
Content/Location Mapping with
Cache-Location Resolution for In-network Guidance

Hiroki Kawabata, Kensuke Hashimoto, Tsutomu Inamoto, Yumi Takaki, Chikara Ohta, and Hisashi Tamaki
Graduate School of System Informatics, Kobe University

1-1 Rokkodai-cho, Nada-ku, Kobe 657–8501
Email: {kawabata, hashimoto, inamoto, yumi, ohta, tamaki}@al.cs.kobe-u.ac.jp

Abstract—In recent years, the popularity of large contents such
as high-definition video and music is increasing content server
loads and the amount of traffic on the backbone networks. To
tackle this problem, we propose an Mapping Server with Cache-
location Resolution (MSCR), which resolves prospective cache
locations (PCLs) close to the requesting user as well as content
server location. Sending a query to a nearby PCL enables the
user to obtain the content more efficiently. Our simulation shows
that MSCR can reduce content server loads and the amount of
traffic on core networks.

Keywords-mapping server; cache location; query induction;
breadcrumbs; in-network cache.

I. INTRODUCTION

Nowadays, because of the increased demand for large con-
tents such as high-definition videos and music, content servers
holding popular contents suffer from high access loads, and
core networks also suffer from the massive amount of traffic
thus generated. More efficient content delivery is, therefore,
one of the most important issues for future as well as current
networks.

One traditional solution is web caching, generally content
caching. In this context, a content cache means a temporary
content copy (content cache) in a user terminal (local cache),
content server (web accelerator), or proxy server (cache
server). In web caching, if a content query happens to find
the appropriate cache on the way to the content server, the
content is fetched from there, which reduces content server
load and the amount of traffic on core networks. Note that only
content caches on the path towards the selected content server
are utilized even though other content caches exist just off the
path. In this sense, content caches are not utilized efficiently.

Other approaches include the Content Delivery Network
(CDN) and Peer-to-Peer (P2P), which are considered as over-
lay networks based on the current Internet. In recent years,
attempts to fundamentally overhaul the Internet architecture
have been made in order to optimize it for content-delivery
based on “clean slate” approaches [1], [2], [3], [4], [5]. In such
“Content-Oriented Networks (CON),” how to identify content,
i.e., content naming, how to locate (or find) content, and where
and how to store contents are major issues.

In this paper, we propose an mapping server, named
“Mapping Server withCache-location Resolution (MSCR)”;
designed to utilize distributed cache storages efficiently, it
resolves the locations of prospective content caches (PCL:

Prospective Cache Location) as well as original servers from
content name. Here, a PCL for a certain content may be a
node ID or network domain ID of a user who recently got the
content.

Currently, the user on-line storage service “Pogoplug” is
supported [6]. If part of such storage space is open for
public access, content cache storage can become more widely
deployed across the network. Further, in the future, routers
might actually be equipped with content cache storages (router
cache) like Transparent En-Route Caches (TERC) [7], [8] and
its improved version called Breadcrumbs (BC) [2]. Based on
the above considerations, in this study, we assume that content
cache storages are widely distributed across the network and
are publically accessible. We also assume that a unique ID
(content ID) is allocated to each content. In practice, by some
means or another, the user needs to acquire the ID of the
content desired. Currently, in order to get the URL (Uniform
Resource Locator) of what we want, we most often enter
keyword(s) into search engines such as google and yahoo.
Some portal sites such as yahoo provide lists of contents
and redirect users to actual web sites. On this occasion, they
collect users’ access histories. A user who accesses a certain
content via such a portal site is expected to have the content,
and it is also highly possible that a corresponding content
cache exists near the user for some time. By using functions
similar to those of search engines and portal sites, MSCR
lists candidate contents that users might want to obtain by
keyword(s), resolves the content ID, original server location,
and PCLs of each content, and collects users’ access histories.
As a result, upon sending a query toward a PCL, the user can
obtain the expected content; this will lessen access loads on
the corresponding content server. Further, if the PCL is close
to the requester, the amount of traffic On the core networks
might be also reduced. In this sense, the preferred PCL is the
location of a past user who is close to the current requester
and who has recently accessed the content.

A concern about privacy, however, arises since it is possible
for other users to discover who obtained which content. This
problem, however, can be mitigated by obscuring PCLs, that
is, by using network domains instead of user locations. In
particular, the BC scheme is effective even in the case of dim
PCLs since a query is guided on the way to the location of
the past obtainer.

In this paper, we describe MSCL and conduct simulations

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

to evaluate its effectiveness from the viewpoints of content
server access load and the amount of traffic on core networks.
Keyword search lies outside the scope of this paper. The
remainder of the paper is organized as follows: Section II-A
briefly explains the BC scheme. Section III introduce MSCR
and the flow of content retrieval. Section IV conducts simula-
tions to confirm the effectiveness of MSCR. Finally, Section V
concludes this paper.

II. RREDAUXILIARY SCHEME: BREADCRUMBS

In this section, we explain the Breadcrumbs scheme[2],
which mitigates the privacy problem of MSCR.

A. Breadcrumbs Scheme

The Simple Best-Effort Content Search (S-BEACONS)
scheme, described below, is a traditional implementation of
BC [2].

In a BC scheme, like Internet Protocol (IP) scheme, a
query raised by a requester for a content is transferred toward
the (original) content server. Each content is assumed to be
allocated a unique content ID. In the BC scheme, routers are
assumed to cache not only contents but also their correspond-
ing BCs. Both caches are assumed to have the replacement
policy of Least Recently Used (LRU), which discards the least
recently used item first.

A BC contains the following information:
• Content ID.
• Node ID from which the content arrived (ID of upstream

node).
• Node ID to which the content was forwarded (ID of

downstream node).
• Previous content transfer time: most recent time the

content passed through the node.
• Previous query transfer time: most recent time the content

was requested at the node.
A BC is generated in a router when a content is transferred

through the router for the first time, and it is updated every
time the content or a corresponding query traverses the node.

1) Query Guidance: In the BC scheme, if a query for a
content traverses a router with a BC for the content, the query
is diverted to the downstream node of the content which means
that it backtracks along the corresponding BC trail. Suppose
that a query for a content arrived at time t at a router and
found that the content was not cached at the router. Then,
with timeout thresholds Tf and Tq, the router forwards the
query downstream if-and-only-if

• The content was cached or refreshed (via successful
query) at the router within [t− Tf , t]; or

• The previous query passed through the router within [t−
Tq, t] and sent downstream.

2) BC Invalidation: If the query cannot find the content on
the BC trail and reaches a dead end, the BC trail is regarded
as being stale, and the invalidation procedure is invoked for
the trail. More precisely, when the query encounters a node
with its downstream entry null (i.e., dead end) and the content

Fig. 1. BC trail and query transfer.

is not cached there, the query turns back along the trail and
deletes the corresponding BCs along the trail.

3) BC Update: If a content being transferred finds the
corresponding BC in a router, then the BC entries, i.e., the
upstream node ID, downstream node ID, and the most recent
time the content passed through the node, are updated. If a
query for a content finds the corresponding BC in a route, the
BC entry of the previous query transfer time is updated.

4) BC Replacement: Since BC cache size is not unlim-
ited, BCs need to have a BC cache replacement policy. In
particular, core routers switch huge amounts of traffic, and
their extremely rapid switching makes it difficult to provide
sufficiently large BC caches. In other words, BC trails tend to
frequently fail at the core routers.

5) Example of Query Guidance: Figure 1 shows an exam-
ple of BC query guidance. From this figure, if content F1 is
transferred via routers A, B and C and reaches user U1, BCs
are newly generated on the path. Note that the entry of the
previous query transfer time is set to −Inf , and the entry of the
upstream node ID in router A, to which the server is attached,
and that of the downstream node in router C, to which user U1
is attached, are set to “null.” The BC of each router is updated
every time the content or a query traverses the router. Next,
suppose that user U2 requests the same content and sends its
query towards the server. It is then transferred via routers D
and B and finds an available BC for the content at router B.
In this case, the query is diverted downstream toward router
C instead of upstream router A. If the query finds the content
on the way, the content is transferred from there instead of the
server. This reduces the access load of the server. On the other
hand, if the query reaches router C where the downstream BC
entry is “null,” BCs are invalidated in the upstream direction
from router C toward the server since the content is not cached
on the path.

III. MAPPING SERVER WITH
CACHE-LOCATION RESOLUTION

We detail MSCR in this section.

A. Basic Functions

Like search engines, MSCR resolves a list of contents by
the keyword(s) that the user is interested in. The user selects
one of the contents from the list, and the selection is passed to

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

Fig. 2. Query transfer with BC and MSCR.

MSCR. MSCR then replies with the corresponding three-tuple
information (content ID, original server location, PCL(s)) to
the user, and, at the same time, records the user’s node ID (or
network domain ID) and the current time in an access history.
Here, we assume that MSCR selects and replies with one (or
several) proper PCL(s) although it stores multiple PCLs for
each content. After getting the three-tuple information, the user
sends a query towards the PCL. However, if the user fails to
obtain the content desired, the user sends another query toward
the original server.

In order to realize the above, MSCR stores up to Ncont

Content/Location Mapping Information (CLMI) entries whose
elements are

• Content ID,
• Original server location (Node ID),
• PCL list,
• Recent request time, and
• Access frequency,

where the PCL list consists of up to NPCL two-tuple elements:
• PCL (Node IDs), and
• Access time.

Thus, MSCR stores information about Ncont contents, and up
to NcontNPCL PCLs. “Recent request time” and “access fre-
quency” are used as the cache replacement policy as mentioned
in Section III-B.

Let us explain the above procedure using Figure 2. In this
figure, we consider the case that there is only one MSCR in
the network, and only access routers have content cache stores.

As a precondition, it is assumed that no node has a content
cache and MSCR knows only the original server location
of each content, i.e., not PCLs. Furthermore, user U1 sent
keyword(s) to MSCR and chose content C1. At that time,
MSCR replid (C1’s content ID, C1’s original server location,
null) to user U1 since it had no PCL for content C1. At the
same time, MSCR recorded U1’s node ID with the access time
as a PCL for content C1, and counted up the access frequency
for content C1. After getting the information, user U1 sent
a query toward the server, got content C1 over path route A
through D, and a copy of content C1 was newly cached at
access router D.

Next, user U2 also requests content C1. At this time, since
MSCR already holds the PCL for content C1 (i.e., user U1’s

node ID), user U2 obtains a PCL (i.e., U1 node ID) as well
as the original server for content C1 from MSCR. To start
with, user U2 sends a query toward the PCL (i.e., user U1),
and obtains content C1 from router D. Further, a new copy of
content C1 is stored at access router E.

B. PCL Replacement

In this study, we assume that an MSCR can have up to
Ncont CLMIs, each of which can have up to NPCL PCLs
since MSCR cannot store unlimited quantities of CLMI. Thus,
replacement policies for CLMI and PCL are necessary.

Generally speaking, more popular contents place heavier
loads on the content server and core network, since they are
more frequently requested. Thus it is better to store their
information. In this sense, LFU (Least Frequently Used) is
preferable as the CLMI replacement policy.

On the other hand, with PCL, stale information may lead to
cache miss since content caches themselves are also replaced.
In other words, the newer the PCL is, the better it is.
Therefore, LRU (Least Recently Used) is preferable as the
PCL replacement policy.

C. PCL Activation Delay

Just because a user gets a reply from MSCR does not mean
that the content has already been cached anywhere. This is
because there is a delay from when the user sends the query
to when at least one copy of the content is cached. To make
sure that a user has already obtained a content, and thus the
content is cached, the user notifies the completion of content
receipt to MSCR. This, however, increases control overhead
and the amount of traffic. The simplest and least burdensome
way is for MSCR to activate a PCL after some delay even to
the cost of certainty.

D. PCL Selection

MSCR stores multiple PCLs in a CLMI for a certain
content. Recall that, for a requester, a newer PCL and a closer
PCL are more effective in reducing content server access load
and the amount of traffic on core networks, respectively. Thus,
from the requester’s viewpoint, some PCLs are more effective
than others. Thus, it is important which and how many PCLs
should be returned to the user.

If a requester has routing information, he/she can probably
decide which PCL is close to himself/herself more easily than
MSCR. In this case, it is simplest for MSCR to return all PCLs
to the requester. This, however, increases the amount of control
traffic. If MSCR is to judge the closeness between a requester
and a PCL, it needs to hold some sort of information on
network topology. This is possible if network domain IDs are
hierarchically allocated, as assumed in Section IV. Under this
assumption, the closeness between two nodes can be roughly
estimated. This approach means that the MSCR need return
only a few PCLs to the requester.

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

Fig. 3. Query transfer with BC and MSCR.

E. Privacy

As mentioned in Section I, privacy concerns arise since
other users can know who obtained which content. This
concern can be mitigated if MSCR returns network domain
IDs instead of user node IDs as PCLs. A query issued toward
a PCL, however, may not be able to find any content cache
from just the network domain ID. In such a case, in-network
guidance by the BC scheme is effective, especially if network
domain IDs are hierarchically allocated.

Figure 3 shows an example with in-network guidance by the
BC scheme. This figure is almost the same as Figure 2 except
that all routers are BC routers and network domain IDs are
used as PCLs. Note that, as in Figure 2, only access routers
have a content cache storage. As preconditions, we assume
that just after user U1 obtained content C1 from the server, a
BC trail was established from the server to user U1, and BCs
on routers A through B on the trail have been pushed out due
to BC cache replacement as mentioned in Section II-A4.

At this point, suppose that, for the request from user U2,
MSCR returns the network domain ID of domain 1 as a PCL
in addition to the original server location for content C1. Then
a query is sent toward domain 1. At the entrance of domain
1, the query happens to find the fragment of the BC trail to
router D which has the content cache of the content C1. Note
that we assume that a query to find a corresponding BC trail
is always guided along the trail. Thus, even vague information
on cache location is still useful if in-network guidance by the
BC scheme is applied.

F. Unique Content ID

Each content needs to be indexed uniquely, i.e., assigned
a unique content ID. For example, a fixed length content ID
can be generated by a hash function from the content itself or
its URL. A content is at first uploaded to a particular content
server and its URL is the only one piece of information related
to the content at that time. So when a content is uploaded for
the first time, we generate a hash from its URL which uniquely
identifies the content thereafter.

G. Implementation

In the above examples, a single MSCR is used. In practice,
however, such a centralized system is vulnerable and not

Fig. 4. Example of 3-Tier router topology.

scalable. In order to enhance dependability and scalability, we
consider that MSCR should be implemented as a distributed
system like Chord[9] which utilizes Distributed Hash Tables
(DHTs). In our case, CLMI entries will be distributed to
multiple servers, which will mitigate vulnerability and enhance
scalability. Implementing MSCR in a distributed manner like
Chord is left for future work, and in this paper, we evaluate
the effectiveness of the basic MSCR function.

IV. PERFORMANCE EVALUATION

In this section, we evaluate how much MSCR can reduce
the content server load and the amount of traffic on the core
network. To do so, we developed an event-driven simulator
in C++. In what follows, we compare four schemes from the
viewpoints of cache hit ratio (ratio of the number of contents
obtained from caches to that of totally obtained contents) and
the amount of traffic in the tier-1 network:

• IP
• IP + Cache
• IP + Cache + MSCR
• IP + Cache + MSCR + BC
In the above, “IP” means that a user fetches a content from

its content server as per the server/client model of basic IP
networks. “Cache” means that access routers have content
caches. If “MSCR” is stated, an mapping server resolves a
PCL as well as the original server location. Otherwise, it
resolves only a content server from a content name. “BC”
means that every router has the BC function and only access
routes have content caches.

A. Assumptions

In our simulations, we used 3-tier router topologies, which
were created by combining multiple Transit-Stub (TS) topolo-
gies (i.e., 2-tier topologies), which are generated by gt-itm
[10]. More precisely, in a 3-tier topology, tier-1 corresponds to
a transit domain of a certain TS-topology, whose stub domains
are replaced by transit domains of other distinct TS-topologies,
so that their stub domains become tier-3 domains. Here,
we removed links between the routers in the different tier-2
domains (originally set between the routers in different transit
domains on the TS-topology). Figure 4 shows an instance of
such a 3-tier topology. In this paper, a tier-1 domain is regarded
as a core network in a 3-tier topology.

Each node is allocated a sixteen-digit hex node ID separated
at every fourth-digit by periods, i.e., “0123.4567.89ab.cdef,” so

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

TABLE I
GENERAL PARAMETERS.

Item Value
Link capacity 1 packet/unit time
Number of contents 10,000
Number of tier-1 domains / routers per domain 3 / 3
Number of tier-2 domains / routers per domain 9 / 8
Number of tier-3 domains / routers per domain 144 / 15
Number of servers 50
Number of users 5,000
Query size 1 packet
Content size 100 packets
Content cache size 10
Content cache replacement policy LRU

that node ID is represented by 64 bits. Node IDs are organized
hierarchically to express tier level. That is, the first four-digits
express tier-1, the second tier-2, the third tier-3, and the fourth
is allocated to a content server or a user. As a result, as
shown in Figure 4, all tier-2s have the same first four-digits in
their node IDs, and all tier-3s under a certain tier-2 have the
same first eight-digits in their node IDs. This kind of address
allocation can be realized by HANA (Hierarchical Automatic
Locator Number Allocation Protocol) [11]. Here, let us denote
the distance between two nodes whose node IDs are Ii and Ij
by

D(Ii, Ij) = 64− L(Ii, Ij), (1)

where L(Ii, Ij) is the size of the longest prefix match between
two node IDs.

In addition to the above, we assume the following: As shown
in Figure 4, content servers are located in a particular tier-3
domain, called “server domain,” that is, they are connected to
routers in the server domain, while users are sited randomly
in the other tier-3 domains. All routers are equipped with BC
caches, while only access routes that accommodate users have
content caches, since routers in the backbone networks (tier-1
and 2 domains) are expected to have a paucity of high-speed
memory even in the future;

The query occurrence interval of each user follows an
exponential distribution; Content selection follows a Zipf-like
distribution with α = 0.75 [12]; Queries and contents are
transferred without any packet loss; This time, as we focus on
cache hit ratio and amount of tier-1 traffic, not the retrieval
delay, each link between nodes is assumed to have capacity
sufficient to transfer one packet in each unit time (including
a delay for packet processing at routers). Table I summarizes
the parameters used in the simulations. With regard to BC
parameters, we assume that each router can store up to 50 BC
entries in a BC cache, and its cache policy is LRU; the timeout
thresholds of BC are set to Tf = 3, 000 and Tq = 300. Table II
summarizes the BC parameters used in the simulations. With
MSCR, we assume that only one MSCR exists in a 3-tier
network. In the case of content/location resolution, MSCR
selects one of the nearest (and newer) PCL as well as original
server location. In our simulations, PCL is specified by user
node ID. MSCR holds up to 100 CLMI entries, and each

TABLE II
BC PARAMETERS.

Item Value
BC cache size per router 50
BC cache replacement policy LRU
Tf 3,000 unit time
Tq 3,00 unit time

TABLE III
MSCR PARAMETERS.

Item Value
PCL metric Network distance
PCL selector MSCR
Number of returning PCLs 1
Number of total PCLs 3,000
Max. CLMI, Ncont 100
CLMI replacement policy LFU
Max. PCL per CLMI, NPCL 30
PCL replacement policy LRU

TABLE IV
CACHE HIT RATIO AND

RELATIVE AMOUNT OF TIER 1 TRAFFIC IN IP SCHEME.

Scheme Cache hit ratio Relative amount of
tier 1 traffic ratio

IP 0 100
IP + Cache 1.4 98.8
IP + Cache + MSCR 7.4 94.0
IP + Cache + MSCR + BC 13.0 90.2

has up to 30 PCLs for a certain content. In PCL entries,
prospective locations are replaced as per LRU policy, and
CLMI entries are replaced as per LFU policy. Table III shows
the basic MSCR parameters used in the simulations.

B. Simulation Results and Discussions

Table IV show the cache hit ratio and the amount of tier-1
traffic relative to that in IP scheme. From the table, we can
see that MSCR increases the cache hit ratio (i.e., decreases
content server access load) and decreases the amount of tier-1
traffic compared with the IP and IP + Cache scheme. This
is because MSCR enables users to more effectively utilize
content cache storages at access routers other than their own.
Moreover, combining the BC scheme with MSCR increases
the cache hit ratio and decreases the amount of tier-1 traffic
even more. This is because the BC scheme can guide a query
for a content whose PCL has not been stored yet in MSCR to
a cache.

In the simulation scenario, MSCR is expected to increase
the cache hit ratio and decrease the amount of tier-1 traffic
by nearly 21.9%. MSCR holds one hundred CLMIs under the
LFU replacement policy. That is MSCR tends to store PCLs
of the first through the 100th most popular contents, which
accounts for 21.6% of content requests given the Zipf-like
distribution. If a content cache pointed by a PCL surely exists

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70 80 90 100

C
a
c
h
e
 h

it
 r

a
ti
o
 (

%
)

Cache size (number of contents)

IP + Cache
IP + Cache+MSCR
IP + Cache + MSCR + BC

Fig. 5. Characteristics of cache hit ratio as a function of content cache size.

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

R
e
la

ti
v
e
 a

m
o
u
n
t
o
f
ti
e
r

1
 t
ra

ff
ic

 r
a
ti
o
 I
P

 s
c
h
e
m

e
 (

%
)

Cache size (number of contents)

IP + Cache
IP + Cache+MSCR
IP + Cache + MSCR + BC

Fig. 6. Characteristics of the amount of tier 1 traffic relative to that of IP
scheme as a function of conten�cache size.

somewhere, the cache hit ratio can be almost 21.6%, which
reduces the amount of tier-1 traffic to the same degree.

The reason of relatively poor performance is explained
as follows. The content cache policy is LRU, and all users
demand contents according to the same, static, Zipf-like distri-
bution. As a result, popular and similar content caches occupy
the cache spaces distributed across the network, which are less
diversified. This implies that the effective number of PCLs is
restricted to basically the content cache size of each access
router.

To verify this, we varied the content cache size of each
access router from 10 to 100. Figures 5 and 6 show the cache
hit ratio and the amount of tier-1 traffic, respectively. In those
figures, we can see that the cache hit ratio and the relative
amount of tier-1 traffic approach to the expected values as
content cache size increases.

In practice, users in different domains are expected to
have different preferences due to locality. In this sense, the
simulation scenario that content requests must follow the same
and static Zipf-like distribution is an overly-stringent condition
for MSCR. This can be alleviated by increasing the diversity
of content caches among content cache spaces, which could
be achieved by cooperative caching between MSCR and the
content cache. This is left for future work.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed MSCR that resolves content ID,
original server location, and PCL(s) in order to reduce the
content server load and the amount of traffic on core networks.
Simulation results showed that MSCR is effective in achieving
both goals. In our simulations, all users have the same and
static preference, i.e., a Zipf-like distribution, for contents, and
there is no cooperation between MSCR and the content cache
policy. As a result, similar contents are cached in each tier-
3 domain. In this sense, it is not so significant for MSCR to
guide a query to a different tier-3 domain. In practice, however,
preferences will be quite different in different domains due to
locality, and will vary over time. In such cases, we expect that
MSCR will be even more effective. Verifying this is one of
our future works. Moreover, we also investigate establishing
cooperation between MSCR and content cache policy.

ACKNOWLEDGEMENT

We would like to express our deepest gratitude to Prof. Jim
Kurose and Mr. Elisha Rosensweig who provided valuable
comments and suggestions. We gratefully appreciate the finan-
cial support of Information and Communications Technology
(NICT), Japan.

REFERENCES

[1] J. Choi, J. Han, and E. Cho, “A Survey on Content-Oriented Network-
ing for Efficient Content Delivery,” IEEE Communications Magazine,
pp. 121–127, March 2011.

[2] E. J. Rosensweig and J. Kurose, “Breadcrumbs: Efficient, Best-Effort
Content Location in Cache Networks,” Proc. IEEE INFOCOM 2009,
pp. 2631–2635, April 2009.

[3] I. Stoica, D. Adkins, S. Zhunang, and S. Shenker, “Internet Indirection
Infrastructure,” IEEE/ACM Trans. on Networking, vol. 12, no. 2, pp. 205-
218, April 2004.

[4] V. Jacobson, D. KSmetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking Named Content,” Proc. ACM CoNEXT
2009, Rome, Italy, Dec. 2009.

[5] T. Koponen, M. Chawla, B. C. Chun, A. Ermolinskiy, K. H. Kim,
S. Shenker, and I. Stoica, “A Data-Oriented (and Beyond) Network
Architecture,” Proc. ACM SIGCOMM 2007, Kyoto, Japan, pp. 181–192,
August 2007.

[6] “Pogoplug,” https://pogoplug.com/, April 2nd, 2012 (last accessed).
[7] P. Krishnan, D. Raz, and Y. Shavit, “The Cache Location Problem,”

IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 568–582, Oct. 2000.
[8] S. Paul, R. Yates, D. Raychaudhuri, and J. Kurose, “The cache-and-

forward network architecture for efficent mobile content delivery services
in the future internet,” Proc. Innovations in NGN: Future Network and
Services 2008, K-INGN 2008, pp. 367–374, May 2008.

[9] I. Stoica, R .Morris, D. Karger, M. F. Kaashek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
ACM SIGCOMM Computer Communications Review, vol. 31, no. 4,
pp. 149–160, Oct. 2001.

[10] “gt-itm,” http://www.cc.gatech.edu/projects/gtitm/, April 2nd, 2012 (last
accessed).

[11] F. Fujikawa, H. Harai, and M. Ohta, “The basic procedures of hierarchi-
cal automatic locator number allocation protocol HANA,” Proc. the 7th
Asian Internet Engineering Conference (AINTEC) 2011, pp. 121–131,
Nov. 2011.

[12] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching
and Zipf-like Distributions: Evidence and Implications,” Proc. IEEE
INFOCOM 1999, pp. 126–134, March 1999.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-211-0

AFIN 2012 : The Fourth International Conference on Advances in Future Internet

