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Abstract—The paper gives a high-order precision and high 
resolution scheme for the governing equations of the 
detonation in condensed explosives. Based on the relaxation 
approximation, the nonlinear governing equations of 
condensed explosives detonation are transformed into linear 
relaxation systems, in which it can avoid solving Riemann 
problem and calculating the Jacobian matrix of nonlinear flux, 
and it is not necessary to split the source term of chemical 
reaction law. A fifth-order WENOM (Mapped Weighted 
Essentially Non-Oscillatory) reconstruction in space 
discretization and a fifth-order IMEX (IMplicit-EXplicit) 
scheme of linear multistep methods with monotonicity and 
TVB (Total Variation Boundedness) in time discrtiezation are 
utilized. The proposed method is applied to numerically 
simulate the steady structure of a one-dimensional planar 
detonation wave and the unsteady propagation of a one-
dimensional spherically divergent detonation wave in 
explosives PBX-9502. The test cases demonstrate that the 
proposed method can obtain very satisfactory numerical 
results in terms of accuracy and resolution. 
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I.  INTRODUCTION 

The design of complex engineering devices that use high 
explosives to do useful and controlled work requires the 
capability to numerically simulate detonation with high 
fidelity [1]. In the past several decades, the Lagrangian 
method [1] is in the majority because of its nature character 
to treat with the interface of multimaterial. However, in the 
recent decade, more attention has been paid to the Eulerian 
method due to its following advantages: 1) to well preserve 
conservation of the total energy due to usually using finite 
volume discretization; 2) to commonly sharpen the 
discontinuity of detonation wave due to using high resolution 
scheme; 3) to easily construct high-order precision in 
temporal and spatial discretization; 4) to conveniently utilize 
small meshes to improve accuracy due to employing fixed 
space grids. Representative works show some fruits of 
Eulerian method [2]-[5]: using second-order Godunov 
scheme, adopting simple equation of state (usually perfect 
gas formulation) and chemical reaction model, employing 
split way to treat with the chemical source term. 

The governing equations of the detonation in condensed 
explosives are nonlinear hyperbolic conservation system 
with strongly stiff reaction source term of chemical reaction 

and complex equation of state. It is the strong stiffness of 
reaction source term and the complexity of equation of state 
that brings enormous difficulty to numerically compute the 
detonation by high-order precision and high resolution 
scheme. 

When strongly stiff source term is discretized, in-
sufficient spatial/temporal resolution may cause an incorrect 
propagation speed of discontinuities. H. C. Yee [6][7] points 
out that the phenomenon of wrong propagation speed of 
discontinuities is connected with the smearing of the 
discontinuities caused by the discretization of the advection 
term. The smearing introduces a nonequilibrium state into 
the calculation, thus as soon as a nonequilibrium value is 
introduced in this manner, the source term turns on and 
immediately restores equilibrium, while at the same time 
shifting the discontinuity to a cell boundary. The analysis 
shows that the degree of wrong propagation speed of 
discontinuities is highly dependent on the overall amount of 
numerical dissipation contained by the numerical scheme. So, 
excellent shock-capturing scheme for detonation wave 
discontinuity must possess the high resolution, namely low 
numerical dissipation. At present, most high resolution 
schemes have utilized Riemann solver [8] based on simple 
equation of state, such as the perfect gas with gamma law [9]. 
However, unreacted solid component and gas product 
component of detonation in condensed explosives usually 
utilize some complex equation of state [10], such as Jones-
Wilkins-Lee (JWL), HOM, BKW, Davis, extremely, 
SESAME data library, and so on, also, the temperature and 
pressure of mixing zone in chemical reaction needs to 
iterative operation when generally considering pressure and 
temperature as equilibrium state. Apparently, the high 
resolution scheme based on Riemann solver is difficult to 
construct numerically flux about the flow equations of 
detonation in condensed explosives. In order to capture 
exactly the shock discontinuity, besides the high resolution 
in spatial discretization, the high resolution in temporal 
discretization is very necessary. Hundsdorfer et al. [11] show 
that the unsplitting explicit and implicit scheme is more 
reliable: the advection term adopts explicit discretization, 
and the source term adopts implicit discretization. 

Recently, developing a relaxation method is an effective 
strategy to numerically solve hyperbolic conservation system 
[12]-[15]. The main idea of the relaxation method is to 
transform the nonlinear hyperbolic conservation system into 
linear hyperbolic relaxation equations by means of relaxation 
approximation. When the relaxation rate tends to zero and 
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the subcharacteristic condition is satisfied, the solution of the 
relaxation equations converges to the solution of the original 
hyperbolic conservation system. In comparison with upwind 
schemes such as the Godunov scheme, relaxation method 
does not require the Riemann Solver and the computation of 
its Jacobians. These features make the relaxation method 
particularly suitable for those systems where the Riemann 
problem is difficult to solve or when it is not possible to 
perform analytical expression for Jacobians. The relaxation 
method is gradually applied to gasdynamics [16], shallow 
water motion [17], multimatierial and multicomponent flow 
[18], magnetohydrodynamic [19]. 

In this paper, the relaxation method is applied to 
numerically simulate the typical detonation problem about 
the condensed explosives. After the nonlinear governing 
equations of the condensed explosives are transformed into 
linear relaxation equations, an improved fifth-order 
WENOM [20] is utilized to spatially discretize and a fifth-
order IMEX scheme of linear multistep methods with 
general monotonicity and boundedness properties is utilized 
to temporally discretize [11]. The numerical examples about 
one-dimensional detonation wave in explosives PBX-9502 
demonstrate that our method has high accuracy and high 
resolution properties. 

The paper is organized as follows. In Section II, we give 
the governing equations of detonation in condensed 
explosives. In Section III, we establish the relaxation 
equations for the governing equations of detonation. In 
Section IV, the numerical scheme for the relaxation 
equations is gives. In Section V several numerical tests are 
shown. Some conclusions are presented in Section VI. 

II. GOVERNING EQUATIONS OF DETONATION IN 

CONDENSED EXPLOSIVES 

The one-dimensional flow equations of detonation in 
condensed explosives under Eulerian frame are the following: 
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where   is density, v  is velocity, E  is total energy,   is 

chemical reaction process, p  is pressure, N  is geometry 

factor ( 0N   for plane, 1N   for cylinder, and 2N   for 
sphere), and R  is chemical reaction rate where three-term 
Lee-Tarver reaction law is adopted [10]: 
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The unreacted solid component and gas product 
component of detonation in condensed explosives utilize 
JWL equation of state. On assumption that the pressure and 
temperature in the reaction mixing zone is in equilibrium, the 
state of mixing zone may be expressed as (subscript s 
denotes solid component and subscript g denotes gas product 
component): 
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where 0 /V    is the relative volume, e  is the internal 

energy per mass, T  is temperature, and q  is the specific 

heat for chemical reaction. 
For condensed explosives, there are several huge 

numbers in the chemical reaction rate. For example, for high 
explosives PBX-9502, I=4.0×106, G1=1100.0, G2=30.0, so 
the source term for the chemical reaction rate is regarded as 
strongly stiff. 

III. ESTABLISH OF RELAXATION EQUATIONS 

By means of relaxation approximation, the governing 
equations about condensed explosives may be replaced by 
the following relaxation system: 

     
( )

t r

( )

t r 

 
   


    

  
2

u w
s u

w u f u w
A

                       (2) 

where w  is a middle variable, 1 2 3 4= diag[a ,a ,a ,a ]A  is a 

positive diagonal matrix, 0 1   is relaxation rate. 
The linear characteristic of relaxation system (2) is 

utilized to construct simple and effective high resolution 
scheme. Papers [12]-[13] point out that the solutions of (2) 
approach the solutions of the original problem (1): 

( )w f u , when 0  , and provided the following 

subcharacteristic condition holds: 

( )
k ka a


  



f u

u
( 1, 2,3, 4k  )  for all u . 

The role of relaxation rate in numerical scheme may be 
analyzed [14] as follows. 

Because w  can converge to ( )f u , there is a Chapman-

Enskog expansion: 

    2
1 2( ) ( ) ( )w f u f u f u                      (3) 
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Substituting (3) into (2) and collecting terms, a first-order 
approximation of system (2) can be obtained: 
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Thus, system (4) is dissipative if the subcharacteristic 
condition holds. It can be thought that introducing relaxation 
rate is equivalent to introducing numerical dissipation. 

In practice, the elements of diagonal matrix in system (2) 

may be chosen as:  ( ) /A f u u = max  in the whole 

flowfield zone. Thus, A  is a constant matrix, and the bigger 
A  implies the bigger numerical dissipation. 

IV. SOLUTION OF RELAXATION EQUATIONS 

Diagonalize the system (2) and holds: 
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It can be found that the system (5) is constant linear 
hyperbolic law with characteristic lines / A dr dt  and 
Riemann invariables w Au . 

A semi-discrete finite difference scheme with uniform 
space sizes for the system (5) can be approximated into: 
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where u = w Au , w = w Au + . 
When the system (6) is spatially discretized, the 

numerical flux u 


i 1/ 2  and w 


i 1/ 2  may adopt a fifth-order 

mapped weighted essentially non-oscillatory (WENOM) [20]: 
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When the system (6) is temporally discretized, the 
following ordinary differential equations can be obtained 
first: 
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where [ , ]q u w   T ， ( )q  denotes the discretization of the 

advection term in system (6), q( )  denotes the 

discretization of the source term in system (6). 
Then, a fifth-order IMEX scheme of linear multistep 

methods with general monotonicity and TVB [11] is adopted 
to solve the ordinary differential equation (7): 
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A third-order Runge-Kutta method [21] is used for 
starting procedure of this IMEX scheme. 

Finally, the relaxation scheme with temporal-spatial fifth-
order precision about the detonation flows in condensed 
explosives turns into the expression (8). It is worthy to 
indicate that the discretization procedure does not solve 
Riemann problem. 

V. NUMERICAL EXAMPLE 

In this section, the steady structure of one-dimensional 
planar detonation wave and the unsteady propagation of a 
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one-dimensional spherically divergent detonation wave in 
condensed explosives PBX-9502 are calculated. The JWL 
parameters and chemical reaction rate of PBX-9502 can be 
found in [22]. The values for Von Neumann spike are (cm-g-
s unit): 0 375Np . , 0 675NV . and 0 253Nu .  

respectively; and the corresponding values for Chapman-
Jouguet state are: 0 285CJp . , 0 753CJV . , 

0 192CJu . and 0 7665D . . 

Several values of relaxation rate are tested, and here the 

results for relaxation rate 710   are shown. 

A. Steady structure of 1D planar detonation wave 

When the detonation arrives at the steady state, the 
distribution of physical variables in chemical reaction zone 
can be exactly obtained by means of the Rankine-Hugoniot 
relations of detonation wave. 

The calculating length of explosives takes 5.0cm, and the 
explosives is initiated by the Chapman-Jouguet condition at 
its left hand side. The distributions of pressure, relative 
volume, velocity and mass fraction in chemical reaction zone 
are obtained, and comparisons are made with the exact 
solutions. Figure 1(a-d) gives the results where the mesh 
sizes are 1 100 x / , 1 200/ , 1 500/ , 1 1000/  cm 
respectively. At the same time, the relation of the Chapman-
Jouguet velocity and Von Neumann pressure to the mesh 
sizes is given in Figure 2(a-b). From Figure 1, the shock 
front of detonation wave is well resolved, and the spurious 
oscillation does not appear in the vicinity of the shock 
discontinuity. From Figures 1 and 2, when the mesh size is 
less than 1 500/ cm (about 50 meshes in the reaction zone), 
the calculating solutions agree well with the exact solutions. 

Figure 3(a-b) shows the change of pressure and 
velocity at several typical times on the course of unsteady 
propagation of the detonation, in which the discretized mesh 

is 1 500x /  cm and the corresponding time are: t=0.06, 
0.12, 0.24, 0.48, 0.96, 1.44, 1.92, 2.40, 2.88, 3.36, 3.84, 4.32, 
4.80, 5.28s. From the results, the pressure grows much 
quickly, and reaches the steady state about 3.84s after 
initiating CJ conditions. The change agrees well with the 
experimental results [10]. 

 

(a) Pressure profile under different mesh sizes 

 

(b) Velocity profile under different mesh sizes 

 

(c) Relative volume profile under different mesh sizes 

 

(d) Fraction profile under different mesh sizes 

Figure 1.  Distributions of physical variables in chemical reaction zone of 
PBX9502 
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(b) Detonation CJ pressure 

Figure 2.  Relations of the CJ velocity and Von Neumann pressure to the 
mesh sizes in PBX9502 
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Figure 3.  Pressure and velocity of planar detonation wave in PBX9502 

B. Unsteady propagation of 1D spherically divergent 
detonation wave 

When a divergent detonation wave propagates in 
spherical way, the physical variables behind the shock front 
will sharply descend. A poor numerical scheme is usually 
unable to correctly treat with the effect of geometry factor to 
result in detonation extinguishing [1]. 

The calculating radius of spherical explosives takes 
5.0cm, and the explosives is initiated by the CJ condition at 
the center. Figure 4(a-b) shows the change of pressure and 
velocity at several typical times on the course of unsteady 
propagation of the detonation wave, in which the discretized 

mesh is 1 500 r / cm and the corresponding time are: 
t=0.06, 0.12, 0.24, 0.48, 0.96, 1.44, 1.92, 2.40, 2.88, 3.36, 
3.84, 4.32, 4.80, 5.28s. From the results, the pressure and 
velocity grow along with increasing distance and reach 
quasi-steady state about 3.84s after initiation, whose 
values are lower than the corresponding planar ones. 
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Figure 4.  Pressure and velocity of spherically divergent detonation wave  

VI. CONCLUSION 

This paper presented the relaxation method for 
numerically simulating the detonation in condensed 
explosives, and a temporal-spatial fifth-order precision 
scheme is utilized to discretize the relaxation equations, 
which does not require solving Riemann problem and 
calculating the Jacobian matrix of nonlinear flux and 
splitting the source term of chemical reaction law. The 
calculating results for the steady structure of a one-
dimensional planar detonation wave and unsteady 
propagation of a one-dimensional spherically divergent 
detonation wave in PBX-9502 demonstrate the high 
precision and high resolution of the present method. The 
present method will be generalized to two-dimensional 
detonation problems in condensed explosives. 
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