
A Middleware Framework for the Internet of Things

Bruno Valente
Department of Informatics

LaSIGE & Faculty of Sciences, University of Lisbon
Portugal

bvalente@lasige.di.fc.ul.pt

Francisco Martins
Department of Informatics

LaSIGE & Faculty of Sciences, University of Lisbon
Portugal

fmartins@di.fc.ul.pt

Abstract—After the traditional Internet (with program-to-
human communication), and after the Internet of Services (with
program-to-program communication), the Internet of Things
is a new paradigm of communication aiming at integrating the
state of everyday things into the digital world. But things are
everywhere, have different colours, come in different flavours,
so, building reliable applications that depend on such things
imposes great challenges and demand for new approaches to
integrate heterogeneous devices smoothly. These new methods
should use public and resilient networks, like the Internet, to
secure and facilitate the access to things. This paper addresses
such constraints and proposes a middleware framework to
interact with the devices and their data, all this supported by
the use of Web services. It is our goal to design and implement
a generic framework where services represent functionalities
of sensor networks and provide a dynamic way for high-level
applications to interact and program such devices with het-
erogeneous hardware. By using Web services we benefit from
the interoperable technology, cross platform, independency of
programming languages, and available on the Web. Those
attributes are ideal to combine heterogeneous systems like
sensor networks. It is also our goal to create an event-driven
system, where the user can subscribe the available services and
receive notifications as network data is being processed.

Keywords-middleware, Web services, sensor networks, inter-
net of things, service-oriented architecture.

I. INTRODUCTION

The Internet of Things (IoT) is a novel paradigm that
aims at bridging the gap between the physical world and
its representation within the digital world. The idea is to
integrate the state of the “things” that form the world into
software applications, making them benefit from world’s
context information.

There are various forms of capturing the state of things,
ranging from simple bar codes identifying objects, to more
sophisticated technologies involving radio-frequency identi-
cation (RFID), near field communication (NFC), or even
more complex devices, such as sensor nodes, that come
equipped with an internal memory, context awareness de-
vices (e.g., GPS), and, specially, with computation capabili-
ties [1]. These last mentioned devices are of special interest,
since they allow things, named smart objects, to perform
local computations and interact and collaborate among them.

Sensor networks [2] are a hot research topic in academia
and an expansion business area in industry, with applications

in many fields. These networks are composed of a set of
nodes with the capability of sensing physical phenomena
(e.g., luminosity, temperature, or humidity). Wireless Sensor
Networks (WSNs) are a specialization of sensors networks,
where communication among devices occurs via radio-
frequency and nodes (usually) rely on a battery power sup-
ply. Those characteristics allow devices to operate remotely,
but complicate the access and the process of sensed data.

Building high-level applications that exploit information
from smart objects are of valuable interest, but they do not
come without a cost. In fact, interacting with devices that
run on top of different operating systems (e.g., TinyOS [3],
Contiki [4]) or virtual machines (e.g., Squawk [5]), that use
distinct programming languages (e.g., nesC [6]), and that use
different communication protocols, makes it very difficult,
and undesirable, to handle the complexity from the high-
level application.

Our work focus on abstracting the interaction among
applications and smart objects (e.g., nodes connected via
a WSN), by both hiding the communication (and other
hardware idiosyncrasies) and the programming capabilities
of such objects. It is our intent to accommodate these
differences in a middleware layer such that, from an ap-
plication perspective, all smart objects are reprogrammable
and present a common interface.

The programmability of smart objects depends, more
often than not, on manufactures and whether they provide
hardware specifications. As far as we are aware, there are not
so many platforms that allows devices to be reprogrammed
remotely, while running. In Callas [7] we presented a
framework that supports reprogramming of nodes in a WSN.
Here, we lift this idea to the middleware level by equipping
it with reprogramming capabilities irrespectively of these
capabilities being supported by the underlying infrastructure.

From the high-level application point of view deploying
code into (a network of) smart objects is performed regard-
less of the ability of these devices to be programmed. Based
on the configuration of smart objects, the middleware either
installs the code in the devices or in itself and behaves as
if the code was effectively deployed into the devices. For
this approach we put together a Data-Flow engine that runs
client deployed modules; these work upon data received

139

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

from smart objects and are organised in dataflow chains
acting as filters to process incoming data according to the
client’s requirements.

Another problematic area is the interoperability among
observation centres and their clients. We follow the Sen-
sor Web Enablement standard (SWE) [8] from the Open
Geospatial Consortium. This standard defines a set of inter-
operability interfaces and metadata encodings that enable
real-time integration of heterogeneous sensor webs. Our
implementation respects two SWE standards: Observations
and Measurements (O&M) [9][10], and Sensor Observations
Service (SOS) [11].

To summarise, our main contributions are:
• the abstraction of code deployment, communications,

and hardware of (networks of) smart objects, allow-
ing for client applications to program heterogeneous
devices either physically, by installing code into the
devices, or logically, by creating a Data-Flow network
of filters to process the data received from devices.

• the management of observations received from smart
objects and its broadcast to client applications via Web
services respecting the SWE specification;

The remainder of this paper is structured as follows:
Section II presents state-of-the-art related work. Section III
presents our approach to fulfil the aforementioned goals. In
Section IV we detail the internals of out middleware, and,
finally, the last section draws our conclusions and provides
an overview of the intended future work.

II. RELATED WORK

Middleware frameworks are widely used to aggregate
and manipulate sensor networks. Rakhi Motwani et al. [12]
present a Service-Oriented Architecture (SOA) to coordinate
observation centres and to share their information via Web
services. The authors’ motivation is that many observation
centres are geographically dispersed and isolated, and it is
difficult to share information among them. We adhere to this
view and our middleware proposal, MufFIN (Middleware
For the Internet of thiNgs), provides features to manage the
data received from network devices and allow information
to be registered and accessed via SWE standards.

Another open source implementation of SWE is the
52North Sensor Web community application [13]. Since the
project seems to have achieved a mature state, we tried
to build Muffin on top of it. However, it has revealed
to be quite difficult to integrate a stand-alone application
with our framework features. Instead, we used part of their
specifications (e.g., database ER model) as the base to our
SWE implementation.

The communication between heterogeneous services is
possibly by using a known protocol on top of a common
format, like XML. However, this kind of technologies needs
more computational resources to marshal and unmarshal the
contained information. Choon-Sung Nam et al. [14] propose

DataAccess

SOS

DFN-Engine
Subscriptions

ThingsGateway
Core

WS-Gateway

Database

WSN
Internet

Figure 1. The bundles layer diagram illustrating the communication
between bundles from the gateways to the database layer.

an Event-Driven Architecture middleware equipped with a
publish-subscribe paradigm, allowing client applications to
subscribe topics of interest and to receive notifications when
the server publishes information on such topics. This type of
communication reduces the amount of messages exchanged
among clients and servers, as opposed to pulling techniques
used within synchronous scenarios.

João Santos also implemented a middleware frame-
work [15] that combines SOA and Event-Driven Architec-
tures to achieve interoperability among WSNs and client
applications via Web services. The framework supports the
creation of pipelines (fixed dataflow chains), although it does
not provide for dynamic composition of filters in dataflow
chains, and its current implementation does not support the
SWE specification.

Catello Di Martino et al. [16] present an adaptive and con-
figurable architecture for accessing sensor networks based on
their specifications. These specifications result in filters and
focus of information, where clients connect to, in a fast way,
and gather or receive notifications with the needed data.

Our middleware solution, like most of the aforementioned
works, makes use of Web services, supports synchronous
and asynchronous requests, complies with the SWE stan-
dards, and abstracts the sensor’s hardware. New to MufFIN
is the ability to transparently reprogram smart objects, being
this our main scientific contribution.

III. OUR APPROACH

This section presents our middleware design and the deci-
sions made to address the requirements identified previously.

A. Architecture

We choose to design our middleware framework based
on a Service-Oriented Architecture composed of a group
of seven loosely coupled bundles. Figure 1 shows the
framework layer diagram depicting the communication de-
pendencies between components.

On top, we provide two communication gateways: the
thingsGateway for communicating with smart objects (e.g.,

140

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

network sensors) and the WS-Gateway for communicating
with high-level applications via Web services. The middle-
ware supports both synchronous and asynchronous commu-
nications with clients. The Core bundle provides the Web
interface implementation to invoke framework operations.
DFN-Engine bundle manages client deployed modules as
well as the dependency chains between them. It instanti-
ates the client modules and creates the publish-subscribe
connections for their communication. The details of the
deploying operation is presented in Section III-B. As for
the Subscriptions bundle it receives clients subscriptions,
processes them, and saves the subscriber’s information.
This bundle publishes notifications for clients to the Web.
Section III-C details the bundle’s internals. The processing
of XML documents for the Sensor Observation Service
standard is delegated to the SOS bundle. All operations of
this bundle must follow the OGC specifications. At the basis
of our middleware lies the DataAccess bundle that provides
a set of façades for other bundles to access the database
layer. Database tables related to smart object observations
are based on the O&M specification.

The following section describes how our framework han-
dles devices’ programming and data management.

B. Network Programming and Data Management

For network programming we allow clients to upload
modules (filters) and to instantiate them. If the target smart
object (network) allows for code installation, the middleware
deploys the received module to it. Otherwise, the code is
instantiated locally and runs directly at the middleware layer.
For that, the client must also specify the module’s dependen-
cies. This specification is given in an XML document, like
the example shown in Listing 1. Notice that the document
also specifies whether the module will be made available
as a Web service; the client may decide not to expose the
module to the Web because it may be used to compute
intermediate results. To discover module’s information the
client may invoke the Web service getModulesInfo().

Listing 1. An example of XML file to instantiate a new modules
<deploy>
<i n s t a n c e s e r v i c e I d =” T e m p e r a t u r e D i f f ” s e r v i c e =” t r u e ”>
<dependency s e r v i c e I d =” L i s b o n T e m p e r a t u r e ”/>
<dependency s e r v i c e I d =” P o r t o T e m p e r a t u r e ”/>
</ i n s t a n c e>

</ deploy>

The created modules and the triggered events build a
dependency chain as a publish-subscribe network, like it
is shown in Figure 2. This chain results in a Data-Flow
Network (DFN) where the raw data, coming from the smart
objects (e.g., WSN nodes), is further processed to produce
the information subscribed by the high-level applications.

Figure 2 illustrates the interaction with two networks
of things, accessed through gateways LisbonSink and Por-
toSink. This modules receive raw observations directly from
the networks. Whenever new data is available this modules

LisbonSink

LisbonTemperature PortoTemperatureLisbonHumidity

TemperatureDiff

PortoSink

DFN-Engine Bundle

ThingsGateway Bundle

Figure 2. The modules dependencies chain.

Instantiated Client Modules Web Services Representation

DFN-Engine
Bundle

WS-Gateway
Bundle

Module n

Module 1

Module 3

Module 4

Module 2

Web Service n

Web Service 2

Web Service 1

Figure 3. Conceptual view of the relation between module instances and
their representation on the Web.

will store it and notify their subscribers, which will pro-
cess the supplied data, store it, and further notify theirs
subscribers (and so on). In case a module is available to
the Web, its remote subscribers will be notified as well. For
instance, the LisbonSink notifies modules LisbonTempera-
ture and LisbonHumidity. In its turn, LisbonTemperature will
inform TemperatureDiff that, dependent on a value received
from the PortoTemperature, will compute its difference and
make it available for its subscribers. If no value is available
from the PortoTemperature module, TemperatureDiff will
suspend until a value is obtained.

Each module stores its processed information, allowing
for backdated queries.

C. Subscriptions

After instantiation, a module becomes available for sub-
scription via its corresponding Web service. The Subscrip-
tions bundle maintains information about subscribers and
which services they subscribe. When the DFN processes
information, it notifies the respective module and an event
is sent to the subscriber.

Figure 3 represents the mapping between modules and

141

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

 WS-Gateway Core Subscriptions DataAccessClient

DFN-Engine

1. Subscribe

Service
2. Subscribe

Service
3. Save

Subscriber

4. Persist

Subscriber

5. Notify

Subscriber

6. Notify

Figure 4. Sequence diagram with the invocations between modules from
service subscription to client’s notification.

Web services. In the present case, only modules 1, 2, and n
are available for subscription. Modules 3 and 4 just compute
intermediate information that is further refined and made
available. Module 4 exemplifies a kind of extension point
that can be refined later.

The framework provides two methods of subscribing
services:

• Direct subscription: by specifying the service to be
subscribed, given its identification.

• Discovery subscription: by querying specific service
characteristics. This allows for a client to discover
(and subscribe) services based uniquely on the partial
matching of the client’s topics of interest with the
module’s characteristics. Our approach is to classify
modules in ontologies (upon module’s definition) and
allows for querying these ontologies for finding relevant
services.

To enable notifications it is necessary a client Web-service
endpoint where the events will be delivered. The endpoint
is correlated with the client at subscription time. Figure 4
shows the sequence diagram corresponding to the actions
from a client subscription until its notification.

D. Framework Instances Integration

This framework was designed with interoperability in
mind. Not only to integrate with different smart objects,
but also to be integrated with other frameworks. This is
particularly useful when a client wants to access to var-
ious observation centres. He may do it in two ways: (1)
access each observation centre per se; or (2) if possible,
some observation centres acts as a subscriber for the others
and the client accesses only one centre that aggregates all
the data. Notice that (ideally) all communications between
middleware instances must be invisible to the client. The
integration with other frameworks that are not compliant
with SOS standard have to be tackled, not surprisingly, case

by case, but it amounts to develop specific things gateway
adapters for each case.

IV. IMPLEMENTATION

This section presents our decisions about MufFIN imple-
mentation and gives an overview of the two SWE standards
we implement.

MufFIN is implemented in the Java programming lan-
guage and runs on top of Fuse Enterprise Service Bus [17],
based on Apache ServiceMix [18]. Fuse ESB implements
the OSGi functionalities, allowing the complete and dynamic
decoupling of the system components. The ESB is an archi-
tecture that facilitates the integration between services [12],
[19], [20] and allows the creation of dynamic flows between
system components.

The middleware introduced in this paper implements two
types of communication with clients:

• Synchronous: allows clients to filter and receive obser-
vations already stored in the middleware. This com-
munication respects the OGC standard, and returns the
observations that follow the received constraints.

• Asynchronous: allows the middleware services sub-
scription to receive observations that will occur in
the future. When some action related with the service
happens, it triggers an event that sends to the client the
observations in OGC standard format.

Both communication types respects the following SWE
standards that we present a brief overview.

Observations and Measurements (O&M)

Standard models and XML schemas for encoding obser-
vations and measurements from a sensor. An observation is
defined as an act of measuring a property or phenomenon,
with the goal of producing an estimate of its value.

The observation has the following mandatory fields:
• Sampling Time: time when the measurement was made.
• Procedure: process used to generate a result. Could be

a sensor observation, an algorithm, a computation, or a
complex processing chain.

• Phenomenon: defines the environmental characteristic
to be read, and its unit.

• Feature of Interest: the observation target; the real-
world object on which the observation is made.

O&M aggregates observations that have common char-
acteristics; in particular, observations that have a similar
Feature of Interest and observe the same Phenomenons
should be related by an offering. Offerings define what is
provided by the system and it is the base property for all
observation requests.

Sensor Observations Service (SOS)

Web services interface for requesting, filtering, and re-
trieving observations and sensor system information. The

142

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

Fuse ESB

DataAccess

Core

WS-GatewayDFN-Engine

Subscriptions ThingsGateway SOS

Figure 5. Main bundles that compose MufFIN integrated on Fuse ESB.

goal of SOS is to provide access to observations from sen-
sors and sensor systems in a standard way that is consistent
for all sensor systems including remote, in situ, fixed, and
mobile sensors. The filtering arguments allow the client to
specify the time, the location, the observed phenomenon,
and the feature of interest of each sensor observation. All
these arguments are dependent on an offering that is going
to be used as the primary search criteria.

A. The Middleware Bundles

Figure 5 shows the middleware overview with the main
bundles deployed on the Fuse ESB. The middleware is struc-
tured in decoupled bundles to facilitate code maintenance.
Below, we present the bundles implementation details:

• ThingsGateway: allows the dynamic loading of
adapters that bridge the communication between smart
objects and our framework. These adapters are the
root nodes of the Data Flow Network tree and are
responsible for deploying new code into devices. Our
framework is ready to send code to devices that run the
Callas virtual machine, and can be customized to other
languages with the deploying of new network adapters.
This is possible because the framework receives byte-
code, which facilitates the process since it is difficult to
create a framework built-in with a large range of source
language adapters.

• WS-Gateway: responsible for presenting the framework
features as Web services. We follow the Web Service
Notification protocol (WS-N) [21] to notify remote
subscribers. When a high-level application subscribes
a service, it must send an endpoint reference to where
the notifications can be published. When a notification
is triggered, our middleware dynamically connects to
the client endpoint and sends the subscribed data.

• DFN-Engine: we use the ActiveMQ—a Fuse ESB built-
in broker that implements the Java Message Service
and provides reliable communication—to implement
the following communications: Queues, to implement
one-to-one communications among bundles; and Top-
ics, to implement one-to-many communication among
dynamically deployed DFN filters.
The deployed services follow the command pat-
tern [22], extending a class Service and overriding the
method doAction(). This method is invoked whenever
a notification arrives from a module, on which the self

depends. The class Service also offers methods to get
and set the observation properties specified in the O&M
standard. After processing an incoming event a module
publishes data via the send() method.

• SOS: responsible for the processing of the SOS stan-
dard XML documents. We implemented the XML
parser on top of Apache XML Beans [23].

• DataAccess: provides the interfaces to access the
database layer. All system data (e.g., observations, sub-
scribers data) are stored in a MySQL database where
the access is performed using the Java Persistence API
(JPA) to decouple the database implementation.

V. CONCLUSION AND FUTURE WORK

In this paper we proposed MufFIN—a generic middleware
framework—that allows for managing and programming
Internet of Things smart objects.

The IoT aims at bridging the gap between physical and
digital worlds, by integrating world’s context information,
described by the state of the “things”, into software appli-
cations, making them context aware. An important topic in
this area is how to manage the heterogeneity among smart
objects that equip these networks.

To improve the interoperability among observation cen-
tres, our framework conforms with Web service schemas
that follow two Sensor Web Enablement standards from the
Open Geospatial Consortium, namely the Observations and
Measurements and the Sensor Observations Service. This
allow for high-level applications and observation centres to
get smart object data via the Internet using Web services.

The main goals of our framework are to manage the data
received from WSNs and to create a generic framework
to program their devices in two transparent methods: by
installing code directly into devices, and by creating a
Data Flow Network in the framework. The DFN is created
with modules received from the clients and installed in the
framework. This provides, to high-level applications, the
perspective that the code was deployed into the sensors, even
though the code runs at the middleware side. The DFN filters
the data received from the WSN and returns the data that
clients are expecting.

In the near future, we plan to pursue four major areas: (1)
improve the discovery subscription of services, with the use
of ontologies to bind directly the services with their Feature
of Interest and the network device locations; (2) software
testing and validation, in particular, load testing; (3) support
for SensorML [24], a SWE standard to specify sensor
devices and their characteristics; (4) field-testing, MufFIN
is planned for being deployed in a real use case scenario,
where all the presented features will be tested. The scenario
involves collecting environmental values (temperature and
moisture) from farms in the Azores archipelago, in order
to establish the conditions wherewith a fungus that causes
light skin hypersensitive in cattle may appear. The project

143

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

has both financial and public health impact, since an accurate
assessment of the fungus appearance symptoms will reduce
causalities and prevent overmedication among animals.

ACKNOWLEDGMENT

The authors are partially supported by projects MACAW
and PATI of the Fundação para a Ciência e Tecnologia
(contracts PTDC/EIA-EIA/115730/2009 and PTDC/EIA-
EIA/103751/2008).

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A
survey,” Computer Networks, vol. 54, no. 15, pp. 2787–2805,
2010.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“A survey on sensor networks,” Communications Magazine,
IEEE, vol. 40, no. 8, pp. 102–114, 2002.

[3] “The TinyOS Documentation Project,” Page visited on May
30th, 2011. [Online]. Available: http://www.tinyos.net/

[4] A. Dunkels, B. Grönvall, and T. Voigt, “Contiki - a
Lightweight and Flexible Operating System for Tiny Net-
worked Sensors,” in Proceedings of the First IEEE Workshop
on Embedded Networked Sensors (Emnets-I), 2004.

[5] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White,
“Java on the Bare Metal of Wireless Sensor Devices – The
Squawk Java Virtual Machine,” in Proceedings of the 2006
ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments (VEE). ACM Press, 2006.

[6] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler, “The nesC Language: A Holistic Approach to Net-
work Embedded Systems,” in ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI).
ACM Press, 2003, pp. 1–11.

[7] F. Martins, L. Lopes, and J. Barros, “Towards the safe
programming of wireless sensor networks,” in Proceedings
of Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES), ser. EPTCS,
vol. 17, 2010, pp. 49–62.

[8] M. Botts, G. Percivall, C. Reed, and J. Davidson,
“OGC Sensor Web Enablement: Overview And High-
Level Architecture,” 2007, Page visited on October 15th,
2010. [Online]. Available: http://portal.opengeospatial.org/
files/?artifact id=25562

[9] S. Cox, “Observations and measurements part 1 - observation
schema,” 2007, Page visited on March 20th, 2011. [Online].
Available: http://portal.opengeospatial.org/files/?artifact id=
22466

[10] ——, “Observations and measurements part 2 - sampling
features,” 2007, Page visited on March 20th, 2011. [Online].
Available: http://portal.opengeospatial.org/files/?artifact id=
22467

[11] M. P. Arthur Na, “Sensor observation service,” 2007,
Page visited on March 20th, 2011. [Online]. Available:
http://portal.opengeospatial.org/files/?artifact id=26667

[12] R. Motwani, M. Motwani, F. Harris, and S. Dascalu, “Towards
a scalable and interoperable global environmental sensor
network using service-oriented architecture,” in Proceedings
of the Sixth International Conference on Intelligent Sen-
sors, Sensor Networks, and Information Processing (ISSNIP),
2010, pp. 151–156.

[13] A. Broering, T. Foerster, S. Jirka, and C. Priess, “Sensor
Bus: An Intermediary Layer for Linking Geosensor Networks
and the Sensor Web,” in Proceedings of the 1st International
Conference on Computing for Geospatial Research and Ap-
plications (COM. Geo), 2010.

[14] C.-S. Nam, H.-J. Jeong, and D.-R. Shin, “Design of wire-
less sensor networks middleware using the publish/subscribe
paradigm,” in Proceedings of the IEEE International Confer-
ence on Service Operations and Logistics, and Informatics
(SOLI), vol. 1, 2008, pp. 559–563.

[15] J. Santos, “Um middleware para acesso e gestão de redes de
sensores em ambientes Web,” Master’s thesis, Universidade
Nova de Lisboa, Faculdade de Ciências e Tecnologia, 2009.

[16] C. D. Martino, G. D’Avino, and A. Testa, “icaas: An inter-
operable and configurable architecture for accessing sensor
networks,” IJARAS, vol. 1, no. 2, pp. 30–45, 2010.

[17] FuseSource Open Source Community, “Fuse ESB /
Apache servicemix 4.3,” Page visited on March 24th,
2011. [Online]. Available: http://fusesource.com/products/
enterprise-servicemix/

[18] Apache Software Foundation, “Apache servicemix 4.3,”
Page visited on March 24th, 2011. [Online]. Available:
http://servicemix.apache.org/

[19] H. J. La, J. S. Bae, S. H. Chang, and S. D. Kim, “Practical
methods for adapting services using enterprise service bus,”
in Proceedings of the 7th international conference on Web
engineering (ICWE). Springer, 2007, pp. 53–58.

[20] X. Tang, S. Sun, X. Yuan, and D. Chen, “Automated web
service composition system on enterprise service bus,” in Pro-
ceedings of the 3rd IEEE International Conference on Secure
Software Integration and Reliability Improvement (SSIRI),
2009, pp. 9–13.

[21] Y. Huang and D. Gannon, “A comparative study of web
services-based event notification specifications,” in Proceed-
ings of the International Conference on Parallel Processing
(ICPP), 2006, pp. 8–14.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns. Addison-Wesley, 1995.

[23] Apache Software Foundation, “XML Beans project,” Page
visited on May 30th, 2011. [Online]. Available: http:
//xmlbeans.apache.org/

[24] M. Botts and A. Robin, “Sensor model language -
implementation specification,” 2007, Page visited on March
20th, 2011. [Online]. Available: http://portal.opengeospatial.
org/files/?artifact id=21273

144

AFIN 2011 : The Third International Conference on Advances in Future Internet

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-148-9

http://www.tinyos.net/
http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=25562
http://portal.opengeospatial.org/files/?artifact_id=22466
http://portal.opengeospatial.org/files/?artifact_id=22466
http://portal.opengeospatial.org/files/?artifact_id=22467
http://portal.opengeospatial.org/files/?artifact_id=22467
http://portal.opengeospatial.org/files/?artifact_id=26667
http://fusesource.com/products/enterprise-servicemix/
http://fusesource.com/products/enterprise-servicemix/
http://servicemix.apache.org/
http://xmlbeans.apache.org/
http://xmlbeans.apache.org/
http://portal.opengeospatial.org/files/?artifact_id=21273
http://portal.opengeospatial.org/files/?artifact_id=21273

	Introduction
	Related work
	Our Approach
	Architecture
	Network Programming and Data Management
	Subscriptions
	Framework Instances Integration

	Implementation
	The Middleware Bundles

	Conclusion and Future Work
	References

