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Abstract— This paper considers the determination of time series 

of river flows in catchments without direct monitoring of this 

variable. This paper proposes a method for the acquisition of 

monthly data, which is useful for various purposes. Different 

parameters of various water management structures can be 

determined based on information from such data series, such as 

irrigation reservoir volumes or water demand for irrigation. 

While identifying unknown stream flows required for such a 

calculation, authors suppose that historical climatic data for the 

given area and flows in nearby river catchments are available. 

This article includes a description of the method of selecting 

river catchments such that their measured flows can be used in 

the calculation of an unknown flow of a different stream. This 

study compares hydrological modeling, linear regression with 

regularization, and machine learning methods (support vector 

machines, random forest). Statistical indicators evaluate the 

calculated flows with the result that the most suitable approach 

is the support vector machines method using a linear kernel and 

LASSO regularisation. 

Keywords-stream flow; ungaged catchment; hydrologic 

modeling; LASSO; machine learning. 

I.  INTRODUCTION 

Accurate modeling of flows at watersheds provides the 
information required to make optimal decisions and inform 
the optimal design of water management structures. For some 
purposes (e.g., flood protection), daily or hourly time series of 
flows are required, but this paper considers the acquisition of 
monthly data, which is sufficient for various purposes. 
Different parameters of various water management structures 
can be determined on the basis of information from such data 
series, such as irrigation reservoir volumes or water demand 
for irrigation. This paper considers a typical application 
requiring such monthly flow series, namely design of an 
irrigation reservoir. 

Irrigation reservoirs are used to retain water during periods 
of surplus and to control its subsequent use for irrigation in 
drought periods. In moderately dry regions, such reservoirs 
are often used to address water management problems in small 
river catchments, or in marginal parts of larger river 
catchments. In such places, the irrigation area does not 
normally exceed a few hundred hectares. These smaller 
reservoirs are mostly formed by a front dam with a height of 
5–12 m, with a volume not exceeding one million m3 and a 
surface area of 2–70 ha. In addition to the irrigation function, 
they also ensure a minimum flow in the stream under the dam, 
protection against floods, and the creation of conditions for 

aquaculture. Smaller streams supply such reservoirs at the 
margins of river catchments. Such smaller streams often do 
not have systematic measurements of their flow, and therefore 
determination of this quantity is the subject of this paper. 

In designing a reservoir, it is important to evaluate its 
function and assess its water management, e.g., its ability to 
provide the required amount of water for irrigation. The 
assessment of small water reservoirs represents a set of tasks 
dealing with the evaluation of the reservoir from the point of 
view of the quantitative balance of water. For irrigation 
reservoirs, this is mostly the seasonal, annual, rarely multi-
year management of outflow and storage. The water 
management considerations include the management of the 
supply volume for securing of required functions (irrigation, 
recreation, fish breeding), managing the protection function of 
the reservoir volume (flood protection), and determining the 
requirements for the outflow, abstraction of water, and other 
parameters.   

The input data used in the water management calculation 
of reservoirs include the water inflow into the reservoir, 
demand for water abstraction from the reservoir, data on 
compulsory outflow of water below the reservoir, and the 
evaporation and other losses of water from the reservoir. Such 
data are required retrospectively every month for at least 30 
years. Such a long period should include sufficient occurrence 
of dry and wet years needed for the objective calculations. As 
stated, data on inflow are often unavailable, as there are rarely 
long-term measurements of the catchments with a small area.  

The contribution of this article is a comparison of the 
various methods for determining river flows for the 
calculations needed when designing a small water reservoir. 
The authors are not aware of the previous works directly 
aimed at this topic, although, part of this task - flows 
determination in watersheds without measurements alone, 
was studied by various authors. A survey of regional methods 
used in Slovakia, from where the case study presented later in 
this paper is located, was reported by [1]. A good introduction 
to the topic is given by [2]. The determination of unmeasured 
flows can be conducted using hydrological models [3], 
regression methods [4], or artificial neural networks [5]. 

In this paper, several methods of undertaking the given 
task are compared. The objective is to acquire the monthly 
flows required for the balance calculation verifying the supply 
function of the irrigation reservoir. In Section II, the 
acquisition and preparation of the data are described. The 
methods applied in this study are briefly explained in Section 
III. In Section IV, the settings of the experimental 
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computations are described, and the results are evaluated and 
discussed. Finally, Section V summarizes the main findings 
of this study.  

II. CASE STUDY AND DATA DESCRIPTION  

This paper reports a case study of the Parna stream, which 
is a small mountain stream in the Small Carpathians in 
Western Slovakia. Its catchment area is 45.59 km2. To 
determine the average daily flow in this stream, known flow 
data from similar nearby catchments are used (Figure 1).  

Figure 1.  Situation of selected water catchments. © OpenStreetMap 
contributors (partly) 

Data from water metering stations at Bukova (catchment 
of Trnavka), Modra (catchment of Vistucky stream), Pila 
(catchment of Gidra), and Solosnica (Solosnicky stream 
catchment) were used. The daily flow data for the river 
catchments were obtained from the Slovak 
Hydrometeorological Institute in Bratislava, Slovakia. 
Climatic data from the European Climate Assessment & 
Dataset (ECA&D) were also used in this study. ECA&D is 
composed of 69 participating organizations from 63 countries. 
The network of basic metering stations from which the data 
are derived covers the European and Mediterranean regions. 
It records 12 climatic elements. The main product of this 
initiative (E-OBS), which was used in this work, is a daily 
gridded observational dataset for precipitation, temperature, 
and sea level pressure for Europe. The climatic data in 
ECA&D are provided as a spatial time series in the netCDF 
format for the period 1950–2018, cover a spatial scope of 
25°N–75°N and 40°E–75°E, and have a spatial resolution of 
0.25°×0.25°. Data from 1 January 1980 to 31 August 2017 
were used. Time series of the daily values of potential 
evapotranspiration in individual water catchments were 
calculated using the climatic data. The potential 
evapotranspiration was calculated using a formula proposed 
by Oudin in [6]. The advantage of Oudin’s formula is that it 
only requires the minimum and maximum temperatures as 
inputs. As stated in this paper, this simplification of the inputs 

does not significantly affect the precision of the flow 
modeling in hydrological models. 

III. METHODS 

The main objective of this paper is to reassess the water 
management function of small water reservoirs built in the 
past. Since they were built, the climate conditions have 
changed, and the demand for irrigation water is likely to have 
increased. The operating volume of reservoirs is often reduced 
from its original design value by years of sedimentation. As 
stated, the limiting factor in these calculations is the fact that 
the inflow into the reservoirs is, in many cases, not measured, 
i.e., it cannot be applied in the water balance calculation of the 
reservoir. The cause of this situation is that small-size streams 
often lack measurements. In this paper, regression methods 
and hydrological modeling are compared for determination of 
such unknown historical flows. To evaluate the performance 
of these methods, the case study for Horne Oresany reservoir 
on Parna stream was performed, e.g., in water catchment 
where the flows are known. The results of the computation 
methods were evaluated by suitable statistical indicators and 
by a comparison of the results of the reservoir water balance 
using either measured or simulated flows. A brief 
characterisation of these methods is given below. 

The most common regression method is Multiple Linear 
Regression (MLR). MLR analysis is generally used to find the 
relevant coefficients in the following equation using the least-
squares method. The basic equation is: 

 

 Y = β0 + β1*X1 + β2*X2 + β3*X3 +…+ε, (1) 
 
where Y is the dependent variable, Xi are explanatory 

variables, β0 is the intercept (constant term), βi is the slope 
coefficient for each explanatory variable, and ε is the model 
error term.  

A major condition for linear regression is that the 
explanatory variables Xi must be relatively uncorrelated. 
However, some correlation is likely to occur in the task 
addressed in this study. More suitable algorithms than basic 
linear regression were therefore used. Least Absolute 
Shrinkage and Selection Operator (LASSO) applied in this 
paper redefine linear regression to prevent the effect of 
multicollinearity and help ensure a more stable model by 
penalizing and subsequently reducing the number of MLR 
coefficients [7]. 

A Support Vector Machine (SVM) is a supervised 
machine learning method that can be used to calculate 
regression tasks. Its characteristic feature is the kernel trick—
a nonlinear mapping that transforms the original training data 
of a non-linear problem (which is the case in our scenario) into 
a higher-dimensional form [8]. Another important concept of 
the SVM methodology is its ability to ignore small errors. As 
a consequence, the SVM model has good generalization 
abilities. 

Random Forests (RF) [9] are formed by a set of trees, 
which can either be classification or regression trees, 
depending on the problem being addressed. An RF prediction 
is an average of many trees (weak learners) grown on a 
bootstrap sample of the training data. The user chooses the 

13Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-737-5

ADVCOMP 2019 : The Thirteenth International Conference on Advanced Engineering Computing and Applications in Sciences



number of trees in the forest (ensemble). Each tree is trained 
using a different bootstrap sample, which causes that different 
trees are obtained. For the regression task, the values predicted 
by each tree are averaged to get the final random forest 
prediction. 

Next method used for the calculation of unknown flows is 
the TUW hydrological model [10]. This model runs on a daily 
time step and consists of a snow routine, a soil moisture 
routine, and a flow routing routine. The snow routine 
simulates snow accumulation and melting using a degree-day 
concept. The soil moisture routine simulates runoff generation 
and changes in the soil moisture state of a catchment. Upper 
and lower soil reservoirs represent runoff routing. A genetic 
algorithm was used to calibrate the 15 parameters of this 
conceptual model. 

The following formula generally defines the relationship 
between the inflow of water to the reservoir and outflow of 
water from the reservoir: 

 

 ΔV = (I – O) Δt,  (2) 
 
where ΔV expresses the change in volume of water in the 

reservoir over time, I is the inflow to the reservoir, O denotes 
the outputs (outflow, water extraction, and losses), and Δt is 
the time step for the evaluation of the balance.  

For this study, to implement the water balance in the 
reservoir, a computer program was set up in R [11] to model 
the accumulation of water in the reservoir. The basic objective 
is to reassess the feasibility of the requested water extraction 
from the reservoir. The model operates on a monthly time 
step. Different time step (e.g., two weeks) is also possible, but 
not necessary for this task, as experiences from building and 
managing irrigation reservoirs confirms (e.g., flood protection 
function of a reservoir, where a much smaller time step is 
required is an entirely different task than that, being solved 
herein). It is also necessary to note that the use of the previous 
period, when designing a new reservoir already defines a level 

of accuracy which will not be significantly improved by a 
more detailed time step. The hydrological data used in the 
model are also specified in monthly values. 

IV. RESULTS AND DISCUSSION 

To determine the unknown flows required for the water 
balance model of the irrigation reservoir, the following steps 
were evaluated: 

1. Analysis of the river catchment above the reservoir, 
in which the absence of flow measurements is assumed (Velke 
Oresany catchment, Parna stream), and selection of suitable 
river basins for their calculation using the hydrological 
analogy method. 

2. Analogous calculation of unknown flows using 
hydrological modeling. 

3. Analogous calculation of unknown flows using 
statistical and machine learning methods. 

4. Calculation of water management balance of the 
reservoir with measured flows (used only in the context of 
testing) and with simulated flows acquired by various 
methods. 

5. Evaluation and comparison of results. 

A. Selection of Suitable River Catchments  

The outflow regime of the river catchment depends on its 

climate conditions, on topographic features, geological 
conditions, types of prevailing soils in the river basin, land use 

of the area, etc. The river basins for the analogous calculation 

should be similar to the river catchment where the flow is to 

be determined. Moreover, it is advantageous to select 

analogous river catchments as close as possible to the 

catchment of interest, as some climate, topological, 

geological, and other properties change relatively smoothly, 

so nearby river catchments could have many similar features, 

and consequently can have a similar genesis of the outflow 

(Figure 1). 

Figure 2  Histograms of altitudes [m a.s.l.], aspect [˚ north] and slope [˚ horizontal] of river catchments. 

14Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-737-5

ADVCOMP 2019 : The Thirteenth International Conference on Advanced Engineering Computing and Applications in Sciences



Several analyses were elaborated for this purpose; 

Selected parts of this analysis are shown in Figure 2 and 

described in Table I.  
Figure 2 shows the analyses of the topography (altitudes, 

aspect, slope), as the nature of landscape cover, weather, and 
the amount and type of rainfall change with these properties. 
Such phenomena will impact water outflow from the river 
catchment (as will, for example, the winter flow regime). The 
river catchments used in this study are located at altitudes of 
approximately 300–700 m above sea level. This histogram 
representation of altitudes allows a visual assessment of the 
similarity of river catchments. The most similar catchment to 
the Horne Oresany catchment, where we want to determine 
the flows is the Pila basin in all the features shown (altitude, 
slope, aspect). 

The representative part of the analyses is evaluated in 
Table I. This table and GIS analyses show that, for the 
assessed river catchments and from the point of view of 
catchment features influencing the outflow regime, the Parna 
river catchment is most similar to the Gidra catchment (Pila 
gauging station) and the Vistucky stream catchment (Modra-
Piesok station). Similarity can be seen in numerical evaluation 
of basic topographic characteristics, percentage of soil types 
and land use. Different soil types vary in terms of the ratio of 
infiltration and the outflow of water during periods of rain, in 
the ability to retain water in the soil, and in other properties 
that influence the outflow of water from the river catchment. 
Similarly, land use (for example, a forest versus arable land) 
also has a significant impact on river basin drainage 
properties. These two catchments will be therefore preferred 
in the following calculations. Also other analyses were 
accomplished, but cannot be described in more detail here for 
reasons of brevity. 

B. Hydrological Modeling 

The unknown flows were calculated by the TUW 

conceptual rainfall-runoff model, with a genetic algorithm 
used for calibration. The calculation was performed in daily 

step, and the daily flows were subsequently converted into 

monthly flows. The calibration was implemented based on 

flow and climate data from the Pila catchment which, based 

on previous analysis, was assessed as being the most similar 

to the river catchment in which the unknown flows were to 

be calculated. The optimum parameter values of the TUW 

model were acquired by the genetic algorithm using the flow 
and climate data from the Pila catchment. These parameters 

were subsequently applied in the modeling of the river 

catchment with the unknown flows (Velke Oresany–Parna) 

using the local climate data. The genetic algorithm population 

was set to 500, the number of parameters to be determined 

was 15, and the maximum number of generations was 20. The 

objective function sought to minimise the Mean Absolute 

Scaled Error (MASE), a statistical variable suggested by 

Hyndman [12]. This statistic is preferable to the Nash–

Sutcliffe Efficiency [13] in this case, as the final objective is 

to calculate monthly flows. This is because the MASE does 

not take into consideration the power of flows, and thus does 
not emphasize the calculation of large daily values, which are 

not herein priorities because of the transformation 

(averaging) of calculated daily values into monthly values. 

The calculated daily and monthly inflows to the Horne 

Oresany reservoir are compared with the measured values in 

Table II. 

C. Regression Calculation 

To calculate the flows at the Horne Oresany river reservoir 
on the Parna stream, regression methods were also applied. 
These computations used the assumption that flow 
measurements had recently started in the Parna river 
catchment as a requirement for the determination of longer 
series of historical flows. The measurements were assumed to 
have started at the beginning of 2016 (whole period is 1980–
2017). The regression relations were then derived based on 
this period and applied for the whole historical period of 
interest. 

 

TABLE I.   COMPARISON OF RIVER CATCHMENT FEATURES 
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Bukova 4296.1 332.4 9.0 170 82.5 0 17.5 23.9 60.7 6.9 2.1 4.9 

Modra-Piesok 937.7 495.1 8.0 92.9 0 54.3 45.7 0 91.5 0 8.5 0 

Horne Oresany 3733.1 403.1 11.1 151 38 0 62 0 90.9 0.8 8.2 0 

Pila 3289.9 426.7 9.8 161 12.8 16.3 70.9 0 92.4 0 7.1 0.5 

Solosnica 1046.5 420.8 16.3 195 100 0 0 0 94.4 0 5.6 0 
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Methods described in the previous subsections were used 
for the regression calculation. A grid search combined with a 
repeated cross-validation methodology was used to find the 
parameters of these models. In this approach, a set of model 
parameters from a predetermined grid is sent to the evaluating 
algorithm. A set of parameters was sent to the repeated cross-
validation mechanism, which is used for the evaluation of the 
parameter combinations [14]. The calculation was performed 
in R languague [11].  

The unknown flows in the Parna stream were calculated 
using flows from four “analogous” river catchments and from 
the average daily temperature, rainfall, and potential 
evapotranspiration in the Parna river catchment. As the flow 
from a catchment is influenced not only by the current values 
of climate variables, but also by their values from previous 
days, climate data from seven days before the date of the 
prediction were also included. As the longer history of hydro-
climatic developments in the catchment must also be 
described in the input data, three variables summarizing the 
previous precipitation (cumRAIN7, cumRAIN14, 
cumRAIN21) and variables summarizing the previous 
evapotranspiration (cumPET7, cumPET14, cumPET21) were 
constructed. (The numbers in these variable names denote 
how many days they are summarising.) In this way, a training 
set with 35 explanatory variables was created. This set covers 
the period of anticipated short-term measurements on the 
Parna stream for 608 days (only data up to August were 
available for 2017). The test file includes the same variables, 
but the data relate to the whole period 1980–2017, i.e., it 
contains 13,738 lines (one per day).  

 
TABLE II. EVALUATION OF MODELS   

Statistic TUW MLR LASSO SVM RF 

RMSE 0.41 0.14 0.14 0.14 0.15 

NSE 0.65 0.78 0.78 0.78 0.73 

r 0.81 0.89 0.89 0.89 0.88 

R2 0.66 0.79 0.79 0.79 0.77 

VE 0.65 0.72 0.72 0.72 0.70 

RMSE – Root Mean Sqare Error, NSE - Nash-Sutcliffe Efficiency, r - Correlation 
Coefficient, R2 – Coefficient of Determination, VE - Volumetric Efficiency 
 

The results of the regression calculation are presented in 
Table II, which indicates that the regression provides 
relatively balanced results using different statistical and 
machine learning methods. The best methods are SVM, the 
regularised linear method using the LASSO-type 
regularisation, and, surprisingly, the simple MLR. However, 
the latter method cannot be recommended, as linear regression 
requires the explanatory variables to be relatively uncorrelated 
with each other. This multicollinearity principle is violated for 
this task, and the results using MLR are therefore expected to 
be unstable; for other streams, they may be less precise than 
in this case. Relatively poor results are obtained by the random 
forest technique (RF), which is a popular ensemble tree 
method. The authors believe that the problem with the random 
forest method is that it is based on regression trees which have 
no extrapolation ability. Described regression task used a 
relatively short training period, and there is a high possibility 

that there were no extremes during this period. Thus, the 
random forest was not able to learn such events. Although this 
does not influence so much, e.g., the simple linear regression, 
for RF method it is quite important. 

 

D. Water Balance of the Reservoir 

The water balance of the reservoir was computed using the 

measured and calculated inflows to the reservoir to verify 

whether the precision of the monthly flows computed by 

various analogy methods is sufficient for this purpose. To 

calculate the balance, a function was programmed in R to take 

various input data. The main data are the required time series 
of monthly irrigation amounts and water inflow to the 

reservoir from Parna stream. Additionally, these data include 

the requisite altitudes of the minimum and maximum 

reservoir levels, the minimum and maximum water volume 

in the reservoir, the irrigated area, evaporation data from the 

water surface, and the ecological flow that must be respected 

below the reservoir. The water body of the reservoir is 

defined by a curve of water surface areas and water volumes 

depending on the water level in the reservoir. This curve (or 

table) can be determined from a topographic survey and is 

also part of the input data. 

The balance of the reservoir was firstly calculated using 
flows calculated by analogy and then using the measured 

data. Two methods were used to compare the acquired 

results. The first was the establishment of the irrigation 

security, which is the ratio of supplied and required irrigation 

as a percentage: 

 

 IrrSecured = (ZSupplied/ZRequired)*100, (3)

  

    The correlation among the computed annual amount of 

irrigation water has been also evaluated on the basis of the 

computations with measured and calculated flows. The 
resulting data are summarised in Table III, which 

demonstrates the suitability of the applied methods. The 

security of irrigation (availability of water in the reservoir) is 

also expressed in Figure 3, where a relatively high agreement 

can be seen as regards the security of irrigation when using 

the calculated and measured flows. 

TABLE III. IRRIGATION SECURITY EVALUATION 

Method 
Yearly correlation 
with computed by 
measured flows 

Irrigation security in % 

Measured 

flows 
1.00 84.96 

TUW 0.90 90.23 

MLR 0.90 86.79 

LASSO 0.92 87.77 

SVM 0.90 87.04 

RF 0.89 89.88 
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V. CONCLUSION 

 The objective of this study was to compare various 
methods of calculating unknown flows in the context of 
engineering computations, such as evaluation of water 
balance of an irrigation reservoir. The methods compared 
include regression and hydrological modeling methods. If at 
least short-term measurements are available for the relevant 
river catchment, a most suitable method is the flow calculation 
method using regression with LASSO regularisation, as this 
eliminates the problem of multicollinearity in the input data. 
Another suitable method is the machine learning SVM 
method, which offers good generalisation ability. This is a 
major advantage for computations on small river catchments 
(such as that used in this study), where relatively significant 
uncertainties can be expected as regards data and modeling. If 
no flow data are available, a hydrological model must be used. 
In this paper, the use of the TUW model was applied. 
Computation of flows by TUW model was slightly less 
precise than by using regression methods, but the subsequent 
verification of calculated flows using TUW model in the 
context of an irrigation reservoir balance, also demonstrated 
its usability in the context of engineering calculations. 
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