
The Development and Analysis of Analytic Method as Alternative
for Backpropagation in Large-Scale Multilayer Neural Networks

Mikael Fridenfalk
Department of Game Design

Uppsala University
Visby, Sweden

mikael.fridenfalk@speldesign.uu.se

Abstract—This paper presents a least-square based analytic solu-
tion of the weights of a multilayer feedforward neural network
with a single hidden layer and a sigmoid activation function,
which today constitutes the most common type of artificial neural
networks. This solution has the potential to be effective for
large-scale neural networks with many hidden nodes, where
backpropagation is known to be relatively slow. At this stage,
more research is required to improve the generalization abilities
of the proposed method.

Keywords-analytic; FNN; large-scale; least square method;
neural network; sigmoid

I. INTRODUCTION

The artificial neural network constitutes one of the most
interesting and popular computational methods in computer
science. The most well-known category is the multilayer Feed-
forward Neural Network, here called FNN, where the weights
of the network are estimated by an iterative training method
called backpropagation [6]. Although this iterative method is,
given the computational power of modern computers, relatively
fast for small networks, it is rather slow for large networks [1].
To accelerate the training speed of FNNs, many approaches has
been suggested based on the least square method [2]. Although
the presentation on the implementation, as well as of the data
on the robustness of these methods may be improved, the
application of the least square method as such seems to be
a promising path to investigate [7].

What we presume to be required for a new method to
replace backpropagation in such networks, is not only that it
is efficient, but also that it is superior compared to existing
methods and is easy to understand and implement. The goal
of this paper is therefore to investigate the possibility to find
an analytic solution for the weights of an FNN, i.e., without
any iterations involved, that is easily understood and that may
be implemented relatively effortlessly, using a mathematical
application such as Matlab [5]. As a brief overview, the
analytic solution proposed in this paper is formulated in
Section II, followed by a description of the experimental setup
in Section III, and by experimental results in Section IV,
presented in Tables I-V.

II. ANALYTIC SOLUTION

To start with, a textbook FNN is vectorized, based on a
sigmoid activation function S(t) = 1/(1+e−t). The weights V
and W of such a system (often denoted as WIH versus WHO),
may be expressed according to Figs. 1-2. In this representation,
defined here as the normal form, the output of the network may

x1

x2

hk

x3

1

vk1

vk2

vk3

vk4

Figure 1. An example with three input nodes (M = 3), hk = S(vku) =
S(vk1x1 + vk2x2 + vk3x3 + vk4), using a sigmoid activation function S.

x1

h1

y1

x2

h2

y2

x3 y3

y4

1

1

V W

Figure 2. A vectorized model of a standard FNN with a single hidden layer,
in this example with M = 3 input nodes, H = 2 hidden nodes, K = 4
output nodes and the weight matrices V and W, using a sigmoid activation
function for the output of each hidden node. In this model, the biases for the
hidden layer and the output layer correspond to column M + 1 in V versus
column H + 1 in W.

be expressed as:

y = Wh = W

[
S(Vu)

1

]
, u =

[
x
1

]
(1)

where x = [x1 x2 . . . xM]T denotes the input signals, y =
[y1 y2 . . . yK]T the output signals, and S, an element-wise

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

[∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

]
VT

=

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 1 1

] ∗ ∗ 1
∗ ∗ 1
∗ ∗ 1
∗ ∗ 1
∗ ∗ 1
∗ ∗ 1

−1

[∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

]
(UUT)−1

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 1 1

] ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

[∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

]
UHT

0

 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 1 1

H

=

S

[∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

]
V

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 1 1

]
U

[1 1 1 1 1 1]

1T

 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

WT

=

 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 1 1

 ∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ 1
∗ ∗ ∗ ∗ ∗ 1

−1

(HHT)−1

 ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 1 1

H

 ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

YT

0

 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

HYT

0[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

]
Y

=

[∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

]
W

 ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
1 1 1 1 1 1

H

Figure 3. A visual representation of the evaluation of weights V and W by the analytic method presented in this paper, and the actual output Y, in this
example as a function of six training points, N = 6, the training input and output sets U and Y0, with two inputs, M = 2, four outputs, K = 4, and five
hidden nodes, H = N − 1 = 5. In this figure, an asterisk denotes a floating-point number. To facilitate bias values, certain matrix elements are set to one.

sigmoid function. In this paper, a winner-take-all classification
model is used, where the final output of the network is the
selection of the output node that has the highest value. Since
the sigmoid function is a constantly increasing function and
identical for each output node, it can be omitted from the
output layer, as max(y) results in the same node selection
as max(S(y)). Further on, presuming that the training set is
highly fragmented (the input-output relations in the training
sets were in our experiments established by a random number
generator), denoting N as the number of training points, the
number of hidden nodes is preferred to be set to H = N − 1.
Defining a batch (training set), the input matrix U, may be
expressed as:

U =

x11 x12 · · · x1N

x21 x22 · · · x2N

...
...

. . .
...

xM1 xM2 · · · xMN

1 1 · · · 1

 (2)

where column vector i in U, corresponds to training point i,
column vector i in Y0 (target output value) and in Y (actual

output value). Further, defining H of size N ×N , as the batch
values for the hidden layer, given a training set of input and
output values and M+ = M + 1, the following relations hold:

U =

[
X

1T

]
: [M+ ×N] (3)

H =

[
S(VU)

1T

]
: [N ×N] (4)

Y = WH : [K ×N] (5)

To evaluate the weights of this network analytically, we need to
evaluate the target values (points) of H0 for the hidden layer.
In this paper, the initial assumption is that any point is feasible,
as long as it is unique for each training set. Therefore, in this
model, H0 is merely composed of random numbers. Thus, the
following evaluation scheme is preliminary suggested for the
analytic solution of the weights of such network:

VT = (UUT)−1UHT
0 : [M+ ×H] (6)

WT = (HHT)−1HYT
0 : [N ×K] (7)

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

where a least square solution is used for the evaluation of
each network weight matrix. Such an equation is nominally
expressed as Ax = b, with the least square solution [2]:

x = (ATA)−1ATb (8)

where (8) corresponds to input row vectors uTi . It is the use
of column input vectors, ui, that yield the expressions found
in (6)-(7). Since the mathematical expressions for the analytic
solution of the weights of a neural network may still be difficult
to follow, an attempt has been made in Fig. 3 to visualize
the matrix operations involved. Note that while a nonlinear
activation function (such as the sigmoid function) is vital for
the success of such network, the inclusion of a bias is not
essential. It is for instance possible to omit the biases and
to replace H0 with an identity matrix I. Such configuration
would instead yield the following formula for the evaluation
of V and H (where UI can further be simplified as U):

VT = (UUT)−1UI : [M+ ×N] (9)

H = S(VU) : [H ×N] (10)

III. EXPERIMENTAL SETUP

To test the solution presented in this paper, a minimal
mathematical engine was developed in C++, with the capability
to solve X in a linear matrix equation system of the form:

AX = B (11)

where A, B, and X denote matrices of appropriate sizes,
since it is numerically more efficient to solve a linear equation
system directly, than by matrix inversion. In this system, the
column vectors of X are evaluated using a single Gauss-
Jordan elimination cycle, where each column vector xi in X
corresponds to the column vector bi in B, thereby increasing
the evaluation speed compared with standard equation solvers.

Backpropagation was in our experiments implemented in
C++, using the code presented by Jones [4], as a reference.
To measure the efficiency of the new method compared with
the standard method (backpropagation), we used a typical
definition for the mean-squared error:

ε =
1

2N

K∑
i

N∑
j

(aij − yij)
2 (12)

where aij denotes an element in Y0 (target value), and yij
the corresponding element in Y (actual value). Although the
new method does not intrinsically benefit from such definition
(since there is no need here for differentiation of the mean-
squared error, which is however useful for backpropagation),
to simplify comparison in Tables I-V, the same definition of
the mean-squared error was also used for the new method.

IV. EXPERIMENTAL RESULTS

The experimental results presented in this paper, as shown
in Tables I-V, are based on ten individual experiments for each

parameter setting using different random seeds, where t̄ de-
notes average execution time, using a single CPU-core on a
modern laptop computer, ε̄, the average value of the mean-
squared errors, and ε̃, the median value. The success rate, s̄, is
similarly based on an average value. Since the variation of the
results is large between the experiments, the average values
are in general larger than the median values. If the number of
experiments per parameter setting is increased, according to
our experiments, the average value tends to increase as well.

On a note of preliminary experiments with respect to
robustness, regarding the generalization abilities of the net-
work, the new method showed to steeply lose accuracy with
the addition of noise to the input values, compared with a
network trained by backpropagation. This shows that although
the results seem to be in order according to the tables presented
in this paper, the new method lacks robustness for direct
use. Further experiments showed however that even small
measures, such as an increase in the input range of the network
by doubling the size of the training set with the addition
of perturbation and a more conscious design of H0, by for
instance the clustering of the random values as a function of
the output values, or for layers with few hidden nodes, the
binary encoding [3] of H0, led to significant improvements
of the robustness of the new method. This is an encouraging
sign, since the sizes of UUT and HHT are as shown in
Fig. 3, independent of N (assuming H is kept intact as N is
increased). There is thus a chance that these robustness issues
can be solved, in this context, without any significant impact
to the computational speed of the new method.

V. CONCLUSION

The method proposed in this paper is fast, accurate for
networks with a sufficient number of hidden nodes, and
straightforward to implement; but is, at this stage, based on
preliminary robustness tests, significantly much less robust
(thus, resembling an overtrained network), compared with a
well-trained FNN through backpropagation. Even small modi-
fications of the new method showed however to increase ro-
bustness significantly, which is promising for further research.

REFERENCES

[1] R. P. W. Duin, “Learned from Neural Networks”, ASCI2000, Lommel,
Belgium, 2000, pp. 9-13.

[2] C. H. Edwards and D. E. Penney, Elementary Linear Algebra, Prentice
Hall, 1988.

[3] F. Gray, Pulse Code Communication, Patent, U.S., no. 2632058, 1947.
[4] M. T. Jones, AI Application Programming, 2nd ed., Charles River, 2005.
[5] Matlab, The MathWorks, Inc. <http://www.mathworks. com/> [retrieved:

April 11, 2014].
[6] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,

3nd ed., Prentice Hall, 2009.
[7] Y. Yam, “Accelerated Training Algorithm for Feedforward Neural Net-

works Based on Least Squares Method”, Neural Processing Letters,
vol. 2, no. 4, 1995, pp. 20-25.

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

Table I. BACKPROPAGATION WITH H = N − 1 AND AVERAGE SUCCESS RATE s̄

M N H K Iterations t̄ ε̄ ε̃ s̄ (%)

5 20 19 5 104 46.6 ms 0.0671 0.0620 93.0

5 20 19 5 106 4.39 s 0.0175 4.64 · 10−5 96.5

10 50 49 10 104 182 ms 0.116 0.114 83.2

10 50 49 10 106 18.1 s 0.0680 0.0650 86.4

20 50 49 20 104 333 ms 0.0394 0.0392 94.6

20 50 49 20 106 33.3 s 0.0170 0.0200 96.6

40 100 99 40 104 1.27 s 0.0671 0.0670 88.9

40 100 99 40 106 127 s 0.0180 0.0200 96.4

Table II. NEW METHOD WITH H = N − 1

M N H K t̄ ε̄ ε̃ s̄ (%)

5 20 19 5 332 µs 3.34 · 10−8 2.00 · 10−13 100.0

10 50 49 10 3.74 ms 6.99 · 10−9 2.26 · 10−12 100.0

20 50 49 20 4.79 ms 2.68 · 10−13 5.93 · 10−16 100.0

40 100 99 40 36.7 ms 3.93 · 10−12 2.33 · 10−13 100.0

Table III. BACKPROPAGATION WITH H < N − 1 AND 104 ITERATIONS

M N H K t̄ ε̄ ε̃ s̄ (%)

5 20 5 5 14.7 ms 0.130 0.125 86.5

10 50 10 10 43.1 ms 0.227 0.237 71.6

20 50 20 20 144 ms 0.0624 0.0599 94.2

40 100 40 40 531 ms 0.115 0.115 84.8

Table IV. NEW METHOD WITH H < N − 1

M N H K t̄ ε̄ ε̃ s̄ (%)

5 20 5 5 59 µs 0.281 0.289 58.5

10 50 10 10 370 µs 0.350 0.350 50.0

20 50 20 20 1.30 ms 0.279 0.277 91.8

40 100 40 40 9.24 ms 0.290 0.290 98.5

Table V. SELECTIVE USE OF BIAS FOR THE NEW METHOD, WITH M = 40, N = 100, H = 99, AND K = 40

Hb Yb t̄ ε̄ ε̃ s̄ (%)

No No 35.7 ms 0.00514 0.00513 100.0

No Yes 36.4 ms 1.35 · 10−12 1.91 · 10−14 100.0

Yes No 36.2 ms 0.00544 0.00534 100.0

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-354-4

ADVCOMP 2014 : The Eighth International Conference on Advanced Engineering Computing and Applications in Sciences

