
Competitive Algorithms for Online Data Placement
on Uncapacitated Uniform Network

Maciej Drwal
Institute of Computer Science

Wroclaw University of Technology
Wroclaw, Poland

e-mail: maciej.drwal@pwr.wroc.pl

Abstract—In this paper, we study the iterated problem of
placing copies of data objects in a network of storage servers in
order to serve request demands with minimal delay. We show how
to compute the optimal sequence of decisions for two variants: in
general, using dynamic programming algorithm, which requires
exponential time, and for uncapacitated uniform network, which
requires only polynomial time. For the latter case, we study online
algorithms, which return new placement immediately after a new
element of input sequence becomes available. We prove that the
comeptitive ratio of the problem is bounded by 2. The paper
is summarized with computational study, which compares the 2-
competitive online algorithm with dynamic programming. Online
distributed storage management becomes increasingly important
issue in large-scale Internet applications due to the widespread
of Content Devlivery Networks, as well as cloud computing and
content-aware paradigms.

Keywords—online algorithms; network algorithms; wide-area
networks.

I. INTRODUCTION

Optimization of data placement is employed by Content
Delivery Networks (CDNs) in order to improve the efficiency
of media content distribution [6]. Placing replicated objects in
multiple storage servers on behalf of a content owners allows
to reduce network congestion and balance processing load on
servers. The operator of Content Delivery Network needs to
apply appropriate placement algorithms and client redirection
methods in order to provide data access services with high
performance.

In many practical applications of optimization and control,
decisions have to be made immediately after a new piece
of data becomes available, without knowledge of the future
data. In such circumstances, each single decision from the
sequence influences the overall quality of the solution assessed
within a longer time horizon. This is especially common
in the real time systems where a sequence of actions is
uninterruptible and additionally execution time constraints
are imposed. Optimization and decision problems with such
characteristics are customarily called online problems, and the
solution methodology falls under the area of online algorithms
[1], [9].

In this paper, the data placement problem is considered
from the perspective of continuous system operation under
the stream of requests. Let us consider discrete time intervals,
starting at time instants t1, t2, . . . , tT . At each of those time
instants it is possible to change the placement of objects. It

is assumed that time is perfectly synchronized at all network
nodes.

The considered system consists of N nodes, where each
node is associated with local area network and a storage server.
Each ith local area network (i = 1, . . . , N) is characterized by
request demands wip for each pth data object, p = 1, . . . ,M .
It is assumed that each node can access any object from a
server which holds a copy of it. In particular, if object is stored
locally, then no external transmission is required. However,
storing object at any jth server requires a fixed cost bjp,
which represents a delay needed to fetch the object p from
its publisher and install it in the storage.

The clients’ demands for each of the considered T time
periods are given as a sequence: {w(t)}Tt=1, where w(t) =
[w1(t) . . . wM (t)]T , wp(t) = [w1p(t) . . . wNp(t)]

T , and
wip(t) is the mean number of requests for pth object sent
from ith client in time interval [t, t + 1). All other system’s
parameters are fixed. The model consists of the following
parameters: dij is the transmission delay of unit of data
between nodes i and j (dii = 0 for each i); hj is the time
required to process a single unit of data on server j; sp is the
size of data object p (in the assumed units); Sj is the maximal
number of simultaneous connections that server j can handle;
Rj is the storage capacity of server j (in the assumed units).

It is assumed that there are single copies of each data object
in the network (for convenience, no origin server is considered;
instead, any server j may play the role of publisher, for
example having fixed zero demand). In this paper, placement
decision z is a three-dimensional matrix, indexed by time,
which is interpreted as follows for t = 1, . . . , T :

zijp(t) =

{
1 if pth object is copied from ith node to jth

node at time t,
0 otherwise.

Let N = {1, . . . , N}. The value of z(0) is given, as it defines
the initial placement, as: ∀i∈N zijp(0) = 1 if object p is
initially placed at server j, and zero otherwise. Similarly:

xijp(t) =

{
1 if ith node is assigned to jth node for

accessing object p at time t,
0 otherwise.

The optimization variables are grouped in two sequences
{x(t)}Tt=1 and {z(t)}Tt=1. The objective is to determine the
sequence of placement and assignment decisions, so as to

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

minimize the following sum of costs:

QT (x, z) =

T∑
t=1

M∑
p=1

(
N∑
i=1

xijp(t)wk(t)dijsp+

+

N∑
j=1

hjxijp(t)

(
N∑
k=1

M∑
q=1

xijp(t)wk(t)sq

)
+ (1)

+ βp

N∑
j=1

zjip(t)djisp

 ,

subject to:

∀t ∀i∈N ∀p∈M
N∑
j=1

xijp(t) = 1, (2)

∀t ∀i,k∈N ∀j∈N ∀p∈M xijp(t) ≤ zkjp(t), (3)

∀t ∀i∈N ∀j∈N
N∑
i=1

M∑
p=1

xijpwip(t) ≤ Sj , (4)

∀t ∀i∈N ∀j∈N
M∑
p=1

zijpsp ≤ Rj . (5)

The set of data object is denoted byM = {1, . . . ,M}. The
parameter βp > 0 is a replication cost factor, which allows for
differentiating the transmission cost of client’s data access and
the cost of data replication into a new server. It represents an
additional overhead on a cache server associated with first-time
installation of object transmitted from a publisher.

A problem for which the whole input data sequence
σ = (σ1, σ2, . . . , σT) is given before the decision is made
is called offline problem (a solution algorithm has access to
the whole input sequence) [9]. Typically, optimization and
decision problems are examined in this fashion. For example,
formulation (1)–(5), where σt = w(t), can be considered an
offline problem, if it is assumed that all its parameters are
known in advance. The problem for which we require an
immediate decision for each element of the input sequence
is called online problem, i.e., solution algorithm has access
only to the first k elements, for some k ≤ T . Usually, such
algorithm is executed T times, after each element σk of input
data sequence becomes available.

We can observe that in these settings the information about
the problem’s input itself is the most scarce resource. The lack
of this information causes fundamentally different difficulties
than the computational complexity of the problem. Even if
we allow unlimited computational resources (in terms of time
and memory) for solving the problem for each σk, it is not
guaranteed that we get the optimal solution for the whole
sequence σ.

The paper is organized as follows. Section II lists the
related works. Section III provides an exact solution algorithm
for the formulated problem, while Section IV studies a special
case of uniform network. Main results concerning online
algorithms and their analysis are provided in Section V. An
experimental study is presented in Section VI, and finally,
Section VII concludes the paper.

II. RELATED WORK

Data replication has been studied extensively in the last
decade, motivated by the widespread of large scale Internet
applications. This research includes aspects of caching, rout-
ing, requests redirection and storage management [3], [7],
[10], [12], [14], [16]. Underlying mathematical models, based
on the facility location problems [11], have been identified
to be hard to solve exactly and also hard to approximate
efficiently [6]. Due to the dynamic nature of users’ activity,
the online approach has been proposed. Earliest works on
distributed memory management can be found in [8], which
initiated online analysis in the area of computer systems
performance evaluation. Subsequent results have been obtained
on distributed paging [4], file allocation in network [2], data
replication and migration [5], [15] and distributed database
management [17].

The online algorithms analysis allowed to characterize the
performance of distributed systems in terms of competitive
ratio, which measures the efficiency of algorithm operating on
partial input data. For the introductory material on this subject,
we refer to [1], [9]. In this paper, a similar analysis is provided
for a special formulation of data placement problem which
includes time-varying users’ demands.

III. EXACT ALGORITHM FOR GENERAL CASE

As it can be easily seen, computing optimal solution of the
problem for any single t, can result in bad initial configuration
for t+1, which eventually leads to suboptimal solution of (1).
Thus, it is necessary to take into consideration the whole input
data sequence, and connect the partial solutions appropriately.
An obvious approach is to use dynamic programming algo-
rithm.

Let the pair of decision matrices x̂(t) = [x(t), z(t)]T for
each t be called configuration. Let:

g(x̂(t)) =

M∑
p=1

(
N∑
i=1

xijp(t)wk(t)dijsp+

+

N∑
j=1

hjxijp(t)

(
N∑
k=1

M∑
q=1

xijp(t)wk(t)sq

)

+ βp

N∑
j=1

zjip(t)djisp

 . (6)

Let VT−t(x̂(t)) be the optimal cost after T − t iterations,
assuming that the tth configuration is x̂(t). We define the
following Bellman equation for t = 0, 1, . . . , T − 1:

VT−t(x̂(t)) = min
[x̂(t),x̂(t+1),...,x̂(T)]

T∑
s=t

g(x̂(s)) =

= min {g(x̂(t)) + VT−t−1(x̂(t− 1))} , (7)

with initial condition V0(x̂(T)) = 0 for any final configuration
x̂(T).

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

From the above equation we get the recursive formula for
computing the optimum of (1) as QT (x∗, z∗) = VT (x̂(0)),
where x̂(0) is a given initial configuration. This gives:

VT (x̂(0)) = min{g(x̂(0)) + VT−1(x̂(1))}, (8)

which states, that in order to compute the total optimum we
can decompose the problem into solving for fixed configuration
(i.e., starting from the initial state) and solving analogous
problem with one step shorter time horizon. Subsequently we
get:

VT−1(x̂(1)) = min{g(x̂(1)) + VT−2(x̂(2))}, (9)

and continue this until we reach the time horizon t = T .

In order to solve this, we start the backward induction by
computing:

VT−(T−1)(x̂(T − 1)) = min{g(x̂(T − 1)) + V0(x̂(T))}

= min g(x̂(T − 1)), (10)

that is, solving the static case problem under assumption that
the current placement configuration is x̂(T − 1). In result, we
obtain the final configuration x̂(T). But, in order to determine
the previous configuration x̂(T − 1), we again need to solve
the static case problem, this time assuming that the current
placement configuration is x̂(T−2). Continuing this reasoning,
we reach initial state x̂(0).

Unfortunately, there is no simple method to find an optimal
solution, as at each stage we need to solve an NP-hard problem
of minimizing g(x̂(t)), which can be seen to be at least as
hard as solving facility location problem [11]. Assuming that
the complexity of this problem is O(f(N,M)) the overall
complexity of the dynamic algorithm is O(f(N,M)T). For
example, assuming that hj = 0 for all j, the exhaustive search
over all placements requires O(2NT) time. Nevertheless, the
dynamic programming method gives a hypothetical algorithm
allowing to compute the optimal solution, upper-bounding the
time complexity exponentially in the length of time horizon.
We make use of this algorithm for the special case of uncapac-
itated online data placement in uniform network in Section V
(see pseudocode of Algorithm 1), in order to compare it with
fast approximation algorithm.

IV. POLYNOMIAL TIME ALGORITHM FOR A CASE OF
UNIFORM NETWORK

In Section III, we concluded that the fully general case
of iterated data placement problem is hard to solve. In this
section, we examine a simplified variant, which still bears
practical importance, but for which solution can be computed
quickly (both in terms of network size and time horizon
length).

A. Formulation of special case problem

Let us define the following case of iterated data placement
problem. There are no capacity constraints (4)–(5) imposed
on servers (thus we consider the placement of a single object),
and the distances in network are uniform, i.e., dij = 1 for all
i 6= j. Many practical instances of wide-area networks can be
considered uniform, since all their edge routers have identical

(usually very high) capacity. Moreover, we assume that servers
have very high processing speeds, thus hj = 0 for all j.

Given are fully connected graph consisting of N vertices,
an initial placement of object z(0), and a sequence of requests
σ = {w(t)}Tt=1, where w(t) = [w1(t), w2(t), . . . , wN (t)]T ,
and wi(t) ∈ R≥0 is the demand of ith client LAN in
time instant t ∈ {1, . . . , T}. The problem is to decide how
to replicate (copy) objects across the graph nodes in order
to minimize the total replication cost and service cost. The
replication cost is assumed to be equal to bj per each copy of
any object at node j. Any copy of object can be also deleted
from the network at no cost (except the last copy). The service
cost is equal to the transmission demands, resulting from the
magnitudes of demands. If the object is replicated at node i in
a given iteration t, then demand wi(t) is fulfilled at no cost.
Otherwise, the cost of servicing ith node equals exactly wi(t)
(since the network is uniform).

In the presented model, it is assumed that request demands
change at discrete time instants. Operations of replication can
be performed between any change of clients’ demands, i.e., at
any t ∈ {1, . . . , T − 1}.

The following notation is introduced. Let vector z(t) be
defined as:

zj(t) =

{
1 object is available in node j before

the request t is processed,
0 otherwise.

(11)

Using the indicator notation [P] = 1 if predicate P is true
and [P] = 0 if predicate P is false, we define replication and
service costs, respectively:

d1(z, z
′) =

N∑
j=1

bj [zj < z′j], (12)

d2(Wt) =

N∑
j=1

w
(t)
j [zj = 0]. (13)

The problem is to minimize the sum of replication and
service costs within the time horizon T , with respect to the
placement decision variable z:

minimize
T∑
t=1

[d1(z(t− 1), z(t)) + d2(wt)] (14)

subject to:

∀t
N∑
i=1

zi(t) ≥ 1, (15)

∀i,t zi(t) ∈ {0, 1}. (16)

The presented problem is very similar to the distributed
paging problem introduced in [5], also called the constrained
file allocation problem. If for all t we have demands of the
form wt = [0 0 . . . 1 . . . 0]T (i.e., there is only one
request at one node in each iteration), then the problem is
a simple replication problem [8], which is in turn a special
case of the file allocation problem [2]. This generalized model
allows for two different types of request: read and write (in
the formulation above all requests are read). Write requests

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

require all object replicas to be updated and thus its service
cost is proportional to length of minimum Steiner tree (or, in
alternative formulations, to minimum spanning tree) instead of
shortest path. This model is traditionally used to model mem-
ory management in distributed systems, caching in networks
or database object management.

It is known that (offline) replication problem is NP-hard
in general networks [15]. However, for uniform networks the
problem can be solved in polynomial time.

B. Exact off-line algorithm

As it was shown by Lund et al. [15] the (uncapacitated)
replication problem of one object in uniform network (as well
as more general file allocation problem) can be solved in
polynomial time. The proof uses the reduction to the min-
cost maximum 1-commodity flow problem on acyclic network.
Here, we show a similar reduction for the case of uniform data
placement problem (14)–(16).

Theorem 1. The optimal solution of dynamic data placement
problem (14)–(16) in uncapacitated uniform network without
processing costs can be computed in time polynomial in
network size N and time horizon length T .

Proof: Let σ = (w1,w2, . . . ,wT) be a sequence of
demand vectors. The following flow network is constructed.
The network has (|σ|+1) layers of nodes (indexed from 0 to T)
and (2N−1) nodes in each layer. Additionally, there is a single
source node s and a single terminal node d. Nodes in each tth
layer are divided into two subsets Vt = {v(t)1 , v

(t)
2 , . . . , v

(t)
N }

and Ut = {u(t)1 , u
(t)
2 , . . . , u

(t)
N−1}. Nodes in set Vt correspond

to the actual nodes in underlying data network, while nodes
in set Ut are artificial and are used only to denote the absence
of object in the data network. Each layer t ≥ 1 corresponds to
the state of network just before demands wt are about to be
served. Layer t = 0 corresponds to the initial placement z(0)
of object.

There is an arc between each pair of nodes in layers t and
t+1, for t = 1, . . . , T−1, i.e., between any pair of nodes from
(V (t) ∪ U (t)) × (V (t+1) ∪ U (t+1)). There is an arc between
s and node v(0)i such that zi(0) = 1, and also between s and
k first nodes in U0, where k = N − |{j : z

(0)
j = 1}|. There

is an arc between every node in the last layer t = T and the
terminal node d.

All arcs in the flow network have unit capacity. Observe
that since the network is acyclic and there are exactly N
nodes leaving the source node s, and there exists a path from
each node in each layer to the terminal node d, the maximum
amount of flow that can be transported through this network
is exactly N .

Costs of arcs are defined as follows. All arcs leaving source
nodes s, as well as all arcs entering terminal node d have
costs 0. For all t ∈ {0, 1, . . . , T − 1}, costs of arcs entering
any node in U (t+1), leaving any node in V (t) ∪ U (t), have
costs 0. Arcs leaving node v(t)i and entering node v(t+1)

i have
costs −wi(t+ 1). Arcs leaving node v(t)i and entering node
v
(t+1)
j , where j 6= i, have costs bj − wj(t+ 1). Finally, arcs

leaving node u(t)i and entering node v(t+1)
j , for any j, have

costs bj − wj(t+ 1).

Now, observe that if there is a flow entering a node v(t+1)
i

from any node in U (t) or node in V (t) different than v(t)i , then
we replicate the object at node i in the underlying content
provider network, paying the placement cost bi. If that flow
leaves node v

(t)
i , then the object is already at node i, thus

there is no placement cost. In both cases the demand wi(t+ 1)
is served at zero cost. If there is no flow to some node
vj(t+ 1), then there is no object at j in the underlying content
provider network. This means that the demand wj(t+ 1) has
to be served from different node. Due to the uniform network
distances it does not matter from which node this demand is
served, thus the cost is always wj(t+ 1).

Let f (t)vv′ = 1 if there is a flow between node v ∈ V (t)∪U (t)

and node v′ ∈ V (t+1), and f
(t)
vv′ = 0 otherwise. The cost of

flow is:

F (f) =

T−1∑
t=0

 ∑
v∈V (t)∪U(t)

 ∑
v′∈V (t+1)

v 6=v′

f
(t)
vv′(bv′ − wv′(t+ 1))

−f (t)vv wv(t+ 1)
)]
. (17)

In order to compute the optimal solution value it is enough
to solve the min-cost max-flow problem defined above. We
charge all demands of clients from all T iterations in advance,
and then add the placement and subtract service costs resulting
from the flow assignment. Let f∗ be the optimal flow. Then
the optimal solution of (14)–(16) has value:

Q(f∗) = F (f∗) +

T∑
t=1

(w1(t) + w2(t) + . . .+ wN (t)) . (18)

The number of nodes in the constructed flow network is
polynomial in N and T . Thus, the claim of the theorem follows
from the polynomial time solvability of min-cost max-flow
problem.

V. COMPETITIVE ANALYSIS

To examine the performance of online algorithm, denote by
ALG(σ) the value of solution obtained by algorithm ALG on
input sequence σ. By OPT (σ) we denote the optimal value of
solution obtained by exact offline algorithm on the same input
sequence σ. Without the loss of generality let us assume that
values of each feasible solution are always positive. The value
of ALG(σ)/OPT (σ) can be regarded as a natural comparison
grade [1]. Formally, the competitive ratio of online algorithm
ALG is defined as supσ∈I ALG(σ)/OPT (σ), where I is the
set of all allowed input sequences. Equivalently, we say that
algorithm ALG is c-competitive, if for all sequences σ ∈ I
there exists a constant b, that ALG(σ) ≤ c ·OPT (σ) + b.

The competitive ratio of 1 (or 1-competitive algorithm)
correspond to the best possible online algorithm, however
it is rarely the case that such an algorithm exists for a

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

given problem. The value of competitive ratio tells us how
much worse can be the online solution, compared to the one
computed assuming full knowledge of input data sequence.
Optimal solutions OPT (σ) can be often computed using
dynamic programming algorithms, such as the one presented
in Section III for data placement problem.

Considering all algorithms solving online the given prob-
lem, the notion of competitiveness can be extended to the
problem itself [13], if we consider the performance of hypo-
thetically best algorithm on the worst possible input sequence.
Let A be the set of all algorithms solving given problem. The
competitive ratio of this problem is defined as:

inf
ALG∈A

sup
σ∈I

ALG(σ)

OPT (σ)
. (19)

Let us return to the uncapacitated variant of the problem
on uniform network without processing costs, defined as (14)–
(16). In the online settings we need to solve the problem
subsequently for each vector of demands wt. Without the loss
of generality we assume that initially there is an object only
at node 1. Consider the following four natural algorithms:

Algorithm A. When t = 1, place an object in each node.
Then do nothing.

Algorithm B. Let V (t) denote the set of nodes storing
a copy of object in iteration t. Without the loss of gen-
erality, let initially V (0) = {1}. In each iteration t, let
j = argmax{wi(t) : i ∈ V (t)}. If bj ≤ wj(t) then place
an object at node j, and let:

V (t)← V (t− 1) ∪ {j}. (20)

Algorithm C. The same as Algorithm B, except that an
object is unconditionally placed at node j, corresponding to
maximum wi(t), in each iteration.

Algorithm D. Keep counter cj(t) on each node j ∈ N .
Initially each cj(0) = 0. For each input vector increase
counters: cj(t) ← cj(t − 1) + wj(t). If for any cj(t) ≥ bj
then replicate an object at j.

Observe that Algorithm A always yields a cost equal to
B =

∑N
j=2 bj , regardless of the input sequence. This is optimal

only if
∑T
t=1

∑N
j=2 wj(t) ≥ B. However, the competitive

ratio of this algorithm is unbounded, since the worst-case
input sequences for this algorithm would be of the form:
σt = [0, w2(t), 0, . . . , 0]

T , for w2(t) → 0 (i.e., zero demands
for all nodes except e.g., node j = 2, which has very small
demand w2(t)). This results in OPT (σ) =

∑∞
t=1 w2(t) < B.

It is always possible to construct such input sequence that
OPT (σ) will be arbitrarily small, e.g., for any ε > 0,
w2(t) =

ε
2t , which gives OPT (σ) = ε, and competitive ratio

is B/ε→∞.

Algorithm B places an object at the node of highest
demand, provided that its demand is no less than the place-
ment cost. Although it may seem more reasonable placement
method, this also has unbounded competitive ratio, thus may
be considered as the least robust for different input sequences.
To see this, consider input sequence consisting entirely of
wj(t) < bj for all j. For this sequence, the algorithm will never
replicate an object, but as T →∞ the sum of demands served

can be arbitrarily large. Notice, however, that it performs
optimally on the input sequences that give the worst result
in case of Algorithm A.

Algorithm C fills all nodes with objects after N − 1
iterations. Without the loss of generality assume that w1 ≥ wi
for all i ∈ {2, . . . , N}. This algorithm yields a bounded cost:

N∑
j=2

bj +

T∑
t=1

∑
i/∈V (t)

wi ≤

≤ B +

N∑
i=1

(N − i)wi ≤ B +

N∑
i=2

w1 −
N∑
i=2

iw1 ≤

≤ B + w1

(
1

2
N2 − 3

2
N − 1

)
. (21)

It improves the Algorithm B, having a bounded competitive
ratio, which however depends on the size of network N .

Algorithm D again improves Algorithm C, as it would defer
replicating an object as long as the total demand requested
from a node is less than replication cost bj . It also has the
best competitive ratio, bounded by a constant, regardless of
network size and even values of parameters. For any j, let
tj denote such iteration t in which counter cj(tj) exceeds bj
for the first time. We consider the following cases of input
sequences σ:

1) For all nodes j,
∑T
t=1 wj(t) ≥ bj . Then the cost paid

by algorithm on this sequence σ is:

N∑
j=2

tj−1∑
t=1

wj(t) +

N∑
j=2

bj ≤
N∑
j=2

bj +

N∑
j=2

bj = 2B. (22)

Since in such case it is optimal to replicate everywhere (i.e.,
just apply Algorithm A), the optimal solution has cost B. Thus,
the competitive ratio of Algorithm D for these sequences is
exactly 2.

2) For all nodes j,
∑T
t=1 wj(t) < bj . It is optimal to never

replicate any object. This is exactly what Algorithm D does
for such input sequences.

Any given input sequence σ can be seen as a mixture of
cases 1) and 2). For some nodes j we may have the total
demand exceeding bj . From this we conclude that Algorithm
D is 2-competitive, and consequently:

Corollary 1. Competitive ratio of online data placement
problem on uniform network without processing costs is upper-
bounded by 2.

VI. COMPUTATIONAL EXPERIMENTS

The efficiency of Algorithm D from the previous section
has been confirmed with an experimental study. This algorithm
allows to compute very good approximate solutions within
fractions of seconds even for very large problem instances.
Table I contains the summary of these results. Not only these
solutions are never worse than 2 times the optimal (as implied
by Corollary 1), but for uniformly generated random instances
they were usually very close to optimal. In order to compare
these results with optimal solutions, dynamic programming

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

Algorithm 1 Dynamic programming algorithm for data place-
ment on uniform network.
Require: Input sequence σ = (w(1),w(2), . . . ,w(T)), placement costs

b = [b1, b2, . . . , bN]T .
Ensure: Sequence of optimal placement decisions z∗(1), z∗(2), . . . , z∗(T).
1: function SOLVE(t, z)
2: if t = T then
3: z∗(T)← z(T − 1)
4: for i = 1, . . . , N do
5: if zi(T − 1) = 0 and wi(T) ≥ bi then
6: z∗i (T)← 1
7: end if
8: end for
9: return z∗

10: end if
11: v∗ ←∞
12: z∗ ← z
13: for each binary sequence s of length N do
14: if vector s′ = s− z(t− 1) does not contain entries −1 then
15: z(t)← s
16: znext ← SOLVE(t+ 1, z)
17: v ← Q(znext)
18: if v < v∗ then
19: v∗ ← v
20: z∗ ← znext
21: end if
22: end if
23: end for
24: return z∗

25: end function

TABLE I. EXAMPLE SOLUTIONS COMPUTED BY ONLINE ALGORITHM
D. LAST TWO COLUMNS LIST VALUES OF OPTIMAL SOLUTIONS OBTAINED

VIA DYNAMIC PROGRAMMING FOR SMALLER INSTANCES, ALONG WITH
THE RUNNING TIME OF COMPUTATIONS (IN SECONDS).

N T solution value running time optimum running time

5 30 102.01 0.2 74.74 1074
6 10 38.74 0.2 29.34 30
6 15 56.42 0.2 42.81 449
6 20 77.08 0.2 58.62 2675
6 30 112.81 0.2 85.9 38067
6 40 150.94 0.2 115.47 252880
8 10 49.42 0.2 38.3 6100
8 15 80.78 0.3 56.63 15767
10 5 30.16 0.1 25.24 200
10 8 50.0 0.2 37.5 66043
12 3 20.23 0.1 19.77 30
12 5 37.71 0.1 31.87 53750
15 3 25.15 0.2 23.05 1905
15 5 39.35 0.2 N/A N/A
50 50 1216.37 0.3 N/A N/A
100 100 5324.7 0.5 N/A N/A
250 250 32667.61 1.1 N/A N/A
500 500 128442.61 2.15 N/A N/A
1000 1000 507175.79 4.56 N/A N/A

algorithm has been also implemented (see Section III). Due to
the prohibitive running time O(2NT), optimal solutions only
for small problem instances were obtained. This procedure
is described in detail as Algorithm 1. Running it for t = 1
and initially zero matrix z = 0N×T allows to compute
optimal placement matrix z∗. Instances were generated by
using random demands wi ∈ (0, 1) and placement costs
bi ∈ (1, T) from uniform distributions.

VII. CONCLUSION

The general online data placement problem is hard to solve
efficiently. Exact dynamic programming procedure requires
time exponential in both network size and time horizon length.
In this paper, a simplified variant of this problem has been
studied, in which storage capacities of servers are neglected,
and all transmission delays are treated as (approximately)
equal. For such a case, two results were obtained: 1) given
access to the full input data, this problem can be solved in time
polynomial in both network size and time horizon length; 2) in
online settings, when a decision has to be computed after each
element of input data sequence in provided, the competitive
ratio of the problem is 2, i.e., there exists an online algorithm,
which results in overall performance no worse than twice the
optimal off-line algorithm.

ACKNOWLEDGMENT

This research is co-financed by the European Union as part
of the European Social Fund.

REFERENCES

[1] S. Albers and S. Leonardi. On-line algorithms. ACM Computing
Surveys, 31(3es):4, 1999.

[2] B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file
allocation. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, pages 164–173. ACM, 1993.

[3] I. Baev, R. Rajaraman, and C. Swamy. Approximation algorithms for
data placement problems. SIAM Journal on Computing, 38(4):1411–
1429, 2008.

[4] Y. Bartal. Distributed paging. In Amos Fiat and Gerhard Woeginger,
editors, Online Algorithms, volume 1442 of Lecture Notes in Computer
Science, pages 97–117. Springer Berlin / Heidelberg, 1998.

[5] Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for dis-
tributed data management. Journal of Computer and System Sciences,
51(3):341–358, 1995.

[6] M.H. Bateni and M.T. Hajiaghayi. Assignment problem in content
distribution networks: unsplittable hard-capacitated facility location.
In Proceedings of the twentieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 805–814. Society for Industrial and Applied
Mathematics, 2009.

[7] T. Bektas, J.F. Cordeau, E. Erkut, and G. Laporte. Exact algorithms
for the joint object placement and request routing problem in content
distribution networks. Computers & Operations Research, 35(12):3860–
3884, 2008.

[8] D.L. Black and D.D. Sleator. Competitive algorithms for replication
and migration problems. Technical report, Technical Report CMU-CS-
89-201, Department of Computer Science, Carnegie-Mellon University,
1989.

[9] A. Borodin and R. El-Yaniv. Online computation and competitive
analysis. Cambridge University Press, 1998.

[10] M. Drwal and J. Jozefczyk. Decentralized approximation algorithm for
data placement problem in content delivery networks. In Proc. of 3rd
Conference on Computing, Electrical and Industrial Systems, 2012.

[11] M.T. Hajiaghayi, M. Mahdian, and V.S. Mirrokni. The facility location
problem with general cost functions. Networks, 42(1):42–47, 2003.

[12] M.R. Korupolu, C.G. Plaxton, and R. Rajaraman. Placement algorithms
for hierarchical cooperative caching. In Proceedings of the tenth annual
ACM-SIAM symposium on Discrete algorithms, pages 586–595. Society
for Industrial and Applied Mathematics, 1999.

[13] E. Koutsoupias and C. Papadimitriou. Beyond competitive analysis.
SIAM Journal on Computing, 30(1):300–317, 2000.

[14] T. Leighton. Improving Performance on the Internet. Communications
of the ACM, 52(2):44–51, 2009.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

[15] C. Lund, N. Reingold, J. Westbrook, and D. Yan. Competitive on-
line algorithms for distributed data management. SIAM J. Comput.,
28(3):1086–1111, 1999.

[16] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. Steen. Replica-
tion for web hosting systems. ACM Computing Surveys, 36(3):291–334,
2004.

[17] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication
algorithm. ACM Transactions on Database Systems, 22(2):255–314,
1997.

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-300-1

AFIN 2013 : The Fifth International Conference on Advances in Future Internet

