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Abstract—While the current network protocols and systems
become more and more complex, the testing process of their
functional and non-functional behaviors comes to be crucial.
Among the testing techniques, we herein focus on their test at
runtime in an online way which requires the ability to handle
numerous messages in a short time with the same offline testing
preciseness. Meanwhile, since online testing is a long term contin-
uously process, the tester has to undergo severe conditions when
dealing with large amount of nonstop traces. In this paper, we
present a novel logic-based online passive testing approach to test,
at runtime, the protocol conformance and performance through
formally specified properties with new definitions of verdicts.
Furthermore, we experimented our approach with several Session
Initiation Protocol (SIP) properties in a real IP Multimedia
Subsystem environment and obtained relevant verdicts.
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I. INTRODUCTION

In order to evaluate the quality and conformance of a
system or an implementation under test (IUT) in relation with
a standard, the testing process is a crucial activity. Among the
well known and commonly applied approaches, the passive
testing techniques (also called monitoring) are today gaining
efficiency and reliability [1]. These techniques are divided
in two main groups: online and offline testing approaches.
Offline testing computes test scenarios before their execution
on the IUT and gives verdicts afterwards, while online testing
continuously tests during the operation phase of the IUT.

When we apply online testing approaches, the collection
of traces is avoided and the traces are eventually not finite.
Indeed, testing a protocol at runtime may be performed during
a normal use of the system without disturbing the process.
Several online testing techniques have been studied by the
community in order to test systems or protocol implementa-
tions [2] [3] [4]. These methods provide interesting studies
and have their own advantages, but they also have several
drawbacks such as the presence of false negatives, space and
time consumption, often related to a needed complete formal
model [5], etc. Although they bring solutions, new results
and perspectives to the protocol and system testers, they also
raise new challenges and issues. The main ones are the non-
collection of traces and their on-the-fly analysis. The traces
are observed (through an interface and an eventual sniffer)
and analyzed on-the-fly to provide test verdicts and no trace
sets should be studied a posteriori to the testing process. In
this work, we propose a novel formal online passive testing
approach that is applied at runtime to test the functional and
non-functional requirements of an implementation under test.

Based on a previous proposed methodology [6] [7], we
propose its extension to present a logic-based passive testing

approach for checking the requirements of communicating
protocols. In [6] and [7], we presented our formalism that was
applied to test in an offline way the conformance and perfor-
mance of an IUT. In this new paper, we develop our approach
to test these two aspects in an online way in considering the
above mentioned inherent constraints and challenges. Further-
more, our framework is designed to test them at runtime, with
new required verdicts definitions of ‘Pass’, ‘Fail’, ‘Time-Fail’,
‘Data-Inc’ and ‘Inconclusive’. Finally, in order to demonstrate
the efficiency of our online approach, we apply it on a real IP
Multimedia Subsystem (IMS) communicating environment.

Our paper’s primary contributions are:

• A formal passive online testing approach to avoid
stopping the execution of the testing process when
monitoring a tested protocol. New verdicts are pro-
vided in order to consider that the monitored traces
are not cut.

• A testing process that is executed in a transparent
way without overloading, overcharging the CPU and
memory of the used equipment on which the tester
will be run. Mechanisms of notifications is defined.

The reminder of the paper is organized as follows. In Sec-
tion II, a short review of the related works and problems
are provided. In Section III, we describe the architecture and
testing process in detail. Our approach has been implemented
and relevant experiments are depicted in Section IV. Finally,
we conclude and provide perspectives in Section V.

II. RELATED WORKS

When studying the literature, we note that there are very
few papers tackling online passive testing. We can however
cite the following ones.

In [8], the authors proposed two online algorithms to detect
802.11 traffic from packet-header data collected passively at a
monitoring point. They built a system for online wireless traffic
detection using these algorithms. Besides, some researchers
presented a tool for exploring online communication and
analyzing clarification of requirements over the time in [9].
It supports managers and developers to identify risky require-
ments. In [10], the authors defined a formal model based on
Symbolic Transition Graph with Assignment (STGA) for both
peers and choreography with supporting complex data types.
The local and global conformance properties are formalized by
the Chor language in their works. We should also cite the work
[11] from which an industrial testing tool has been developed.
This work is based on formal timed extended invariant to
analyze runtime traces with deep packet inspection techniques.
However, while most of the functional properties can be easily
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designed, complex ones with data causality can not. Moreover,
although their approach is efficient with an important data flow,
the process is still offline with finite traces that are considered
as very long. To be complete, we have to mention that studies
have also been performed to generate invariant from model-
checkers. However, it requires a formal model and it still raises
unresolved issues [12].

We may also cite some online active testing approaches
from which we got inspired. In [4], the authors presented a
framework that automatically generates and executes tests for
conformance testing of a composite of Web services described
in BPEL. The proposed framework considers unit testing and
it is based on a timed modeling of BPEL specification, and an
online testing algorithm that assigns verdicts to every generated
state. In [13], they presented an event-based approach for
modeling and testing the functional behavior of Web Services
(WS). Functions of WS are modeled by event sequence
graphs (ESG) and they raised the holistic testing concept that
integrates positive and negative testing. [14] proposed a data-
centric approach to test a protocol by taking account the control
parts of the messages as well as the data values carried by the
message parameters contained in an extracted execution trace.
Interesting and promising results were obtained while testing
the SIP protocol.

Inspired from all these above cited works, we propose an
online formal passive testing approach by defining functional
properties of IUT, without modeling the complete system
(contratry to Model Based Testing - MBT) and by considering
eventual false negatives. For this latter, we introduce a new
verdict ‘Time-Fail’ for distinguishing the real functional faults
and the faults caused by timeouts. In addition, since online
protocol testing is a long-term continuously testing process,
we provide a temporary storage to keep the integrity of
incoming traces. Furthermore, for the lacking attention to test
data portions of messages in current researches, our approach
provides the ability to test both the data portion and control
portion, accompanying with another new verdict ‘Data-Inc’
triggered when no data portions are available during the testing
process.

III. ONLINE TESTING APPROACH

In this section, we describe the architecture and testing
process of our online testing approach. We also provide the
new definitions of online testing verdicts.

A. Architecture of the approach
In our approach, the Horn logic [15] is used for formally

expressing properties as formulas. This logic has the bene-
fit of allowing the re-usability of clauses. And it provides
better expressibility and flexibility when analyzing protocols.
A syntax tree generated from the formulas will be used for
filtering incoming traces and optimizing evaluation processes.
For the evaluation part, we use the SLD-resolution algorithm
for evaluating formulas. The architecture of our online testing
approach is illustrated in Figure 1.

B. Testing Process
As shown in Figure 1, the testing process consists of eight

parts: Formalization, Construction, Capturing, Generating Fil-
ters/Setup, Filtering, Transfer/Buffering, Load Notification and
Evaluation.

Figure 1. Architecture of our online testing approach

a) Formalization: Initially, informal protocol require-
ments are formalized using Horn-logic based syntax. A mes-
sage of a protocol P is any element m ∈ Mp. For each
m ∈ Mp, we add a real number tm ∈ R+ which represents
the time when the message m is received or sent by the
monitored entity. Data domains are defined as atomic or
compound. Once given a network protocol P , a compound
domain Mp can be defined by the set of labels and data
domains derived from the message format defined in the
protocol specification/requirements.

A term is defined in Backus-Naur Form (BNF) as term ::=
c | x | x.l.l...l where c is a constant in some domain, x is a
variable, l represents a label, and x.l.l...l is called a selector
variable. An atom is defined as the relations between terms,
A ::= p(term, ..., term) | term = term | term 6= term
| term < term. The relations between atoms are stated by
the definition of clauses. A clause is an expression of the form
A0 ← A1 ∧ ... ∧ An, where A1, ..., An are atoms. Finally, a
formula is defined by the BNF: φ ::= A1 ∧ ... ∧ An | φ →
φ | ∀xφ | ∀y>xφ | ∀y<xφ | ∃xφ | ∃y>xφ | ∃y<xφ, where
∃ and ∀ represent for ”it exists” and ”for all” respectively.
The semantics used in our work is related to the traditional
Apt-Van Emdem-Kowalsky semantics for logic programs [16],
from which an extended version has been provided in order to
deal with messages and trace temporal quantifiers. Due to the
space limitation, we will not go into details of the semantics.
The interested readers may have a look at the works [6] and [1].

Then the verdicts {‘Pass’, ‘Fail’, ‘Time-Fail’, ‘Inconclu-
sive’, ‘Data-Inc’} are provided to the interpretation of obtained
formulas on real protocol execution traces. However, different
from offline testing, definite verdicts should be immediately
returned in online testing process. This indicates that only
‘Pass’, ‘Fail’ and ‘Time-Fail’ should be emitted in the final
report, and indefinite verdicts ‘Data-Inc’ and ‘Inconclusive’
will be used as temporary unknown status, but finally must be
transformed to one of the definite verdicts at the end of the
testing process.

b) Construction: From formalized formulas, a syntax
tree is constructed for further testing processes. In this process,
each formula representing a requirement will be transformed
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to an Abstract Syntax Tree (AST) using the TREEGEN algo-
rithm [17]. The standard BNF representation of each formula
is the input to construct an AST. All the generated ASTs
are finally combined to a syntax tree using a fast merging
algorithm [18]. The syntax tree will be transferred to the tester
as requirements and will be used to filter the captured traces.

c) Capturing: The monitor consecutively captures
traces of the protocol to be tested from points of observations
(P.Os) of the IUT, until the testing process finishes. When
messages are captured, they are tagged with a time-stamp tm
in order to test the properties with time constraints and to
provide verdicts on the performance requirements of the IUT.

d) Generating Filters and Setup: Once the syntax tree
is constructed, it will be applied to captured traces for playing
the role of a filter. Meanwhile, the tree will also be sent to the
tester with the definition of verdicts. According to different
conditions, verdicts are defined as below:
- PASS: The message or trace satisfies the requirements.
- FAIL: The message or trace does not satisfy the requirements.
- TIME-FAIL: The target message or trace cannot be observed
within the maximum time limitation. Since we are working
on online testing, a timeout is used to stop searching target
message in order to provide the real-time status. The timeout
value should be the maximum response time written in the
protocol standard. If we cannot observe the target message
within the timeout time, then a Time-Fail verdict will be
assigned to this property. It has to be noticed that this verdict
is only provided when no time constraint is required in the
requirement. If any time constraint is required, the violation
of this requirement will be concluded as Fail, not as a Time-
Fail verdict.
- INCONCLUSIVE: Uncertain status of the properties. Differ-
ent from offline testing, this verdict will not appear in the final
results. It only exists at the beginning of the test or when the
test is paused, in order to describe the indeterminate state of the
properties (e.g., a property that requires a special occurrence
on the protocol that did not occur yet).
- DATA-INC (Data Inconclusive): In the testing process, some
properties may be evaluated through traces containing only
control portion (there is no data portion or the latter case
mentioned in Step ‘Transferring’). If any property requires for
testing the data portion, Data-Inc verdicts will be assigned to
the property, due to the fact that no data portion can be tested.
However, these Data-Inc verdicts will be eventually updated to
Pass or Fail based on the data (coming from complete traces)
analyzed on the tested properties. Currently we are using
worst-case solution (all concluded as Fail verdicts). It won’t
affect the overall results, since Data-Inc verdicts only represent
a tiny proportion (less than 0.1%) of the whole traces in
our experiments. However, expecting eventual contingencies,
we plan, in the future, to apply a support vector machine
(SVM) approach [19] in order to train our testing processes
and predicate the Data-Inc verdicts.

e) Filtering: The incoming captured traces will go
through the filtering module, and messages in the traces are
filtered into different sets. The unnecessary messages irrelevant
to any of the requirements are filtered into the “Unknown” set,
and they will not go through the testing process. Finally, traces
will be filtered to multiple optimized streams. This step will
obviously reduce the processing time, since futile comparisons
with irrelevant messages are omitted.

f) Transferring: The filtered traces are transferred (6a)
to the tester when the tester is capable for testing. If the tester
priority has to be decreased (e.g., the CPU and RAM must
be used for another task on this computer of the end-user), a
”load notification” (7) is provided to the monitor in order to
transfer/store incoming traces. Based on the message format
of the protocols to be tested, different buffering methods will
be applied. itemsep=2.5pt, topsep=2pt, partopsep=0pt

• If in the message format, the size of its header is larger
than its body. Then the whole message will be buffered
in the temporary storage.

• On the contrary, if the size of its header is equal
or less than its body, then only the control portion
of the packets are buffered (6b) in the temporary
storage. Since not all the protocol requirements have
specific needs on the data portion, only buffering the
control portion will save a lot of memory space when
buffering millions of messages.

When the tester is available (notification obtained), the stored
traces are retransferred (6c) to the tester. In the latter case
mentioned above, only the control portion of packets are
provided. In both cases, the continuity of traces is ensured,
since no packet will be dropped in any condition. If the
protocol requirement has specific needs on the data portion,
then the new verdict Data-Inc can be given and will be
eventually updated to final verdicts by future analysis with
the entire traces (the tester is indeed available again).

Figure 2. Process of buffering and notification

g) Load Notification: When the tester reaches its limit
regarding the amount of data processable or is given a lower
priority (e.g., to discharge the CPU / RAM), it sends a ”Load
Notification Y ” to pause incoming filtered traces and store
them in the temporary storage. When the tester is available
back, a ”Load Notification N” to release stored traces and
to pursue incoming packets is sent. A brief description of
processes 6 and 7 is shown in Figure 2.

As the figure illustrates, when captured traces from the
IUT are transferred to the tester buffer, a checking overflow
function will be called. If the buffer already reached to its
maximum capacity, it will notify the IUT to redirect incoming
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traces to temporary storage in order to avoid the overflow.
On the contrary, if the buffer is in a stable condition, it will
send the available notification N to the temporary storage for
releasing stored messages and to the IUT for returning back
to normal transport process.

h) Evaluation: The tester checks whether the incoming
traces satisfy the formalized requirements, and provides the
final verdicts Pass, Fail or Time-Fail and temporary verdicts
Inconclusive or Data-Inc.

IV. EXPERIMENTS

A. Environment
The IMS is a standardized framework for delivering IP

multimedia services to users in mobility. It aims at facilitating
the access to voice or multimedia services in an access
independent way, in order to develop the fixed-mobile conver-
gence. Most communication with its core network and between
the services is done using the Session Initiation Protocol
(SIP) [20].

Figure 3. Experiments environment

For our experiments, communication traces were obtained
through ZOIPER [21] which is a VoIP soft client, meant to
work with any IP-based communication systems and infras-
tructure. We run four ZOIPER VoIP clients on the virtual
machines using VirtualBox for Mac version 4.2.16. On the
other side, the server is provided by Fonality [22], which is
running Asterisk PBX 1.6.0.28-samy-r115. As Figure 3 shows,
the tests are performed in the virtual machines by opening a
live capture on the client local interface. This live capture is
processed by the clients using an implementation of the formal
approach above mentioned and was developed in C code.

B. Test Results
For better understanding how our approach works, we

illustrate a simple use case tested on one of the clients.
As shown in Figure 4, we have a SIP requirement to be
tested: “Every 2xx response for INVITE request must
be responded with an ACK within 2s”, which can be
formalized to a formula: ∀x(request(x) ∧ x.method =
INVITE→ ∃y>x(responds(y, x) ∧ success(y)) →
∃z>y(ackResponse(z, x, y) ∧ withintime(z, y, 2s))).

This formula will be transformed to a syntax tree. When
the syntax tree is generated and transferred to the IUT monitor,
it will start to capture the trace and apply the syntax tree as
a filter (step 3 and 4) for captured messages. Meanwhile, the
syntax tree will be applied in the tester as requirement. Once
the captured trace is filtered into different sets (step 5), it will
check the Load Notification value first. Currently, the Load
Notification value equals to N, which makes the tester available
to test incoming traces. Then all incoming traces will be sent
to the tester directly (step 6a). As soon as the tester receives

the trace, it tests the trace through the formalized property.
When the tester is almost reaching to its maximum capacity,
it will send a load notification value Y back to the monitor
(step 7 and 8). In this case, all incoming traces will be stored
in the temporary storage (step 6b) until the tester recovers to
an available state (step 6c). Finally, after our 2 hours testing
process, we got 18864 ‘Pass’ verdicts, 5 ‘Fail’ verdicts caused
by violation of the time constraint and no Time-Fail verdicts.

Secondly, we test our approach in a more complex environ-
ment. It has been performed to concurrently test five properties
on a huge set of messages: “Prop.1: Every request must be
responded”, “Prop.2: Every request must be responded within
8s”, “Prop.3: Every INVITE request must be responded”,
“Prop.4: Every INVITE request must be responded within 4s”
and “Prop.5: Every REGISTER request must be responded”.

The table I shows a snapshot of temporary testing verdicts
after 3 hours online continuously testing. Benefited from the
filtering function, more than 70% irrelevant messages are
filtered out before testing process, which apparently reduce
the cost of computing resources. Besides, numbers of Fail
and Time-Fail verdicts can be observed. Time-Fail verdicts
in Prop.1, Prop.3 and Prop.5 indicate that there are 61432,
29673 and 3924 messages respectively that cannot be observed
within the timeout, in other words, they are lost during the
communication between the client and the server. Besides, the
‘0’ Fail verdict indicates there is no error observed in the data
portion for these three properties currently. On the other side,
Fail verdicts reported in Prop.2 and Prop.4 indicate that there
are 194579 and 97339 messages that cannot satisfy the time
requirement. These Fail verdicts include the Time-Fail verdicts
reported in Prop.1 and Prop.3, since lost messages also violate
the time requirement.

Moreover, several ‘Inconclusive’ verdicts indicating the
numbers of pending procedures for each property can be
observed. We also used the control-portion-only buffering
mechanism to test the usage of ‘Data-Inc’. All the buffered
messages without data portion are successfully reported as
‘Data-Inc’ shown in Table I. Since they take a tiny proportion
of whole traces (between 0.015% and 0.09%), we conclude
them as Fail in the worst-case. During the whole testing
process, our approach successfully handled this huge set of
messages and did not suspend.

V. CONCLUSION

This paper presents a new logic-based online passive test-
ing approach to test conformance and performance of network
protocol implementation. Our approach allows to formally
define relations between messages and message data, and then
to use such relations in order to define the conformance and
performance properties that are evaluated on real-time protocol
traces. The evaluation of the property returns a Pass, Fail,
Time-Fail, Inconclusive or Data-Inc result, derived from the
given trace. The approach also includes an online testing
framework. To verify and test the approach, we designed
several SIP properties to be evaluated by our approach. Our
methodology has been implemented into an environment which
provides the real-time IMS communications, and we success-
fully obtained relevant results from testing several properties
online.

Furthermore, as future works, we aim at applying our
approach under billions of messages and extending more
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Requirement:

Every 2xx response for INVITE request

must be responded with an ACK within 2s

Step 1 Formalization Step 2 Construction

IUT

Step 3 Capturing

Caputured Trace:

Message (80000)

(45231) Request Response (34769)
Unknown

(23115) INVITE (18869)

ACKUnknown

(3247)

Success

(23024)
Unknown

(11745)

... ... ...

Filtered Trace:

Syntax Tree:
Message

Request Response
Unknown

INVITE ACK
Unknown

Success
Unknown

... ... ...

Step 5 Filtering

Step 6(a) Transferring

Step 6(c)

Re-Transferring

Step 6(b) Buffering

Step 7 Load Notification

Step 8 Evaluation

Step 4 Generating Filter

Tester:

Evaluation

Unit

Buffer

Temporary Storage

30798

Messages

Step 4: Setup

Step 7 Load Notification

No. Messages

80000

Pass

18864

Fail

5

Time-Fail

0

Final Result:

Formalized Formula:

Figure 4. Use case for Testing Process

Properties Total Messages Filtered out Messages Filtered out Rate Pass Fail Time-Fail Incon Data-Inc
Prop.1 2324506 1631797 70.19% 631271 0 61432 52 2164
Prop.2 2324506 1631797 70.19% 498124 194579 0 52 2164
Prop.3 2324506 1979904 85.17% 314923 0 29673 14 1086
Prop.4 2324506 1979904 85.17% 247257 97339 0 14 1086
Prop.5 2324506 2259032 97.18% 61550 0 3924 6 371

TABLE I. Online Testing result for Properties

testers in a distributed environment. Thus, the efficiency and
processing capacity of the approach will be scalably tested.
Meanwhile, we will work on the optimization of our algo-
rithms to severe situations in case of several distributed P.Os,
and try to use SVM for predicting Data-Inc verdicts and thus
to avoid non relevant situations.
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