
An Automatic Code Generator for Parallel Evolutionary Algorithms: Achieving

Speedup and Reducing the Programming Efforts

Omar A. C. Cortes
and Eveline de Jesus V. Sá

Instituto Federal do Maranhão
Informatics Department
São Luis, MA, Brazil

Email: {omar,eveline}@ifma.edu.br

Jackson A. da Silva

Computer Engineering Department
Universidade Estadual do Maranhão

São Luis, MA, Brazil
Email: jackson.amarals@gmail.com

Andrew Rau-Chaplin

Dalhousie University
Faculty of Computer Science

Halifax, NS, Canada
Email: arc@cs.dal.ca

Abstract—Building parallel applications is not a trivial task,
especially when these applications involve different kinds of
evolutionary computation because two different fields have to
be mastered. In order to overcome this problem, we propose
an automatic code generator that automatically creates Java
code for parallel evolutionary algorithms considering four models
of parallelism: master-slave, island, cellular, and hierarchical.
Furthermore, two evolutionary algorithms can be created: genetic
algorithms and evolution strategies. A speedup experiment on a
parallel genetic algorithm showed that good performance can be
achieved using our generator. Moreover, we applied COCOMO
and COCOMO II models in order to demonstrate that the cost
for programming this kind of application can be considerably
reduced in terms of effort, time and people when the generator
is used. According to COCOMO II model, the generator may
save about 6 months using 2 people.

Keywords–Parallel Computing; Evolutionary Computation; Pro-
gramming Effort; Code Generator.

I. INTRODUCTION

The popularity of multicore computers has increased the
importance of building parallel applications. In fact, nowadays
even cell phones take the benefits from parallel computing
using multi-core architectures. Despite so, the parallel com-
puting creates new challenges to programmers such as syn-
chronization and the proper exploration of parallel algorithms.
In addition, the lack of experience in developing parallel
applications might impact directly in the software productivity,
increasing significantly the effort on programming this kind of
software.

One of many fields that can obtain advantages from parallel
computing is the evolutionary computation. Doing so, we can
combine the high performance environment provided by paral-
lel architectures with the ability of solving complex problems
using Evolutionary Algorithms (EA). Actually, making EAs
faster by using parallel implementations has been one of the
most promising choices in the area [1].

Evolutionary algorithms are search algorithms based on
natural evolution [2]. They can be parallelized by using dif-
ferent models resulting in Parallel Evolutionary Algorithms
(PEA). Even though other classifications might exist, they have
been separated in four main categories: master-slave, island,
cellular and hierarchical. In master-slave, there is a single
population and the evaluation of fitness is distributed through

the slaves. An island EA consists of two or more independent
populations with occasional migration of individuals between
sub-populations. In the cellular model, a predefined structure
is held, such as a grid in a 2D case, then genetic operators
are limited to a small neighborhood. Finally, the hierarchical
model, also known as hybrid model, is a mix between island
and either master-slave or cellular.

As we can see, each model introduces new complexities
in developing a PEA, consequently increasing the effort of
programming a parallel system based on EA. In this context,
we built a tool called Java Parallel Evolutionary Algorithm
Generator (JPEAG) which can generate both Parallel Genetic
Algorithms (PGAs) and Parallel Evolution Strategies (PESs) in
the four parallel models aforementioned. Moreover, from the
user perspective, we show how much effort this tool can save.
In order to do so, we applied two popular algorithm approaches
named Constructive Cost Model (COCOMO) and COCOMO
II [3], calculating metrics such as effort (people/month), time
(months) and people.

To best of our knowledge, there are no other works
which generate code for PAEs in a complete automatic way.
There are some efforts toward creating parallel code such
as the following authors: Passini [4], Hawick [5] and Ro-
drigues [6]; however, these works are based on general aspects
of parallelization (synchronization and communication) where
the programmer has to implement both his application and
the PEA manually. Further, they do not show metrics for
quantifying how much effort is saved. Also, our proposal is
different from a framework because JPEAG can provide the
programmers a entire runnable code. In terms of metric for
measuring programming effort, COCOMO and COCOMO II
have been used in many works such as [7], [8] and [9], for
example. Furthermore, COCOMO II has been the bottom line
for many researches whose aim is to improve the quality of
the effort measurements such as [10][11][12].

For this sake, our paper is divided as follows: Section II
introduces basic concepts on evolutionary algorithms, how
JPEAG was built, how templates are used to produce the code,
and how design patterns are presented in the generated code;
Section III shows how COCOMO and COCOMO II compute
and assess effort, time and people; Section IV presents the
results considering the development of all PEAs; finally, Sec-

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

tion V draws the conclusions of this work.

II. THE CODE GENERATOR

A. Evolutionary Algorithms
Basically, an evolutionary algorithm processes a population

of individuals or solutions in a particular search space. All
movements along the search space are done through genetic
operators on either many iterations or until reaching some other
stop criteria such as: there is no more evolution within the
population; the algorithm reaches the known optimal; or, the
solution is sufficiently close to the optimum considering an
small error (commonly the error is 1× 10−6). Figure 1 shows
a basic structure of an EA.

Figure 1. Basic structure of a EA

In the first step, the population is initialized at random
normally using a uniform distribution. Then the population is
evaluated in order to determine how each individual fits to
the problem. The better the fitness, the stronger the individual
within the population, thus might be higher the probability of
an individual to be selected to undergo a genetic operators
and, consequently, to go to the next iteration (generation). In
fact, who goes to the next iteration depends on which kind of
EA is being run. When the stop criteria is reached the final
population containing the best solution is presented.

Typically, the genetic operators are selection, crossover
and mutation. Selection is the process of choosing individuals
to undergo a genetic operators or to go to next generation.
Parents exchange information (genes) between themselves
in order to create one or more offspring, in the crossover
operator. Ideally, when two strong individuals exchange genes,
in theory, the offspring is stronger than its parents [13], thus,
strong individuals tend to spread its genes to next generations.
On the other hand, this behavior can lead to a premature
convergence of the solution because the population can end
up trapped into a local optima. The mutation operator has
the purpose of avoiding the premature convergence applying
some modifications to one or more genes. In other words,
the process of using genetic operators tends to improve the
solution’s quality as new generations carry on [14]. Taking
those operators (crossover and mutation) into account, we can
notice that several EAs share similar features. For instance, ge-
netic algorithms and evolutionary strategies may use all those

genetic operations. However, the sequence that these operators
are used is different. Evolutionary strategy applies firstly the
genetic operators then it uses the selection operator, whereas
genetic algorithms select the individuals and afterward perform
genetic operators. In addition, the individual representation can
be different between EAs. For instance, evolutionary strategies
need two vectors for representing an individual instead of only
one of genetic algorithms. Details about these EAs can be seen
in Herrara [13], Michalewicz [14] and Cortes [15].

B. Parallel Evolutionary Algorithms (PEA)
The main idea behind the parallel computing is to divide

a problem into smaller pieces and solve them using differ-
ent processing units. In this particular case, EAs are good
candidates to be parallelized because they have an intrinsic
parallelism [16], which can be explored in many different ways
such as: to find out distinct solutions for the same problem, to
explore several points in the search space at the same time,
to distribute the evaluation function between two or more
processors/threads, and to reduce the computation time to get
a solution [26].

Regardless what it is being parallelized into an EAs, as
previously mentioned, there are four basic models to explore
the parallelism of EAs: master-slave, cellular, island and hi-
erarchical. Different names might be used for these models;
however, their characteristics remain the same.

Concerning the master-slave model, a PEA maintains a
population in a master processor that delegates the function
evaluation or the applications of genetic operators to slaves.
Commonly, the parallelization is done distributing only the
evaluation function among the available slaves. In the cellular
model, all processors work on the same population, where each
individual is placed into a grid, thereby genetic operators can
be done only with their neighborhood in the grid. Independent
populations are processed at the same time in the island model,
introducing the concept of migration, where one or more
individuals can be frequently exchanged between populations.
This model also introduces new parameters such as the number
of individuals being exchanged, how frequent the migration
has to be done and the island topology which represents
how islands can communicate each other. Researches such
as Cantú-Paz [1] and Sakuray [18] indicate that the proper
migration process contributes in the population diversity and
enhance the quality of solutions. The cellular multi-individual
is a hierarchical approach where each cell can contain two or
more individuals, therefore being a combination between both
cellular and island model.

In any parallel model, all communication between proces-
sor can be either synchronous or asynchronous. In the first
one, if a processor wants to communicate with one or more
processors, it has to wait until all of them be ready. On the
other hand, in the asynchronous communication, the execution
and the communication do not depend on the other processors,
i.e., if a processor wants to communicate with another one it
sends the information and continues with its own execution.
In our implementation of JPEAG, all communications are
synchronous.

C. The Code Generator
Code generation can be defined as the technique in which

we write programs that create another programs. According to

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

Herrington [19], creating code presents many benefits such as:

• Agile software development code generators go to-
ward completion faster than a hand-made code, reduc-
ing the cost of development as well.

• Consistency code generators might maintain the stan-
dard in both design patterns and code conventions,
avoiding breaches introduced by programmers.

• One point for gathering knowledge a change made in
a definition file can be propagated to all files created
previously, whereas programmers have to do so file-
by-file in a hand-made process.

There are some strategies in order to implement a code
generator. We are focused on templates which represent a
predefined piece of software, i.e., an unfinished code that may
be completed using variables [20]. In other words, a software
replaces some elements presented in a template file [21], where
the substitution has to be performed by a template processor
considering a set of inputs.

The approach based on templates was chosen because a
significant amount of code for GAs and ESs are similar. More-
over, we also noticed some similar characteristics in parallel
models, especially in the island and master-slave models. Thus,
when these similarities were identified we could write the
templates containing the common parts. In this context, the
template approach allows to modify any part of the generated
code changing only the proper template, therefore, becoming
easier the software maintainability.

Figure 2 shows how components communicate each other
in JPEAG. Its operation is described as follows: the interface is
a web-based interface where users can configure all features of
the PEAs, including the evaluation function (the programmer
has to provide the evaluation function in terms of Java code);
when all parameters are set, the user sends it to the core, which
is responsible for selecting the proper template in the templates
data base and use it to create the parallel EA code. The use
of templates permit to create PEAs in different languages
without the necessity of changing the application code; then,
the parallel code is packed into a zip file and sent it back to
the user via download because is a web-based application.

Figure 2. Code Generator Architecture

It is important to mention that the templates are processed
by a framework called Apache Velocity [22], which imple-
ments an engine for template processing and defines a Velocity
Template Language (VTL) for creating it. The main advantage
of the Apache Velocity is to provide methods for processing
templates and creating code for any textual language. Taking
this into account, our templates are Java code mixed with VLT,

where VLT instructions indicate where the JPEAG has to fill
up the code according to the parameters previously defined in
the graphic interface.

Figure 3 shows an example of a VLT code, where directives
start with the character “#” and are executed when the template
is processed.

Figure 3. Example of VLT code

The #if directive in the aforementioned example means that
this part of code will be processed only if the user chose the is-
land model. Variables begin with the character “$” and will be
filled up according to the configuration done by the user in the
graphic interface. As a result, the user will receive a pure Java
code such as “GAIslandea = newGAIsland(4, 5, 10);”,
where the parameters in this particular example are the num-
ber of islands (4), the migration rate (5) and the migration
frequency (10).

D. Design Patterns on PEA
The code received by the user via download as explained

in the previous section, is built using design patterns that play
an important role in the reuse of software because it tends
to impact in programmer productivity, specially due to the
similarity between operators in evolutionary algorithms. In our
case, the code produced by the generator contains mainly two
design patterns: strategy and observer.

The strategy pattern defines a group of algorithms en-
capsulating them by means of interfaces, allowing variations
regardless it uses in the clients. This pattern is used, for
instance, to hide the implementation of genetic operators and
to assure that any changes in the operators do not affect other
parts of the code [23]. Further, this pattern permits that genetic
operators may be used in other kinds of EAs, for instance,
in creating parallel hybrid algorithms. The stop criteria was
implemented by using the strategy pattern in this work, as
well.

The observer pattern defines a 1 − to − n relationship
between objects. This relationship consists of one object being
observed by many other ones with low coupling. When an
observed object has its status modified all observers receive
a notification being automatically updated [23]. This pattern
is used for synchronization purposes between objects. Being
specific, a process receives information about other processes,
thus it can decide whether it have to wait for other processes,
in case of migration for example, or carry on with its own
execution.

Figure 4 presents a model with an example of the master-
slave model for a parallel genetic algorithm, where we can
see clearly how the observer interface is implemented by
the ParallelismMonitor class, consequently controlling the
communication between islands, while the strategy pattern
interfaces are used to control the genetic operators and the
stop criteria (classes which implement the pattern are omitted
due to the lack of space).

38Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 4. Master-Slave Patterns

III. COMPUTING PROGRAMMING EFFORT

A. COCOMO
COCOMO is a regression-based model used to estimate

the programming effort in a software development project. The
model can be divided into three sub-models: basic, interme-
diary and advanced. The basic one is presented in (1), where
PM means Person/month (effort), A is a calibration factor,
KLOC represents the number of lines of code (in terms of
1000 lines or K) and B is a scale factor.

PM = A× (KLOC)B (1)

time = C × PMD (2)

p =
PM

time
(3)

Also, the basic model can compute the required time for
developing the software in months (2) and the number of
required people (3) as well, where C and D are constants.
The constants A, B, C, and D, which are originally from the
model, can be seen in Table I, where Project indicates the
following features: (i) Organic is a project involving a small
team with good experience and less than rigid requirements;
(ii) Semi-detached is a project with a medium team with mixed
experiences and a combination of rigid and less than rigid
requirements; (iii) Embedded involves a set of tight constraints,
being a combination of the organic and semi-detached project.

TABLE I. CONSTANTS FOR COCOMO - BASIC

Project A B C D
Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35
Embedded 3.6 1.20 2.5 0.32

The intermediary model is similar to the basic one; how-
ever, it considers a multiplier effort (ME) as we can see in
(4), where n ∈ [1, 15] according to 15 different multipliers. In
fact, ME is the product of all efforts that might be involved in
the project.

PM = A× (KLOC)B ×
n∏

i=1

(MEi) (4)

Basically, what we do with the ME is multiply all of it
according to the levels we have in the team. Which one we

use depends on the requirement we have in the project. For
example, a project might demand a high level of programming
capability and a very high level of analyst capability. So, in
this particular case the ME is computed as follows: ME =
0.86 × 0.71 = 0.6106. All values in ME are predefined and
can be seen in [24] and [25]. On the other hand, the constants
A and B are different for the intermediary model as shown in
Table II, while C and D remain the same from Table I.

TABLE II. CONSTANTS FOR COCOMO - INTERMEDIARY

Project A B
Organic 3.2 1.05

Semi-detached 3.0 1.12
Embedded 2.8 1.50

The advanced model is similar to the intermediary, however
the calculation is done on each step of development, being
adequate only for big projects.

B. COCOMO II
The main differences between COCOMO and COCOMO

II are: (i) the first one uses 15 multiply efforts, whereas the
last one uses 17 [27]; and, (ii) B can be computed based on a
Scale Factor (SF) as presented in (5), where β is a constant
equals to 0.91 as suggested in [24] and i varies from 1 to 5
according to predefined SF s. All these values can be obtained
from COCOMO II manual and in [24].

B = β + 0.01×
5∑

i=1

SFi (5)

IV. RESULTS

A. Speedup
In order to demonstrate that the software is usable and

performs in parallel, we present an experiment based on the
Griewank function [28], which is shown in (6), where xi
belongs to the range [-600,600] and n is equal 30, representing
an individual with 30 real-coded genes.

f(x) =

n∑
i=1

x2i
4000

−
n∏

i=1

cos(
xi√
i
) (6)

The experiment was conducted in an Intel i5 2.3 Ghz,
4GB of RAM with two physical cores and hyper threading
(4 logical cores), using Ubuntu Linux, JDK 1.7.04. A Parallel
Genetic Algorithm was built using the following configuration:
selection operator is tournament; tournament size equals 10;
heuristic crossover operator; probability of crossover equals
to 0.8; uniform mutation; probability of mutation equals to
0.01; population size sets to 360; stop criteria equals to 2000
iterations. For the island model parameters are: migration rate
sets to 5; migration frequency equals to 200 iterations; and
topology is ring. We did not generate a cellular PEA because
we did not have the proper architecture for its execution. The
speedup is computed by Sp = Ts

Tp
where Ts represents the

time for running the code in 1 thread and Tp is the required
time for executing in p threads. This metric is known as weak
speedup and was proposed by Alba [26] because the code is
exactly the same regardless the number of threads.

39Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

Table III presents the speedup and the efficiency achieved
by the Parallel Genetic Algorithm where we can observe that
the island model got the best speedup being close to the ideal
one. In terms of efficiency, the best one is reached using 2
threads as expected because the overhead caused by the parallel
synchronization is smaller.

TABLE III. SPEEDUP AND EFFICIENCY ACHIEVED BY A GA

Master-Slave
Threads Time(ms) Speedup Efficiency

1 3071.774 - -
2 2318.774 1.325 66.237
3 2158.129 1.423 47.445
4 2152.774 1.427 35.6728

Island
Threads Time(ms) Speedup Efficiency

1 2939.935 - -
2 1516.29 1.939 96.945
3 1069.871 2.748 91.598
4 866.484 3.393 84.824

Hierarchical
Threads Time(ms) Speedup Efficiency

1 2940.42 - -
2 1554.87 1.891 94.555
3 1101.58 2.67 88.975
4 942.29 3.12 78.01

B. COCOMO
The first result regards COCOMO basic considering the

development of all possible outputs, i.e., all parallel models
and evolutionary algorithms summing up 5507 lines, can be
seen in Table IV.

TABLE IV. NUMBER OF LINES OF CODE (LOC) PER MODEL AND
ALGORITHM

Parallel Model/Algorithm GA EE
Master-Slave 602 589
Island 859 848
Cell 635 641
Cell Multi-Individual 675 658
Sub-Total 2771 2736
Total 5507

Taking into account that the project is organic and using
(1), (2) and (3), we can estimate the following results: MP =
14.37 (effort), time = 6.9 months, p = 2.1. In other words,
developing all available models and algorithms would require
15 people/month of effort, 7 months of time and 3 people
according to COCOMO basic model.

In the intermediary model, the following multiplication
effort are considered as essential for developing all parallel
models and evolutionary algorithms: RELY, CPLX, ACAP,
AEXP, PCAP, LEXP, MODP and SCED [25]. Then, using
the predefined values (4), and also taking into account the
non-defined values as nominal inputs, we can calculate the
values presented in Table V for different levels. For instance,
considering parameter as very low level, a project would take
46.8 people/month, 11 months and 5 people to complete,
whereas considering the level as very high those values are
reduced to 13 people/month, 7 months and 2 people.

C. COCOMO II
In COCOMO II, we considered the following efforts:

RELY, CPLX, RUSE, PVOL, ACAP, PCAP, AEXP, PLEX,

TABLE V. COMPUTING THE EFFORT FOR THE COCOMO
INTERMEDIARY MODEL

Very Low Low Nominal High Very High
Total ME 2.4 1.5 1.0 0.8 0.7
PM 46.8 28.7 19.2 15.3 12.8
Time 10.8 8.9 7.7 7.1 6.6
p 4.3 3.2 2.5 2.2 1.9

LTEX, TOOL and SCED [24]. Further, we also considered all
scale factors for computing B values using (5) as illustrated
by Table VI.

TABLE VI. COMPUTING B AND ME FOR THE COCOMO II
INTERMEDIARY MODEL

Very Low Low Nominal High Very High Extra High
B 1.23 1.16 1.10 1.04 0.97 0.91
ME 2.7 1.5 1.0 0.8 0.6 0.9

Taking into consideration that now we have six different
Bs, we can calculate the table of effort for each one as
presented in Table VII, where we can observe that as we
increase both the level of scale factors and the multiplier
factors, the effort tends to be lower, which is an expected
behavior. It is important to notice that the extra high level
is not completely filled up which causes an increase in the
effort parameters, which is not desirable.

TABLE VII. COMPUTING EFFORT FOR COCOMO II INTERMEDIARY
MODEL PER B

Very Low Low Nominal High Very High Extra High
ME 2.7 1.5 1.0 0.8 0.6 0.9

B = 1.23
PM 71.02 38.05 25.88 20.11 15.90 22.26
Time 12.63 9.96 8.61 7.82 7.15 8.13
p 5.62 3.82 3.01 2.57 2.22 2.74

B = 1.16
PM 63.74 34.15 23.23 18.05 14.27 19.98
Time 12.12 9.56 8.26 7.51 6.87 7.80
p 5.26 3.57 2.81 2.40 2.08 2.56

B = 1.10
PM 57.24 30.67 20.86 16.21 12.82 17.95
Time 11.64 9.18 7.93 7.20 6.59 7.49
p 4.92 3.34 2.63 2.25 1.94 2.40

B = 1.04
PM 51.39 27.54 18.73 14.55 11.51 16.11
Time 11.17 8.81 7.61 6.92 6.33 7.19
p 4.60 3.12 2.46 2.10 1.82 2.24

B = 0.97
PM 46.14 24.72 16.81 13.06 10.33 14.46
Time 10.72 8.46 7.31 6.64 6.07 6.90
p 4.30 2.92 2.30 1.97 1.70 2.10

B = 0.91
PM 41.43 22.19 15.10 11.73 9.28 12.99
Time 10.29 8.12 7.01 6.37 5.83 6.62
p 4.02 2.73 2.15 1.84 1.59 1.96

D. Discussion on Effort
As previously stated, we consider the software as an

organic one, since it does not have a huge amount of lines.
Thus, the result for COCOMO basic may be considered as
an interesting estimation of effort, time and people if the team
has some previous experience in the subjects. These results are
similar to those one given by COCOMO II using a high level
of multiplier efforts which would represents the necessity of
learning the aforementioned subjects.

40Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

In terms of COCOMO II, we can observe that as we
increase the level of the team we also decrease the effort
parameters (people/month, months and pearson), as expected.
Also, it gives a more precise measure due to the use of both
multiplier efforts and scale factors, excepting when the extra
high level is used in Multiplier Efforts (ME) because this
particular level is not fully-filled, producing a little increase
in the parameters. On the other hand, we can notice that
parameters are more susceptible to the scale factors and
multiplier effort making the measures more accurate in the
all levels.

Doing an analysis of the person who developed the system,
we can consider the following multiplier for COCOMO: RELY
= high, CPLX =high, ACAP =high, AEXP =nominal, PCAP
= high, LEXP = high, MODP = =high and SCED =nominal;
and the following one for COCOMO II: RELY = high, CPLX
= high, RUSE = high, PVOL = low, ACAP = high, PCAP =
high, APEX = high, PLEX = high, LTEX = high, TOOL =
high and SCED = Nominal. Either, we considered all scale
factor as being in the maximum level.

TABLE VIII. ANALYSIS OF THE PERSON WHO DEVELOP THE
PARALLEL EVOLUTIONARY ALGORITHMS

COCOMO Basic COCOMO Intermediary COCOMO II (B = 0.91)
ME - 0.76 0.67
PM 14.4 14.6 10.08
time 6.88 6.93 6.02

p 2.09 2.11 1.68

Thus, the results are shown in Table VIII, where COCOMO
II presented a more precise estimation, considering that all
knowledge was acquired during the disciplines in the master
degree.

V. CONCLUSION

This paper presented a software whose main purpose is
to reduce the programming effort when programming parallel
evolutionary algorithms. A speedup test showed that it is
possible to achieve a good speedup using the parallel models.
Moreover, the models COCOMO and COCOMO II were used
in order to support our hypotheses of saving effort. All in
all, the JPEAG can save around one year of the time using 4
people if a low level of knowledge is held, or about 6 months
and 2 people if the programmers has a high level of previous
knowledge.

REFERENCES

[1] E. Cantú-Paz, “A Survey of Parallel Genetic Algorithms”, Department of
ComputerScience and Illinois Genetic Algorithms Laboratory, Universi-
tyof Illinois at Urbana-Champaign, 1998.

[2] A. E. Eiben and Smith, J. E., “Introduction to Evolutionary Computing”,
Berlin: Springer Verlag, 2003.

[3] B. Boehm, B. Clark, E. Horowitz, and C. Westland, “Cost Models
for Future SoftwareLife Cycle Processes: COCOMO 2.0”, Annals of
Software Engineering, 1, 1995, pp. 57–94.

[4] F. Pasini and L. Dotti, “Code Generation for Parallel Applications
Modelled with Object-Based Graph Grammars”, Electronic Notes in
Theoretical Computer Science, v. 184, 2007, pp. 113–131.

[5] K. A. Hawick and D. P. Playne, “Automated and parallel code genera-
tion for finite-differencing stencils with arbitrary data types”. Procedia
Computer Science, v. 1, n. 1, 2010, pp. 1795–1803.

[6] A. Rodrigues, F. Guyomarch, J-L. Dekeysera, and Y. Menach, “ Auto-
matic Multi-GPU Code Generation applied to Simulation of Electrical
Machines”, IEEE Transactions on Magnetics, v. 48, n. 2, 2012, pp. 831–
834.

[7] W. Jiamthubthugsin and D. Sutivong, “Portfolio management of software
development projects using COCOMO II”. In Proceedings of the 28th
international conference on Software engineering (ICSE). ACM, New
York, NY, USA, 2006, pp. 889–892.

[8] T. N. Sharma. “Analysis of Software Cost Estimation using COCOMO
II”, International Journal of Scientific & Engineering Research, v. 2, Issue
6, 2011.

[9] L. L. Minku and X. Yao, “How to make best use of cross-company data
in software effort estimation?”. In Proceedings of the 36th International
Conference on Software Engineering (ICSE). ACM, New York, NY,
USA, 2014, pp. 446–456.

[10] L. V. Patiland, R. M. Waghmode, S. D. Joshi, and V. Khanna, “Generic
model of software cost estimation: A hybrid approach”, IEEE Interna-
tional on Advance Computing Conference (IACC), 2014, pp. 1379–1384.

[11] Z. Dan, “Improving the accuracy in software effort estimation: Using
artificial neural network model based on particle swarm optimization”,
IEEE International Conference on Service Operations and Logistics, and
Informatics (SOLI), 2013, pp. 180–185.

[12] L. V. Patil, N. M. Shivale, S. D. Joshi, and V. Khanna, “Improving the
accuracy of CBSD effort estimation using fuzzy logic”, International on
Advance Computing Conference (IACC), 2014, pp. 1385–1391.

[13] F. Herrera, M. Lozano, and J. L. Verdagay, “Tack-ling Real-Coded
Genetic Algorithms: Operators and Tools for Behavioural Analisys”,
Artificial Intelligence Review, 4(12), 1998, pp. 265-319.

[14] Z. Michalewicz, “Genetic Algorithms + DataStructure = Evolution
Programs”, Springer-Verlag, New York, 3 edition, 1999.

[15] O. A. C. Cortes, R. H. C. Santana, M. J. Santana, and O. R. S.
Mendez, “Anáise de Operadores de Recombinao em Estratgias Evolutivas
Aplicados no Refinamento de um Sistema Nebuloso”, In: Simpósio
Brasileiro de Automática Inteligente, 2005.

[16] J. Yao, “Analysis of Scalable Parallel Evolutionary Algorithms”, IEEE
Congress on Evolutionary Computation Sheraton Vancouver Wall Centre
Hotel, Vancouver, BC, Canada. July, 2006.

[17] E. Alba and M. Tomassini, “Parallelism and Evolutionary Algorithms”,
IEEE Transactionson Evolutionary Computation, Vol. 6, No. 5, October,
2002.

[18] M. Sakuray, “Estudo da Influência dos Parâmetros de Algoritmos
Paralelos da Computao Evolutiva no seu Desempenho em Plataformas
Multinúcleos”, PhD Thesis, Universidade Federal de Uberlândia, 2014.

[19] J. Herrington, “Code generation in action”. Greenwich: Manning Pub-
lications, 2003.

[20] D. Lucrédio, “Uma Abordagem Orientada a Modelos para Reutilizao”,
Phd Thesis USP, So Carlos, SP, Brazil, 2009.

[21] D. Manolescu, M. Voelter, and J. Noble. Pattern Languages of Program
Design 5. Reading: Addison-Wesley Professional, 2006.

[22] Apache Velocity Project Site - http://velocity.apache.org - accessed:
Sep-9th-2014.

[23] H. Feng, K. Li-shaff, and C. Yu-ping, “A Generic Design Model
for Evolutionary Algorithms”, Wuhan University, Journal of Natural
Sciences, v. 8, n. 1b, 2003, pp. 224–228.

[24] B. W. Boehm, “Software cost estimation with Cocomo II”. Prentice
Hall, Upper Saddle River, NJ, 2000.

[25] Y. Miyazaki and K. Mori, “COCOMO evaluation and tailoring”. In
Proceedings of the 8th International Conference on Software engineering,
IEEE Computer Society Press, Los Alamitos, CA, USA, 1985, pp. 292–
299.

[26] E. Alba, “Parallel Evolutionary Algorithms Can Achieve Super-Linear
Performance”, Information Processing Letters, v. 82, 2002, pp. 7-13.

[27] B. Steece and B. Boehm, “A constrained regression technique for
cocomo calibration”, Proceedings of the Second ACM-IEEE international
symposium on Empirical software engineering and measurement, 2008,
pp. 213–222.

[28] Locatelli, M., ”A Note on the Griewank Test Function“, Journal of
Global Optimization, v. 25, n. 02, 2003, pp. 169-174.

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-419-0

ADVCOMP 2015 : The Ninth International Conference on Advanced Engineering Computing and Applications in Sciences

