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Abstract—Computer simulations are used extensively in engi-
neering and science to evaluate candidate designs, as a partial
substitute for real-world experiments. Metamodels, which are
computationally cheaper approximations of the simulation, are
often used in these settings to alleviate various issues arising in
such simulation-driven design processes. However, due to the high
computational cost of running the simulation only a small number
of designs can be evaluated, and hence the resultant metamodel
will be inaccurate. To achieve a more accurate approximation,
ensembles employ multiple metamodel variants concurrently,
and aggregate their individual predictions into a single one.
Nevertheless, the optimal ensemble topology, namely, which types
of metamodels should be incorporated, is typically not known
a-priori, while using a fixed topology may degrade the search
effectiveness. To address this issue, this study proposes a new
metamodel-assisted algorithm with dynamic topology adaptation,
namely, which autonomously adapts the ensemble topology dur-
ing the search, and dynamically selects the most suitable topology
as the search progresses. An extensive performance analysis shows
the effectiveness of the proposed algorithm, and highlights the
merit of the proposed topology adaptation.

Keywords–expensive optimization problems; metamodels; en-
sembles; computational intelligence

I. INTRODUCTION

The current availability of high performance computing
allows engineers and researchers to evaluate candidate designs
with computer simulations instead of using laboratory exper-
iments, thereby reducing the duration and cost of the design
process. In this setup, a candidate design is parameterized as a
vector of design of variables, and is sent to the simulation for
evaluation. Such computer simulations, which still need to be
validated with laboratory experiments, transform the design
process into an optimization problem having several distinct
features [20]:

• The simulation acts as the objective function as it assigns
objective values to candidate designs (input vectors), but
it is a ‘black-box’, namely, the analytic expression of this
mapping is unknown. This can occur since the simulation
involves intricate calculations, or the simulation’s code
might be inaccessible to the user. In any case, the lack of
an analytic expression presents an optimization challenge.

• Each simulation run is often computationally expensive,
and hence only a small number of designs can be evalu-
ated.

• Both the real-world physics being modelled, and the
numerical simulation process itself, can yield a black-
box function with complicated features, such as multiple
optima or discontinuities, which add an additional opti-
mization challenge.

An established solution methodology in such scenarios is
to incorporate a metamodel into the optimization search. The
latter is a mathematical approximation of the true expensive
function which provides predicted objective values at a much
lower computational cost [20]. A variety of metamodels have
been proposed, but the optimal type is problem-dependant
and is typically not known a-priori. To alleviate this issue,
ensembles use several metamodels concurrently and aggregate
their predictions into a single one [6, 10, 11]. However, the
effectiveness of ensembles depends on their topology, namely,
which metamodels they incorporate, but again, the optimal
topology is typically unknown. To address this issue, this paper
proposes an optimization algorithm which dynamically adapts
the ensemble topology during the search, such that an optimal
ensemble topology is continuously being selected and used.
Also, since metamodels are inherently inaccurate, the proposed
algorithm operates within a Trust Region (TR) approach to
ensure convergence to an optimum of the true expensive
function. Performance analysis using both mathematical test
functions and a simulation-driven engineering problem shows
the effectiveness of the proposed algorithm, and highlights the
merit of the proposed dynamic topology adaptation.

The remainder of this paper is organized as follows:
Section II provides the pertinent background information,
Section III describes in detail the proposed algorithm, and
Section IV provides an extensive performance evaluation.
Lastly, Section V concludes this paper.

II. BACKGROUND

As mentioned in Section I, metamodels (also termed in the
literature as response surfaces or surrogates) are used as com-
putationally cheaper approximations of the numerical simula-
tion. Metamodels are trained with previously evaluated vectors,
and variants include Artificial Neural Networks (ANNs), Krig-
ing, polynomials, and radial basis functions (RBFs), to name
a few [11, 17]. A typical metamodel-assisted optimization
search begins by sampling an initial set of vectors, followed
by a main loop in which a metamodel is trained by using the
vectors evaluated so far, seeking an optimum of the metamodel,
and evaluating the latter vector, and possibly additional ones,
with the true objective function. The process repeats until
the number of simulation calls reaches the user-defined limit.
Fig. 1 gives a pseudocode of a typical metamodel-assisted
algorithm, while more involved frameworks have also been
proposed [14, 18].

While metamodels offer several merits, they also introduce
new optimization challenges:

• Prediction inaccuracy: Since only a small number of
vectors can be evaluated with true expensive function the
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Figure 1: A typical metamodel-assisted algorithm.

sample an initial set of vectors;
while stopping criterion not met do

train a metamodel with the cached vectors;
seek an optimum of the metamodel;
evaluate the found solution, and possibly additional
vectors, with the true expensive function;

return the best solution found;

resultant metamodel will inherently be inaccurate, and it
is therefore necessary to manage it to avoid convergence
to a poor final result [9]. This can be achieved with the es-
tablished Trust Region (TR) framework [2, 12], in which
the search is performed by a series of trial-steps, each
confined to the region in which the metamodel is assumed
to be sufficiently accurate. The TR is then updated based
on the success of the optimization trial step. A strong
merit of the TR approach is that it ensures asymptotic
convergence to an optimum of the true expensive function
[3]. Section III gives a detailed description of the TR
approach implemented in this study.

• Metamodel suitability: Various metamodel variants have
been proposed, but the optimal type is problem-dependant
and is typically unknown [7, 18]. Metamodel ensembles
address this by using multiple metamodels concurrently
and aggregating their individual predictions [10, 19].
However, the ensemble topology itself is also problem
dependant, and an inadequate topology can degrade the
prediction accuracy. As an example, ensembles were
generated based on three metamodels: RBFs, radial basis
functions neural network (RBFN), and Kriging, as shown
in Table I. The respective prediction accuracies of each
ensemble was estimated based on the Root Mean Square
Error (RMSE) measure across four test functions in
dimensions ranging from 5 to 30. It follows that the
optimal topology, namely, that having the lowest RMSE,
varied across the functions, and that no single topology
was the overall best. This suggests that using a fixed
ensemble topology is inoptimal, and the following section
proposes an algorithm which addresses this issue.

III. PROPOSED ALGORITHM

The algorithm proposed in this study uses dynamic topol-
ogy adaption, namely, during the search it continuously selects
and uses the topology deemed as optimal. The algorithm
operates in five main steps, as follows:

Step 1) Initialization: An initial sample of vectors is generated
with the Optimal Latin Hypercube Sampling (OLHS)

TABLE I. THE ROOT MEAN SQUARE ERROR (RMSE) OF DIFFERENT

ENSEMBLES TOPOLOGIES

Ensemble topology

Function R+RN R+K RN+K R+RN+K

Ackley-5D 4.258e-01 3.702e-01 4.151e-01 2.967e-01

Rastrigin-10D 1.223e+02 8.198e+01 1.312e+02 1.097e+02

Rosenbrock-20D 1.791e+06 1.666e+06 1.648e+06 1.693e+06

Schwefel 2.13-30D 1.882e+06 2.179e+06 2.343e+06 2.079e+06

R:RBF, RN:RBF neural network, K:Kriging.

method to obtain a space-filling sample, which in turn
improves the prediction accuracy of the metamodels
[21].

Step 2) The set of sampled vectors is split into a training and
testing set, and the RMSE of each of the j = 1 . . .n
metamodel variants is calculated based on the testing
set as follows

e j =

√

√

√

√

1

l

l

∑
i=1

(

m j(xxxi)− f (xxxi)
)2
, (1)

where m j(xxx) is a metamodel trained based on the
training set, and xxxi , i = 1 . . . l are the testing vectors.

Step 3) The set of sampled vectors is re-split again into
training and testing sets, the metamodels are retrained,
and the RMSE of each candidate ensemble topology
is calculated as follows
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where ε(xxx) is the ensemble prediction, m̂ j(xxx) is a
metamodel trained with the current training set and is
active in the topology being evaluated, u j is the meta-
model’s weight in the ensemble, while xxxi , i = 1 . . . l
are the testing vectors in the current testing set, and
eε is the RMSE of the ensemble being examined.

Step 4) The ensemble topology with the best (lowest) RMSE
is selected for the current iteration. A corresponding
ensemble is re-trained based on the selected topology
but using all the evaluated vectors.

Step 5) A TR is defined around the current best vector (xxxb),
and a search is performed to locate the best vector
in the TR, based on the ensemble prediction. The
search is performed by an evolutionary algorithm (EA)
followed by an SQP solver. During this trial search
only the ensemble is used, and no calls are made to
the expensive function.

Step 6) The best vector found (xxx⋆) is evaluated with the true
objective function, and the following updates take
place:

• If f (xxx⋆)< f (xxxb): The trial step was successful since
the new vector found is indeed better than the
current best vector. This implies that the ensemble
is accurate, and so the TR is centred at the new
vector found and the TR radius is doubled.

• If f (xxx⋆) > f (xxxb) and there are sufficient vectors
inside the TR: The trial step failed since the vector
found is not better than the current best. This
implies that the ensemble is inaccurate, and since
there are sufficient vectors in the TR the failure is
attributed to the TR being too large. Therefore, the
TR radius is halved.

• If f (xxx⋆) > f (xxxb) and the number of vectors in the
TR is deemed as too low: As above, the trial step
failed but now the failure is attributed to the small
number of vectors in the TR. Accordingly, a new
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vector is sampled in a section of the TR which is
sparse with vectors.

As a change from the classical TR framework, the proposed
algorithm reduces the TR radius only if the number of vectors
in the TR is sufficient, which is done to avoid premature con-
vergence. This threshold value was calibrated with numerical
experiments. Also, it is important to note that while in this
study the metamodels RBF, RBFN, and Kriging were used,
the proposed algorithm can accommodate any other type or
number metamodels. To complete this section, Fig. 2 presents
the pseudocode of the proposed algorithm.

Figure 2: Proposed algorithm with dynamic ensemble
adaptation.

/* initialization */

generate an initial Optimal Latin Hypercube sample and
evaluate the vectors with the true function;
/* main optimization loop */

repeat
/* generate a metamodel ensemble */

estimate the prediction error of individual
metamodels with cross-validation;
split the vectors evaluated again into a training
subset and a testing subsets;
for each candidate ensemble topology do

calculate the ensemble weights of each
metamodel in the topology;
estimate the ensemble accuracy by using the
testing set;

select the optimal (most accurate) topology, and
train an ensemble with all the vectors evaluated;
/* perform a TR trial step */

set the TR centre to the best vector found so far;
perform a trial step (using an EA+SQP) in the TR;
evaluate the obtained vector with the true expensive
function;
/* update the TR */

if the new solution is better than the current best then
double the TR radius

else if the new solution is not better than the current
best and there the number of vectors in the TR is
sufficient then

halve the TR radius;

else if the new solution is not better than the current
best and the number of vectors in the TR is
insufficient then

add new vectors in the TR to improve the
prediction accuracy;

until maximum number of simulation calls;

IV. PERFORMANCE ANALYSIS

A. Benchmark tests based on mathematical test functions

To assess the effectiveness of the proposed algorithm, it
was applied to a well-established set of mathematical test
functions [16] which are shown in Table II, in dimensions
ranging from 5 to 40.

For a rigorous evaluation, the proposed algorithm was
benchmarked against four reference algorithms:

TABLE II. MATHEMATICAL TEST FUNCTIONS

Function Definition, f (xxx) = Domain

Ackley −20exp
(

−0.2
√

∑
d
i=1 x2

i /d
)

−
exp

(

∑
d
i=1 cos(2πxi)/d

)

+20+ e

[−32,32]d

Griewank ∑
d
i=1{x2

i /4000}−∏
d
i=1{cos

(

xi/
√

i
)

}+1 [−100,100]d

Rastrigin ∑
d
i=1

{

x2
i −10cos(2πxi)+10

}

[−5,5]d

Rosenbrock ∑
d−1
i=1

{

100(x2
i − xi+1)

2 +(xi −1)2
}

[−10,10]d

Schwefel 2.13 ∑
d
i=1

{

∑
d
j=1

[(

ai, j sin(α j)+bi, j cos(α j)
)

−
(

ai, j sin(x j)+bi, j cos(x j)
)]}2

[−π,π]d

Weierstrass ∑
d
i=1

{

∑
20
k=0 0.5k cos

(

2π3k(xi +0.5)
)}

−
d ∑

20
k=0 0.5k cos(π3k)

[−0.5,0.5]d

• V1 : A variant of the proposed algorithm which is iden-
tical to it in operation, except that it used a single
metamodel (RBF), and no ensembles. This algorithm was
used to highlight the impact of the ensemble adaptation
in comparison to using a fixed metamodel without an
ensemble.

• V2 : A variant of the proposed algorithm which is identi-
cal to it in operation, except that it used a fixed ensemble
which consisted of RBF, RBFN, and Kriging metamodels.
This algorithm was used to highlight the impact of
the ensemble adaptation in comparison to using a fixed
ensemble (no topology adaptation).

• EA with Periodic Sampling (EA–PS): A metamodel-
assisted algorithm which leverages on the concepts in
[4, 13]. The algorithm combines a Kriging metamodel
and an EA, and safeguards the metamodel accuracy by
periodically evaluating a small subset of the population
with the true objective function and incorporating them
into the metamodel. This algorithm is representative of
many other metamodel-assisted algorithm in the literature.

• Expected Improvement with Covariance Matrix Adap-
tation Evolutionary Strategy (CMA-ES) (EI–CMA-ES):
The algorithm combines a CMA-ES optimizer with Krig-
ing metamodels, and uses the expected improvement
framework to update the metamodels [1]. This algorithm
represents more advanced metamodel-assisted implemen-
tations.

These algorithms were chosen as they allowed to evalu-
ate: i) the contribution of dynamic ensemble adaptation (by
comparing to the V1 and V2 algorithms), and ii) how the
proposed algorithm compares with existing algorithms from
the literature. For each algorithm–test function combination
30 runs were repeated so that there were sufficient runs on
which a valid statistical analysis could be made. The number
of simulations calls, namely, evaluations of the expensive
function, was limited to 200, to represent a tight limit on the
number of evaluations of the true objective function. Table III
gives the resultant test statistics of mean, standard deviation
(SD), median, minimum (best) and maximum (worst) objective
value in each optimization test case. It also gives the statistic
α which indicates the significance level (either 0.05, 0.01)
at which the performance of the proposed algorithm was
better than that of the other algorithms, where an empty entry
indicates that there was no statistically significant performance
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advantage. The α statistic was determined with the Mann–
Whitney nonparametric test [15].

Test results show that the proposed algorithm performed
well, as it obtained the best mean statistic in all six cases, and
the best median statistic in five out of six cases (all except for
the Rastrigin-5 case where it obtained the second best median).
Also, its performance had a statistically significant advantage
in 13 out of 24 comparisons, namely over 50% of the cases,
which further demonstrates its performance advantage. The
proposed algorithm also performed well in terms of the SD
statistic: it achieved the best (lowest) SD in 3 cases, and
was comparable to the best performing algorithms in other
cases, which shows that it typically maintained a low level of
variability in its performance, which is also desirable.

The test results also highlight the merits of the dynamic
topology adaptation approach of adapting the ensemble topol-
ogy, as evident from the performance gains with respect to
using a single metamodel (V1 algorithm) or a fixed ensemble
(V2 algorithm). The proposed algorithm also outperformed the
two reference algorithms from the literature, which shows that
it was competitive with existing approaches.

The analysis also examined the pattern of updates of the en-
semble topology to study if one specific topology was mainly
selected, or if various topologies were used. Accordingly,
Fig. 3 shows plots of the dynamic ensemble adaptation from a
run with the Ackley-10D function and another with the Rosen-
brock-20D function. While a Kriging metamodel topology was
selected more frequently than the other topologies, in both tests
the optimal topology varied consistently throughout the search.
This further highlights the merit of the proposed topology
adaptation approach over that of using a fixed topology.

B. Engineering test problem

Beyond the tests with mathematical test functions, the nu-
merical experiments also included a test based on a simulation-
driven engineering problem, to more closely represent real-
world problems. The optimization goal here was to find an
airfoil shape which maximizes the lift produced while min-
imizing the drag (aerodynamic friction) at some prescribed
flight conditions. Candidate airfoils were represented with the
method of Hicks and Henne [8], such that an airfoil profile
was given by

y = yb +
h

∑
i=1

αibi(x) , (3a)

bi(x) =

[

sin

(

πx
log(0.5)

log(i/(h+1))

)]4

, (3b)
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Figure 3. Selected ensemble topologies (R:RBF, RN:RBFN, K:Kriging) .

where yb is a baseline airfoil profile, taken here to be the
NACA0012 symmetric airfoil, bi are geometric basis functions
[22], and αi ∈ [−0.01,0.01] are weights whose optimal values
need to be found, namely, those which define the best per-
forming airfoil. To visualize the problem formulation, Fig. 4
shows the layout of the airfoil problem.

Two optimization scenarios were examined: i) a low
dimensional case where each of the upper and lower airfoil
profiles were defined by three basis functions, thereby resulting
in a total of six design variables, and ii) a high dimensional
case where 10 basis were used per profile, thereby resulting
in a total of 20 design variables. The lift and drag coefficients
of candidate airfoils were obtained by using XFoil, a com-
putational fluid dynamics simulation for analysis of subsonic
isolated airfoils [5]. To ensure structural integrity of the airfoil,
the minimum airfoil thickness (t) between 20% to 80% of the
airfoil chord line needed to be no less than a critical value
t⋆ = 0.1 . Accordingly, the objective function used was

f =− cl

cd

+ p , p =







t⋆

t
·
∣

∣

∣

∣

cl

cd

∣

∣

∣

∣

if t < t⋆

0 otherwise

(4)

where p is a penalty for violation of the thickness constraint.
The prescribed flight conditions were a cruise altitude of
30,000 ft, a cruise speed of Mach 0.7, namely 70% of the speed
of sound, and an angle of attack (AOA) of 2◦ , which is the
angle between the airfoil chord line and the aircraft velocity.

Tests were performed following the setup in Section IV-A,
and Table IV gives the resultant test statistics. It follows
that the results obtained here are consistent with those of
the previous section, and that the proposed algorithm again
outperformed the others algorithms, as evident from the test
statistics.

Also following Section IV-A, Fig. 5 shows the ensemble
topologies which were selected during one run from the 6D
scenario and one from the 20D scenario, respectively. As
before, the optimal topology varied continuously during the
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Figure 4. The layout of the airfoil optimization problem.
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TABLE III. TEST STATISTICS–MATHEMATICAL TEST FUNCTIONS

Proposed V1 V2 EA–PS EI–CMA-ES

Ackley-10

Mean 7.705e+00 1.455e+01 1.356e+01 5.241e+00 1.796e+01

SD 8.359e+00 4.649e+00 8.051e+00 5.590e-01 1.529e+00

Median 2.314e+00 1.592e+01 1.908e+01 5.408e+00 1.797e+01

Min(best) 9.007e-02 2.383e+00 3.457e+00 4.098e+00 1.443e+01

Max(worst) 1.836e+01 1.825e+01 2.048e+01 6.010e+00 1.988e+01

α 0.01 0.01

Griewank-10

Mean 1.304e-01 1.972e-01 2.078e-01 9.579e-01 9.338e-01

SD 1.851e-01 1.714e-01 2.213e-01 1.076e-01 2.435e-01

Median 7.747e-02 1.294e-01 1.357e-01 9.862e-01 1.007e+00

Min(best) 9.350e-03 3.569e-02 2.290e-02 7.146e-01 2.441e-01

Max(worst) 6.505e-01 5.661e-01 7.601e-01 1.046e+00 1.050e+00

α 0.01 0.01

Rastrigin-5

Mean 6.377e+00 9.360e+00 8.018e+00 7.631e+00 2.131e+01

SD 3.728e+00 7.852e+00 8.349e+00 4.811e+00 4.890e+00

Median 5.980e+00 7.464e+00 4.298e+00 7.226e+00 2.139e+01

Min(best) 1.997e+00 1.005e+00 3.369e+00 1.621e+00 1.353e+01

Max(worst) 1.195e+01 2.787e+01 3.076e+01 1.456e+01 3.006e+01

α 0.01

Rosenbrock-20

Mean 5.839e+02 1.031e+03 8.186e+02 8.435e+02 3.967e+03

SD 2.094e+02 5.818e+02 3.823e+02 3.012e+02 9.406e+02

Median 5.956e+02 8.665e+02 7.932e+02 7.782e+02 3.685e+03

Min(best) 2.143e+02 5.483e+02 3.078e+02 4.676e+02 3.141e+03

Max(worst) 8.905e+02 2.517e+03 1.521e+03 1.439e+03 6.144e+03

α 0.01 0.05 0.01

Schwefel-40

Mean 7.727e+05 8.981e+05 1.935e+06 1.774e+06 1.667e+06

SD 2.219e+05 2.571e+05 6.789e+05 2.509e+05 6.520e+05

Median 7.243e+05 8.622e+05 2.032e+06 1.744e+06 1.528e+06

Min(best) 5.130e+05 5.885e+05 8.715e+05 1.415e+06 8.933e+05

Max(worst) 1.131e+06 1.362e+06 3.065e+06 2.104e+06 2.871e+06

α 0.01 0.01 0.01

Weierstrass-40

Mean 2.824e+01 4.160e+01 4.394e+01 3.045e+01 3.598e+01

SD 4.401e+00 4.261e+00 3.885e+00 1.645e+00 1.463e+01

Median 2.547e+01 4.227e+01 4.461e+01 2.995e+01 2.597e+01

Min(best) 2.421e+01 3.353e+01 3.726e+01 2.878e+01 2.100e+01

Max(worst) 3.482e+01 4.794e+01 4.867e+01 3.337e+01 5.817e+01

α 0.01 0.01

entire search. These results, combined with the test statistics,
show that dynamically adapting the ensemble topology during
the search improved the search effectiveness also in these
simulation-driven problems.

V. CONCLUSION AND FUTURE WORK

The use of simulations in engineering design defines a
unique optimization problem which is termed in the literature
as an expensive black-box problem. Metamodels are used in
such settings to approximate the computationally expensive
simulation, and to allow a more efficient optimization search.
Since the optimal metamodel variant is problem-dependant
and is typically unknown a-priori, ensembles use multiple
metamodels concurrently, and aggregate their predictions to
a single output, in an attempt to improve the prediction accu-
racy. However, the ensemble topology itself is also problem-
dependant, and the optimal topology is also typically unknown.
To address this issue, this study has proposed an ensemble
based optimization algorithm which dynamically adapts the
ensemble topology during the search, so that an optimal topol-
ogy is used at each stage. Furthermore, the proposed algorithm
operates within a TR framework to ensure convergence to an
optimum of the true expensive function in spite of the inherent
metamodel prediction inaccuracies. In a detailed performance
analysis the proposed algorithm was benchmarked against vari-
ous algorithms with no dynamic topology adaptation. It consis-
tently outperformed the other algorithms across the different
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Figure 5. Selected topologies for the airfoil problems (R:RBF, RN:RBFN,
K:Kriging).

test problems, and the optimal topology varied continuously
throughout the search. Overall, results show that the proposed
algorithm performed well across a range of test problems,
and that the effectiveness of metamodel-assisted search was
improved with the proposed dynamic topology adaption. Based
on the promising results obtained, future work will examine
additional topology selection mechanisms, for example, such
as those based on other error measures or other sampling
approaches.
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TABLE IV. TEST STATISTICS–AIRFOIL PROBLEM

Proposed V1 V2 EA–PS EI–CMA-ES

6D

Mean -8.360e+01 -8.048e+01 -8.203e+01 -7.799e+01 -7.231e+01

SD 1.320e+01 1.659e+01 2.261e+01 2.250e+00 7.159e-01

Median -7.567e+01 -7.533e+01 -7.554e+01 -7.831e+01 -7.264e+01

Min(best) -1.068e+02 -1.268e+02 -1.436e+02 -8.036e+01 -7.290e+01

Max(worst) -7.488e+01 -7.174e+01 -6.405e+01 -7.238e+01 -7.099e+01

α 0.01

20D

Mean -3.247e+00 -3.202e+00 -3.239e+00 -3.174e+00 -3.212e+00

SD 6.421e-02 6.991e-02 8.932e-02 8.887e-02 9.405e-02

Median -3.231e+00 -3.208e+00 -3.206e+00 -3.142e+00 -3.202e+00

Min(best) -3.354e+00 -3.303e+00 -3.414e+00 -3.348e+00 -3.327e+00

Max(worst) -3.151e+00 -3.098e+00 -3.134e+00 -3.070e+00 -3.036e+00

α 0.05
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