effect on the reliability and/or availability 
model of a repairable system has been introduced by several 
authors such as Amari, et al. [1], Arnold [3], Dugan [5], 
Trivedi [7], and etc. Moreover, the status and trends of 
imperfect coverage models and its associated reliability 
analysis techniques were introduced in Amari, et al. [2].  
Wang and Chiu [9] investigated the cost benefit analysis of 
availability systems with warm standby units and imperfect 
coverage. Wang and Chen [8] performed comparative 
analysis of availability between three system with general 
repair times, reboot delay and switching failures. Wang et al. 
[11] studied the cost benefit analysis of series systems with 
warm standby components and general repair times. 
Recently, Wang et al. [10] performed comparisons of 
reliability and the availability between four systems with 
warm standby components, reboot delay and standby 
switching failures. 

The problem considered in this paper is more general 
than the works of Wang et al. [11] and Wang et al. [12]. We 
first systematically develop the explicit expressions for the 

iMTTF  and ( )TiA ∞  to three configurations with imperfect 
coverage and standby switching failures. Next, efficient 
Maple computer programs are utilized to perform a 
parametric investigation. We provide extensive numerical 
results to study the effects of various values of system 
parameters to the cost/benefit ratios. Finally, we rank the 
configurations for the MTTF, the ( )TA ∞ , and the cost/benefit, 
based on specific values of distribution parameters, as well 
as of the costs of the components. 

II. PROBLEM STATEMENT 

For the sake of discussion, we consider a data center 
require a 30MW power electricity, and assume that the 
electricity generation capacity of generators is available in 
units of 30MW, 15MW, and 10MW. To provide reliable and 
stable power supply, there are standby generators, and all 
active and standby generators are continuously monitored by 
a fault detecting device to identify if they fail or not. We also 
assume that standby generators are  allowed to fail while 
inactive before they are put into full operation. Each of the 
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active components fails independently of the state of the 
others and has an exponential time-to-failure distribution 
with parameter λ . Whenever an active component (or warm 
standby component) fails, it may be immediately detected 
and located with a coverage probability c , and the failed 
component is instantly replaced by a warm standby 
component with switchover time 1β  if any standby is 
available. We now assume that each of the available standby 
component fails independently of the state of all the others 
and has an exponential time-to-failure distribution with 
parameter α ( 0 α λ< < ). Moreover, we define the unsafe 
failure state of the system as any one of the breakdowns is 
not covered. We further assume that active-component 
failure (or standby-component failure) in the unsafe failure 
state is cleared by a reboot. Reboot delay is assumed to be 
exponentially distributed with parameter 2β  for an active 
component (or standby component). The system fails when 
the remaining electricity generation capacity is less than 
30MW. We define such situation as the state of safe failure. 
We assume that there is always the possibility of failures 
during the switching from standby state to active state. Let us 
assume that the switching component has a failure 
probability q . Active components and standby components 
are considered to be repairable. Whenever a primary 
component or a standby component fails, it is immediately 
repaired based on a first-come, first-served (FCFS) discipline. 
The time-to-repair for each of the primary and warm standby 
components are assumed to be exponentially distributed with 
parameterµ . Once a component is repaired, it is as good as 
new. Further, failure times and repair times are 
independently distributed random variables. 

We consider three configurations as follows: the first 
configuration consists of one 30 MW active component and 
one 30 MW warm standby component. The second 
configuration is composed of two 15 MW active components 
and one 15 MW warm standby component. We assume the 
standby component can replace either one of the initially 
working components in case of failure. The third 
configuration includes of three 10 MW active components 
and two 10 MW warm standby component. 

III.  PROBLEM SOLUTIONS 

Let , ( )n mP t be the probability that exactlyn primary 
components andm standby components are working at 
time ( 0)t t ≥ , and let ( )ufiP t  be the probability that the 
system is in unsafe failure states, where 1, 2,3, 4i = . 

A. Calculations for configuration 1 

A.1.  MTTF 
Using Trivedi’s concept (see Trivedi [7]) and Wang et 

al.’ concept (see Wang et al. [10]), the state-transition-rate 
diagram of configuration 1 is shown in Figure 1. The 
probability vector  ( )tP of configuration 1 is defined as: 

1 21,1 1,0 0,1 0,0( ) [ ( ), ( ), ( ), ( ), ( ), ( )]uf uft P t P t P t P t P t P t=P .  

2uf

cλ

(1 )cα −
2β

µ

1(1 )q β−
λcα

1uf

(1 )cλ −

2β

1qβ

2µ

 
Figure 1. The state-transition-rate diagram of configuration 1 

 
Relating the state of the system at time t and t dt+ , the 

steady-state equations for configuration 1 can be expressed 
as follows: 

1 ( )( ) / B td t dt = PP , (1) 

where 

1 2

1 2

1

2

2
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. 

To evaluate the MTTF, we take the transpose matrix of 

1B and delete the rows and columns for the absorbing state(s). 

The new matrix is called 1.A  The expected times to reach an 
absorbing states is obtained from  

 1
1(0) (absorbing)[ ] (0)( )[1,1,1,1,1] ,P P

TE T A−
→ = −P  (2) 

where the initial conditions are given by 

1 21,1 1,0 0,1(0) [ (0), (0), (0), (0), (0)] [1, 0, 0, 0, 0]uf ufP P P P P= =P , 
and  

1 1 1

2 2

2 2

(1 ) (1 )

0 0 0

0 (1 ) 0 0

0 0 0

0 0 0

c c c c

A q

λ α α λ λ α

µ λ µ

β β

β β

β β

− − − −

− −

= − −

−

−

 
 
 
 
 
  
 

. 

For configuration 1, the explicit expression for the 

1MTTF  is given by 

(0) (absorbing) 1[ ]P PE T MTTF→ = . 
This implies that 

1 1 1 2 1 2

1 2 2

1 ,
q

MTTF
α λ λ α

λ λ β β λβ

Λ − − + Λ Λ Λ Λ Λ
− + − −

∆ ∆ ∆ ∆ ∆
=  (3) 

where 1 λ µΛ = + , 2 1 cΛ = − + , and qµ λ α∆ = + + . 
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A.2.  Availability 
To discuss the availability case of configuration 1, we 

use the following procedure to obtain the steady-state 
availability. In steady-state, the derivatives of the state 
probabilities become zero. Thus we have 

1 2

1 2

2

2

1

1

2

1,1

1,0

0,1

0,0

0 0 0 0 ( ) 0

(1 ) 0 2 ( ) 0

0 0 0 ( ) 0

(1 ) 0 0 0 0 ( ) 0

(1 ) 0 0 0 0 ( ) 0

0 0 0 2 ( ) 0

.
uf

uf

P

c q P

c P

c P

c P

q P

λ α µ

α λ µ β β µ

λ β β

λ β

α β

λ β µ

− − ∞

− − − ∞

− ∞
=

− − ∞

− − ∞

− ∞

     
     
     
     
     
     
     
     
     
  (4) 

Solving (4) and using the following normalizing condition 
 1 21,1 1,0 0,1 0,0( ) ( ) ( ) ( ) ( ) ( ) 1uf ufP P P P P P∞ + ∞ + ∞ + ∞ + ∞ + ∞ = , 

we then obtain  1 ( )ufP ∞ , 2 ( )ufP ∞ , and 0,0( )P ∞ . 

Let 1T  represent the time-to-failure of the system for 
configuration 1. The explicit expression for the 

1 1 2 0,0( ) 1 ( ) ( ) ( )T uf ufA P P P∞ = − ∞ − ∞ − ∞  is given by 
 

 
( )2 1 1 1

2 2
1 2 1 2 21

1

2

2 2
( )TA

β µ µβ β λ β α µλ

β β λ µβ β α µ λ

+ + +

+ +
=

+∆ ∆
∞  (5) 

where 1 1 2 1 1 1 1 2c cβ β β α β α β λ β λ β λ∆ = − ++ + −  and 

2 1 2 2 )( qβ β µ α µ∆ + += . 

B. Calculations for configuration 2 

B.1.  MTTF 

Using Trivedi’s concept (see Trivedi [7]) and Wang et 
al.’ concept (see Wang et al. [10]), the state-transition-rate 
diagram of configuration 2 is shown in Figure 2. The ( )tP of 
configuration 2 is defined as: 

1 22,1 2,0 1,1 1,0( ) [ ( ), ( ), ( ), ( ), ( ), ( )]uf uft P t P t P t P t P t P t=P . 

2uf
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(1 )cα −
2β

µ
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1uf

2 (1 )cλ −

2β

1qβ

2µ

 
Figure 2. The state-transition-rate diagram of configuration 2. 

Relating the state of the system at time t and t dt+ , the 
steady-state equations for configuration 2 can be expressed 
as follows: 

 2 ( )( ) / B td t dt = PP , (6) 

where 

1 2

1 2
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2

2

1
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(7) 

To evaluate the MTTF, we take the transpose matrix of 

2B and delete the rows and columns for the absorbing state(s). 

The new matrix is called 2 .A  The expected times to reach an 
absorbing states is obtained from  

 1
2(0) (absorbing)[ ] (0)( )[1,1,1,1,1]P P

TE T A−
→ = −P , (8) 

where the initial conditions are given by 

1 22,1 2,0 1,1(0) [ (0), (0), (0), (0), (0)] [1, 0, 0,0, 0]uf ufP P P P P= =P .  
For configuration 2, the explicit expression for the 

2MTTF  is given by 

2(0) (absorbing)[ ]P PE T MTTF→ = . 
This implies that 

1 1 1 2 1 2

1 1 1 1 2 1

2

1 2

1 2 2 2 2

2
,MTT

q
F

α λ λ α

λ λ β β λβ

Λ − − + Λ Λ Λ Λ Λ
− + −= −

∆ ∆ ∆ ∆ ∆


 
 

 (9) 

where 1 2λ µΛ = + , 2 1 cΛ = − + , and 1 2qµ λ α+∆ += . 

B.2.  Availability 
For the availability case of configuration 2, we use the 

same procedure in 3.1.2 to obtain the steady-state availability. 
In steady-state, the derivatives of the state probabilities 
become zero. Thus we have  

1

2
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1 2 2,0

1 2 1,1

2

2
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2 0 0 0 0 ( ) 0

2 (1 ) 0 2 ( ) 0
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.
uf
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P

c q P

c P

c P

c P

q P

λ α µ
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λ β β
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α β

λ β µ

− − ∞
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− ∞
=

− − ∞
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    
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    
    
    
     (10) 

Solving (10) and using the following normalizing condition 
 1 22,1 2,0 1,1 1,0( ) ( ) ( ) ( ) ( ) ( ) 1uf ufP P P P P P∞ + ∞ + ∞ + ∞ + ∞ + ∞ = , 

we then obtain  1 ( )ufP ∞ , 2 ( )ufP ∞ , and 1,0( )P ∞ . 

Let 2T  represent the time-to-failure of the system for 
configuration 2. The explicit expression for the 

2 1 2 1,0( ) 1 ( ) ( ) ( )T uf ufA P P P∞ = − ∞ − ∞ − ∞  is given by 
 

 
( )

1

2 1 1 1

2 2
1 21 2 2

2

2 2

2
( )TA

β µ µβ β λ β α µλ

β β β µ β µ λ
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+ + +

+
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where 2 2
1 2 2 qµ µλ µα λ λα µ λ∆ = + + + + + and 

2 2 2c cα α λ λ∆ − + −= . 

C. Calculations for configuration 3 

C.1.  MTTF 
Using Trivedi’s concept (see Trivedi [7]) and Wang et 

al.’ concept (see Wang et al. [10]), the state-transition-rate 
diagram of configuration 3 is shown in Figure 3. The ( )tP of 
configuration 3 is defined as: 

1 2 3 4

3,2 3,1 2,2 3,0 2,1

2,0

(0) [ ( ), ( ), ( ), ( ), ( ),

             ( ), ( ), ( ), ( ), ( )].uf uf uf uf

P t P t P t P t P t

P t P t P t P t P t

=P

2uf

3 cλ

2 (1 )cα − 2β
2µµ

1(1 )q β−

cα2 cα

1uf

3 (1 )cλ −

2β

1qβ

3λ
1(1 )q β−

1qβ

4uf

(1 )cα −
2β

3uf

3 cλ3 (1 )cλ −

2β

3µ

 Figure 3. The state-transition-rate diagram of configuration 
3. 

For the reliability case, the initial conditions are: 

1 2 3 4

3,2 3,1 2,2 3,0 2,1(0) [ (0), (0), (0), (0), (0),

             0), (0), (0), (0)]

       [1, 0, 0, 0, 0, 0, 0, 0, 0].

(uf uf uf uf

P P P P P

P P P P

=

=

P

 

The following differential equations written in matrix 
form can be obtained: 

 3 ( )( ) / B td t dt = PP . (12) 

Hence the matrix 3B  is an (10× 10) square matrix whose last 

column is zero. The matrix 3B is too spacious to be shown 

here. For the MTTF, we take the transpose matrix of 3B and 
delete the rows and columns for the absorbing state(s). The 
new matrix shall be called 3.A  The expected times to reach 
an absorbing states can now be calculated from  

 1
3(0) (absorbing)[ (0)( )[1,1,1,1,1,1,1,1,1]]P P

TE T A−
→ = −P . (13) 

For configuration 3, the explicit expression for the 

3MTTF  is given by 

3 (0) (absorbing)[ ]P PMTTF E T →= . 

The mean time to system failure for configuration 3 3MTTF is 
too ample to be shown here. 
C.2.  Availability 

For the availability case of configuration 3, the initial 
conditions are 

(0) [1, 0, 0, 0, 0, 0, 0, 0, 0].=P  
The following differential equations written in matrix 

form can be obtained from 

 3 ( )( ) / B td t dt = PP ,                                         (14) 

where the matrix 3B  can be formulated in a way similar to 
(12). It is an (10× 10) square matrix whose last column, 
rather than being zero as in (12), is appropriately modified. 
The resulting matrix is too spacious to be shown here. In 
steady-state, the derivatives of the state probabilities become 
zero. That allows us to calculate the steady-state probabilities 

1 ( ),ufP ∞ 2 ( ),ufP ∞ 3 ( ),ufP ∞ 4 ( ),ufP ∞  and 2,0( )P ∞ with the 
following normalizing condition 

3,2 3,1 2,2 3,0 2,1

2,0

4

1

( ) ( ) ( ) ( ) ( )

( ) ( ) 1.iuf

i

P P P P P

P P
=

∞ + ∞ + ∞ + ∞ + ∞

+ ∞ + ∞ =∑
 

Let 3T  represent the time-to-failure of the system for 
configuration 3. Again, the explicit expression for the 

3 1 2 3 4 2,0( ) 1 ( ) ( ) ( ) ( ) ( )T uf uf uf ufA P P P P P∞ = − ∞ − ∞ − ∞ − ∞ − ∞  is too 
spacious to be shown here. 

IV. COMPARATIVE ANALYSIS 

A. Comparison for the MTTF 

The main purpose of this section is to present specific 
numerical comparisons for theMTTF . Using an efficient 
Maple program, three configurations will be compared in 
terms of their iMTTF ( 1, 2, 3)i =  with the following values: 

 
1 / 50 days,λ = 1 / 200 days,α =

 
and 1 / 2 days,µ =  

or 0.02,λ =
 

0.005,α = and 0.5 .µ =  

We consider the following two cases to perform a 

comparison for the iMTTF of the configurations 1, 2, and 3. 

Case 1: We fix =0.005α , =0.5µ , 0.1q = , 0.9 c = , 1 3.0 β = , 

2 2.4β = and vary λ  from 0.02 to 0.1. 
Case 2: We fix =0.01λ , =0.005α ,  0.1q = , 0.9 c = , 

1 3.0 β = , 2 2.4β = and vary µ  from 0.001 to 0.5. 

The numerical results of iMTTF for each configuration 
i ( 1, 2, 3)i =  are shown in Table 1 for cases 1 and 2. 

Table 1. Comparison of the configurations 1, 2, 3 for iMTTF   
 Result 

Range of λ   

0.02 0.04391λ< <  
3 1 2MTTF MTTF MTTF> >  

0.04391 0.1λ< <  
1 3 2MTTF MTTF MTTF> >  

Range of µ   

0.001 0.12652µ< <  
1 3 2MTTF MTTF MTTF> >  

0.12652 0.5µ< <  
3 1 2MTTF MTTF MTTF> >  
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B. Comparison for the ( )TiA ∞  

In this section, we consider the following two cases to 
compare the ( )TA ∞ of the configurations 1, 2, and 3. 

Case 1: We fix =0.0005α , =0.1µ , 0.1q = , 0.9 c = , 

1 3.0 β = , 2 2.4β = and vary λ from 0.001 to 0.1. 
Case 2: We fix =0.01λ , =0.0005α ,  0.1q = , 0.9 c = , 

1 3.0 β = , 2 2.4β = and vary µ from 0.01 to 0.5. 

The numerical results of ( )TiA ∞ for each configuration 
i ( 1, 2, 3)i =  are shown in Table 2 for cases 1 and 2. 

Table 2. Comparison of the configurations 1, 2, 3 for ( )TiA ∞   

 Result 

Range of λ   

0.0 0.00005λ< <  
1 3 2( ) ( ) ( )T T TA A A∞ > ∞ > ∞  

0.00005 0.01656λ< <  
3 1 2( ) ( ) ( )T T TA A A∞ > ∞ > ∞  

0.01656 0.1λ< <  
1 3 2( ) ( ) ( )T T TA A A∞ > ∞ > ∞  

Range of µ   

0.01 0.058489µ< <  
1 3 2( ) ( ) ( )T T TA A A∞ > ∞ > ∞  

0.058489 0.5µ< <  
3 1 2( ) ( ) ( )T T TA A A∞ > ∞ > ∞  

C. Comparison of all configurations based on their                 
cost/benefit ratios 

The cost ( iC ) of the configuration i ( 1, 2, 3)i = are listed 
in the following: 

6
1 $48 10C = × , 6

2 $39 10C = × , 6
3 $42 10C = ×  

Consider the following two cases¸ we perform a 
comparison for the cost/benefit ratios, namely, 

/i iC MTTF and / ( )i iTC A ∞ for each configuration 
i ( 1, 2, 3)i = . The results are depicted in Figures 4-7, 
respectively.  
Case 1: We fix =0.0005α , =0.1µ , 0.1q = , 0.9 c = , 

1 3.0 β = , 2 2.4β = and vary λ  from 0.001 to 0.1. 
Case 2: We fix =0.01λ , =0.0005α , 0.1q = , 0.9 c = , 

1 3.0 β = , 2 2.4β = and vary µ  from 0.01 to 0.5. 

Figure 4 and Figure 5 show that the /i iC MTTF and 

/ ( )i iTC A ∞ increase asλ increases for any configuration. We 
observe from Figure 4 that the optimal configuration using 
the /i iC MTTF value depends on the value of λ . When 

0.0574λ < , the optimal configuration is configuration 3, but 
when 0.0574λ > , the optimal configuration is configuration 
1. One observes from Figure 5 that the optimal configuration 

using the / ( )i iTC A ∞ value depends on the value of λ . When 
0.0418λ < , the optimal configuration is configuration 2, 

when 0.0418 0.0757λ< < , the optimal configuration is 

configuration 3, and when 0.0757λ > , the optimal 
configuration is configuration 1. 

 
Figure 4. /i iC MTTF  versus λ . 

 
Figure 5. / ( )

ii TC A ∞ versus λ . 
 
We can easily see from Figure 6 and Figure 7 that the 

/i iC MTTF and / ( )i iTC A ∞ decrease asµ increases for any 
configuration. Figure 6 reveals that the optimal configuration 
using the /i iC MTTF value depends on the value of µ . When 

0.0979µ < , the optimal configuration is configuration 1, but 
when 0.0979µ > , the optimal configuration is configuration 
3. We observe from Figure 7 that the optimal configuration 

using the / ( )i iTC A ∞ value depends on the value of µ as well. 
When 0.0241µ > , the optimal configuration is configuration 
2. 
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Figure 6. /i iC MTTF  versus µ . 

 
Figure 7. / ( )

ii TC A ∞ versus µ . 

V. CONCLUSIONS 

In this paper, we analyzed three different configurations  
with imperfect coverage and standby switching failures to 
study the cost/benefit analysis of three configurations under 
uncertainty. For each configuration, we present the explicit 

expressions for the ( )TiA ∞  and the MTTF. We rank three 

configurations based on the ( )TiA ∞  , the MTTF, and the 
cost/benefit where benefit is either steady-state availability 
or MTTF  
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