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Abstract — The paper proposes an extension of Cobb-Douglas 

model for production functions applicable in multi-product 

and regional contexts and a combined symbolic & numeric 

method for solving the system. In this respect, we propose a 

new application of Buchberger’s algorithm for computing 

Gröbner basis in simplifying the polynomial set that is 

obtained by modelling economic production systems. We 

present our Mathematica categorical implementation of 

Gröbner basis algorithm that can be applied for performing 

necessary computations. We apply Gröbner basis algorithm 

for some specific production function cases proposed in the 

economic literature and discuss the results. We consider that 

Gröbner basis algorithm is important in processing (according 

to various variable orderings) the polynomial set that is 

constructed and in synthesizing the most important economic 

characteristics taken into account by the model. Further on, 

numeric methods can be applied if necessary. We also note the 

importance of generic implementations of Buchberger’s 

algorithm, which can be easy adapted for various domains. 

Keywords-Cobb-Douglas model; generalized production 

functions; symbolic modelling; Buchberger algorithm; generic 

implementations. 

I.  INTRODUCTION AND WORKING FRAMEWORK  

Category theory in symbolic computation introduces 

techniques for implementing general working contexts of 

performing symbolic algorithms. The defined categories can 

later be particularized for various domains, by elegantly 

using the same definition. Definitions for categories and 

domains, from the symbolic point of view, can be found in 

[1], [2]. In these papers, we describe an extension of 

Mathematica – a computer algebra or symbolic computation 

system [15] – with a new type system, containing algebraic 

categories and abstract definitions of Gröbner basis [4] 

simplification algorithm. Within this package, the 

algorithms that implement Buchberger’s method for 

computing the Gröbner basis and the reduced Gröbner basis 

for a given set of polynomials are applied for multivariate 

polynomial domains over various coefficient rings.  
Buchberger’s algorithm for Gröbner basis [4] has found 

numerous applications in various fields related to polynomial 
simplification over various fields [10], [11] including 
computational geometry [12].  

Within this paper, we present a new application of 
Buchberger’s algorithm for Gröbner basis, belonging to the 

economic field, namely, for simplifying production function 
sets according to Cobb-Douglas model [7].  

Section 2 describes the Cobb-Douglas model for 
economic production functions [7]. Section 3 presents the 
basic principles of Buchberger algorithm for computing the 
Gröbner basis. In Section 5, we present the model we 
propose for generalizing the Cobb Douglas model at a 
macroeconomic scale, taking into account many countries. In 
Section 6, we describe the basic principles of categorical 
polynomial definition and processing from our Mathematica 
implementation, while Section 7 presents our 
implementation of computing the Gröbner basis. 
Conclusions reveal the most important contributions of the 
paper. 

II. COBB-DOUGLAS MODEL FOR ECONOMIC 

PRODUCTION FUNCTIONS  

In economic modelling, the Cobb-Douglas functional 
form of production functions [7] is widely used to represent 
the relationship of a production output in respect with 
specific inputs. The model was proposed by Knut Wicksell 
[14], and tested against statistical evidence by Paul Douglas 
and Charles Cobb in 1928 [7]. 

The model states [7] that a production function can be 
written in the functional form:  

 KALY            (1) 
where: 
Y the production output 
L represents the labour input 
K represents the capital input 
A, α and β are constants determined by technology. The 

exponents α and β are output elasticity coefficients with 
respect to labour and capital, respectively. Output elasticity 
measures the responsiveness of output to a change in levels 
of either labour or capital used in production [7]. 

According to the original model [7], the following cases 
are considered relevant:  

 if α+β=1, the production function has constant 

returns to scale;  

 if α+β<1, returns  to scale are decreasing;  

 if α+β>1 returns to scale are increasing. Assuming 

perfect competition, α and β can be shown to be 

labour and capital’s share of output.  
Cobb and Douglas were influenced by statistical 

evidence that appeared to show that labour and capital shares 
of total output were constant over time in developed 
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countries; they explained this feature by applying statistical 
fitting in least-squares regression of their production function 
[7]. 

III. BUCHBERGER’S ALGORITHM  

Buchberger’s algorithm computes the Gröbner basis [4] 

of a given set of polynomials over a coefficient ring as a 

“simplified” polynomial set; the Gröbner basis G for a 

polynomial set F is a “reduced” form of G [4], [5] that 

generates the same ideal as F.  

The “simplified” polynomial set that is obtained in the 

reduction process is significant in solving various problems 

involving polynomial sets. Buchberger synthesizes [5] a 

variety of application fields for Gröbner basis algorithm, 

revealing its importance in systems theory. The application 

presented in this paper is founded on the principles presented 

in [5].  

Based on category theory and generic principles, recent 

versions of Buchberger’s algorithm [6] are abstract 

implementations, which offer generic frameworks for 

applying the algorithm. The implementation we presented 

for Mathematica in [1] and [3] are based on these generic 

principles, proving to have important flexibility and 

extendibility advantages in applying the algorithm over 

various domains  

Present built-in Mathematica implementations of 

Buchberger algorithm support polynomials over the 

following coefficient domains: InexactNumbers, Rationals, 

RationalFunctions and Polynomials[x] [16].  

IV. GENERALIZED COBB-DOUGLAS MODEL. APPLYING 

BUCHBERGER’S ALGORITHM  

We generalize the Cobb-Douglas model for production 

functions in order to represent production states at a 

macroeconomic scale. We consider that such a model is 

relevant in order to better grasp the production phenomena 

that appear in economies.  

In this respect, we propose a set of Cobb-Douglas 

functions for expressing the necessary labour input and 

capital input to obtain a certain output within an economy. 

Taking into consideration the economy of a country, we 

consider the variables Lp, Kp as the labour input, 

respectively capital input for obtaining the product p and 

Gross Domestic Product (GDP) as the global output. For 

more economic regions, Gross Domestic Products (GDPs) 

can be represented as:  

 m1,=i,iY , - Yi being the Gross Domestic Product 

(GDP) generated by region i. If we consider that each region 

i produces ni products, we arrive to the generalized model 

(2). 

We consider that the model we propose is relevant for 

expressing production characteristics at a macroeconomic 

scale. Furthermore, the possibility of expressing production 

characteristics in regional development frameworks, can be 

very useful in the context of economic European integration.  
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Consequent to defining the functional production 

polynomials, an important task is to simplify the polynomial 

set in order to obtain in a canonical form the functions that 

express labour and capital inputs for different products and 

regions at a macroeconomic scale. Such a form is important 

for characterizing the production features in a synthesized 

manner. In order to obtain this simplified form, we can 

apply Buchberger’s algorithm.  

For monomial exponents representing elasticity 

coefficients that have real values, we can apply the 

reduction steps by computing the necessary subtractions of 

the exponent lists: in respect with the order relation on the 

real set , extended to tuples of real exponents, n, the 

“leading” monomial of each polynomial can be reduced by 

computing monomials with corresponding exponent 

subtractions in respect with the other polynomials. For the 

reduction step in Buchberger’s algorithm, instead of taking 

into account the least common multiple for pairs of 

exponent vector lists, we compute the maximum of two 

exponent vector lists in respect with n 

In our Mathematica implementation based on generic 

principles [1], [3], we easily defined the Lcm (Least 

Common Multiple) operator in the exponent vector package 

VectExp as a Max operator and we supplementary defined 

the real domain in our coefficient domain package DomCoef 

– for which a code overview is given in Fig. 1: 

DomReal[R_]:=Module[{}, 
  InelCom[R,"+","*","0","1"];  

  (* Mathematica definition [2] *) 
  R["+",a_Real,d_Real]:=a+d;   
  R["+",a_Real,Infinity]:=Infinity;   
  R["+", Infinity, d_Real]:=Infinity; 
  R["-",a_Real,b_Real]:=a-b;     
  R["*",a_Real,b_Real]:=a*b;  
  R["/",a_Real,b_Real]:=a/b; 
  R["=",a__,b__]:=SameQ[a,b];    
  R["<>",a__,b__]:=UnsameQ[a,b]; 
  R["<",a__,b__]:=a<b;      
  R["<=",a__,b__]:=a<=b; 
  R[">",a__,b__]:=a>b;  
  R[">=",a__,b__]:=a>=b; 
  R["0"]:=0;  
  R["max"]:=Infinity; 
  R["/",a_List,b_Real]:=a/b;   
  R["+",a__,b__]:=a+b; 
  R["-",a__,b__]:=a-b;    
  R["*",a__,b__]:=a*b; 
  R["/",a_List,b_Real]:=a/b; 
  R["/",a__,b__]:=a/b;  ]  

Figure 1.  Mathematica abstract definition for the real domain. 
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The higher impact of labour L or capital K variables in 

the above described polynomials – (2) – can be evaluated by 

taking into account appropriate orderings of Li, i=1,m, Ki, 

i=1,m. Moreover, the model can be enhanced by 

supplementary taking into account new production 

variables. In this respect, [17] proposes to take into account 

a third variable as a sum of variables with a smaller 

production impact. Still, the model we propose may take 

into account any number of variables.  

We applied Buchberger’s algorithm for sets of 2-3 

polynomials representing GDPs in 2 countries by taking 

input values and elasticity coefficients proposed in [17]. 

For cases in which the reduced polynomial set should be 

further processed, numeric solving methods may be 

consequently applied  

V. POLYNOMIAL CATEGORICAL IMPLEMENTATION  

In order to implementing the multivariate polynomial 

category, we define an auxiliary domain for monomials [1], 

naming it the exponent vector domain [9].  

An exponent vector with a given base of identifiers (for 

example, x,y,z) will be retained by the list of exponents 

corresponding to each variable. In operating upon exponent 

vectors, we use two types of representations: lists, 

respectively products of primes with the exponents in 

question [9]. We use the latter representation [1], the 

exponent vector e1, e2, ..., en will be retained and processed 

by the number  

 ,                       (3) 

where p1, p2, ..., pn are prime numbers, for simplifying 

computations - the first prime numbers. In this 

representation, an exponent vector sum reduces to the 

corresponding prime numbers product, whereas the greatest 

common divisor (Gcd) and the least common multiple 

(Lcm) can be computed by similar operations upon prime 

products. 

The exponent vector domain is an abelian monoid [2] 

that introduces the following operations: 

• computing neutral, minimum and maximum elements 

("0", "Max","Min"); 

• conversions between the list and number internal forms 

("ListaInVectorNr", "VectorNrInLista"); 

• sum ("+"), greatest common divisor ("Gcd") and least 

common multiple ("Lcm") for two exponent vectors; 

• positiveness test for an exponent vector ("Pozitiv"); 

• divisibility test for two exponent vectors ("|"); 

• relational operators ("<", ">", "=", "<=", ">=", "<>") 

between two exponent vectors - we shall consider the 

lexicographical ordering corresponding relations are 

implemented by string[...] functions); 

• conversions between external and internal forms ("Inp", 

"Out"). 

We give in Fig. 2 an overview of the Mathematica 

package which defines the exponent vector domain (for the 

functions in italics we omitted the body). All operations 

within an exponent vector domain V, created by the 

function VectExp[V,lv], where lv is the variable list 

representing the base, will be prefixed with the domain 

name and will have as the first parameter the operation 

code. For example, V["+",v1,v2] returns the sum of two 

exponent vectors (in internal form), V["Gcd",v1,v2] 

computes the greatest common divisor, while 

V["Lcm",v1,v2] computes the least common multiple. 

BeginPackage["VectoriExp‘"] 
VectExp::usage="VectExp[V ,lv List] defines the 
exponent vector domain V, with the base lv " 
Intreg::usage="Integer domain" 
string::usage="string operations" 
Begin["VectoriExp‘Private‘"] 
Needs["HierMath‘"] 

string["Rel",s1 String,s2 String]:= Mathematica definition[2]  
(*tests the relation <, =, > between s1 and s2, returning -1,0,1*) 
(* "Rel" may be "<", ">", "=", "<>" *) 

VectExp[V ,lv List]:= Mathematica definition [2] (*creates the 

exponent vector domain V, with the base lv*) 

MonoidCom[V,"+",en]; Mathematica definition [2] 
(*creates an abelian monoid [2]*) 

V["ListaInVectorNr",l List]:= Mathematica definition [2] 

V["VectorNrInLista",nr Integer]:= Mathematica definition[2]  
V["+",l1 List,l2 List]:=l1+l2; 
V["-",l1 List,l2 List]:=l1-l2; 

V["Pozitiv",l List]:= Mathematica definition [2] 
(*tests if all list elements are >0*) 

V["Gcd", l1 List, l2 List]:= Mathematica definition [2]  
(*computes greatest common divisor *) 

V["Lcm", l1 List, l2 List]:= Mathematica definition [2] 
(computes teast common multiple *) 

V["Rel", l1 List, l2 List]:= Mathematica definition [2] (*tests the 

relation <, =, > between l1 and l2, returning -1,0,1*) 

V["|",l1 List,l2 List]:= Mathematica definition[2]  
(* divisibility test *) 

V["Out",l List]:= Mathematica definition [2]  
(* output form *) 

V["Inp",e ]:= Mathematica definition [2] (*transforms an input with 

the syntax x[^e1]*y[^e2]... into the internal list form; 
the code is rather complex and based on Mathematica 
internal forms*) 
V["Max"]:=max; V["Min"]:=min;] 
End[] 
EndPackage[] 

Figure 2.  Mathematica abstract definition for the exponent vector domain. 

The representation of a polynomial (polinom.m package) 

uses a list of two elements: the exponent vector list, 

lexicographically ordered, and the corresponding coefficient 

list [2]. For example, the polynomial 2*xˆ2*z-5*y (with the 

base {x,y,z}) will be represented as {{{0,1,0},{2,0,1}}, {-

5,2}} 

We give below the main part of the Mathematica 

package which defines the polynomial category (polinom.m 

package [2]; we omitted the bodies for the functions in 

italics). Within Mathematica definitions, functional and 

parametric specification of operations within various 

domains can be noticed (Figs. 1, 2).  
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For example, within the polynomial domain Pol, defined 

by Polinom[Pol, DCoef, DVect, l], where DCoef is the 

coefficient domain and DVect is the exponent vector 

domain with the base l, the construction 

DVect["|",v,Pol["Monom",i,P]] performs a divisibility test - 

within DVect exponent vector domain - between two 

exponent vectors, the second one corresponding to a 

monomial selected from a polynomial P (by "Monom" 

operation, within the polynomial domain Pol). 

DVect["+",o1,o2] is the sum of o1 and o2 in DVect domain, 

whereas DCoef["+",o1,o2] is a sum in DCoef domain. An 

overview of the Gröbner basis package we have defined [1], 

[2] is given in Fig. 3: 

BeginPackage["Polinom‘"] 
Polinom::usage="Polinom[Pol,DCoef,DVect,l] defines the 
multivariate polynomial domain Pol, over the coefficient domain 
DCoef and the exponent vector domain DVect (of monomials), with 
the basis l" 
Begin["Polinom‘Private‘"] 
Needs["VectoriExp‘","DomCoef‘"] 
Polinom[Pol ,DCoef ,DVect ,baza List]:=Module[n,lv, 
(*defines a multivariate polynomial domain, with coefficients in 
DCoef, over the exponent vector domain Dvect, with the base 
baza*) 
InelCom[DCoef,"+","*"]; (*creates an abelian ring [2]*) 
VectExp[DVect,baza];  
Pol["DomCoef"]:=DCoef; 
Pol["DomVectExp"]:=VectExp; 
Pol["Init"]:=List[List[DVect["Max"]],List[]]; 
(*returns the null polynomial, with a sentinel in the exponent vector 
list*) 

Pol["Nul",P ]:=Mathematica definition [2] ; 
(* returns True if P is null *) 
Pol["Nr",P ]:=Length[P[[1]]]-1; (*dimension*) 
Pol["Monom", i ,P ]:=P[[1]][[i]]; 
(*the ith monomial from the polynomial P*) 
Pol["Coef",i ,P ]:=If[i<=Pol["Nr",P],P[[2]][[i]],0]; 

Pol["Indice",l ,P ]:= Mathematica definition [2]   
(*the index of the monomial l in the polynomial P*) 
Pol["MonomGrMax",P ]:=P[[1]][[Pol["Nr",P]]]; 
Pol["CoefGrMax",P ]:=P[[2]][[Pol["Nr",P]]]; 

Pol["AdaugMonom",T ,v ,c ]:= Mathematica definition [2] 
 (*adds to the polynomial T the monomial formed by the exponent 
vector v and the coefficient c taking into account the lexicographical 
ordering; if v exponent vector exists, it adds the coefficient c to the 
appropriate existing one*)  

Pol["MonomInPol",l :List,c :Number]:= Mathematica definition [2]  
(*transforms a monomial into the equivalent polyniomial *) 

Pol["+",P1 ,P2 ]:= Mathematica definition [2] 
(* returns the sum of P1, P2 *) 

Pol["*",P1 :List,P2 :List]:= Mathematica definition [2] 
(* returns the product of P1, P2 *) 

Pol["&",nr :Number,P :List]:= Mathematica definition [2]  
(*multiplies P by the number n*) 
Pol["-",P1 ,P2 ]:=Module[{P}, (*polynomial subtraction *) 
P=Pol["&",-1,P2]; Return[Pol["+",P1,P]]; ]; 

Pol["/",P ,v List,c :Number]:= Mathematica definition [2]  
(* divides each of P’s monomials by the exponent vector v and 
coefficient c and returns the result *)  

Pol["|",v List,P ]:= Mathematica definition [2] 
(* tests whether the exponent vector v divides any of P’s monomials 
and returns True or False *)  

Pol["Out",P ]:= Mathematica definition [2] (*polynomial display*)  

Pol["Inp",e ]:= Mathematica definition [2] (*transforms an input 

polynomial into the internal form; the code is rather complex and 
based on Mathematica internal forms*)  
] (*Module*) 
End[] 
EndPackage[] 

Figure 3.  Mathematica abstract definition for the polynomial domain. 

The following section is dedicated to the Gröbner basis 

algorithm and its application to production functions. 

VI. GROEBNER BASIS ABSTRACT IMPLEMENTATION AND 

APPLICATION CASES FOR PRODUCTION FUNCTIONS  

We implemented Buchberger’s algorithms for 

computing the Gröbner basis and the reduced Gröbner basis 

[4] of a polynomial set into Mathematica packages: 

groebner.m and groebred.m [1], [2]. The functions which 

compute the Gröbner bases are parameterized with a 

polynomial domain, therefore they can be applied for 

polynomial domains over any consistent coefficient domain 

that is previously defined. Note that a polynomial domain is 

created by using the polynomial categorical definition 

within polinom.m package, which is parameterized with a 

coefficient domain defined in domcoef.m package [1], [2]. 

Within groebner.m package [1] we implemented 

Buchberger’s Gröbner basis algorithm [4] - BazaGroebner[] 

function. We completely described the algorithmic iterations 

for computing the normal form of a polynomial modulo a 

polynomial set - Normal[Pol,F,g] function, where Pol is the 

current polynomial domain. For computing the S-

polynomial of two polynomials, we implemented the 

formula proposed in [9] - SPol[] function. 

An overview of the Gröbner basis package we have 

defined [1], [2] is given in Fig. 4: 

BeginPackage["Groebner‘"] 
Normal::usage="Normal[Pol,F,g] verifies if g is in normal form mod 
F, over the polnomial domain Pol" 
FormaNormala::usage="FormaNormala[Pol,DCOef,DVect,F,p] 
returns the p’s normal form modulo F; operations are 
performed over the polynomial domain Pol" 
SPol::usage="SPol[Pol,DCoef,DVect,P1,P2] computes 
Rez=SPol(P1,P2), in the polynomial domain 
Pol(DCoef,DVect)" 
BazaGroebner::usage="BazaGroebner[Pol,DCoef,DVect,F] returns, 
for F set of polynomials over the domain 
Pol(DCoef,DVect), F’s Groebner base" 
MultPolExtInInt::usage="MultPolExtInInt[Pol,M] transforms a set of 
polynomials in external representation into internal representation 
(operations over Pol domain)" 
MultPolIntInExt::usage="MultPolIntInExt[Pol,M] transforms a set of 
polynomials in internal representation into external representation 
(operations over Pol domain)" 
Tiparire::usage="prints a set of polynomials given in internal 
representation" 
TipPerechi::usage="prints a set of polynomial pairs given in internal 
representation" 
Begin["Groebner‘Private‘"] 
Needs["Polinom‘"] 

PolNormal[Pol ,F List,g ]:= Mathematica definition [2] 
(*Verifies whether g is in normal form mod F, i. e. no 
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monomial of g is divisible by the leading monomial of 
any polynomial belonging to F - set of polynomials. 
Operations are performed within the polynomial domain Pol*) 

FormaNormala[Pol ,DCoef ,DVect ,F List,p ]:= ]:= Mathematica 

definition [2]  
(*Returns p’s normal form mod F; operations are performed 
within the polynomial domain Pol(DCoef,DVect) *) 

SPol[Pol ,DCoef ,DVect ,P1 ,P2 ]:= Mathematica definition [2] 
(*computes, within the polynomial domain P, Rez=SPol(P1,P2)*) 

MultPolIntInExt[Pol ,M List]:= ]:= Mathematica definition [2] 
(*transforms M polynomial set from internal form into a set of 
external forms*) 

MultPolExtInInt[Pol ,M List]:= Mathematica definition [2] 
(*transforms M polynomial set from external form into a set of 
internal forms *) 

Tiparire[Pol ,M List]:= Mathematica definition [2] (*displays a 

polynomial set*) 

TipPerechi[Pol ,M List]:= Mathematica definition [2] 
(*displays a set of polynomial pairs*) 

BazaGroebner[Pol ,DCoef ,DVect ,baza List,M List]:= Mathematica 

definition [2] 
(* returns the Groebner basis of the polynomial set M 
(given as a list), within the polynomial domain Pol *) 
End[] 
EndPackage[] 

Figure 4.  Mathematica abstract definition for the Gröbner basis algorithm. 

Groebred.m package [1], [2] implements Buchberger’s 
algorithm for computing the reduced Gröbner basis [4].  

Comparing our implementation to the Mathematica built 
in one GroebnerBasis[{poly1, poly2, …},{x1, x2, …}], our 
abstract based one is obviously slower, but it enables 
computations over various abstract coefficient domains, 
which can be defined. The built in GroebnerBasis 
implementation works over rational numbers, integers, 
rational functions or inexact numbers, with additional 
computation options [16].  

We have applied the Gröbner basis algorithm in 
Mathematica for various cases of production functions 
proposed for Romania and Moldova for the period 2002-
2004 in [17]. We have denoted with R the polynomial 
corresponding to Romania’s Gross Domestic Product (GDP) 
function for this period and with M – the polynomial 
corresponding to Moldova’s Gross Domestic Product (GDP) 
function for the same period. 

For the set of polynomial production functions: 
R = 37.4

a
 62.6

b
 X+45.3

a
 54.7

b
 Y+49.1

a
 50.9

b
 Z  

M = 33.8
a
 66.2

b
 X+33.4

a
 66.6

b
 Y+40.5

a
 59.5

b
 Z 

where X, Y, Z are technology based variables, and using 
symbolic elasticity coefficients a, b [17], the Gröbner basis 
still contains two polynomials in X, Y, Z: 

{-1531.14
a
 3621.14

b
 Y+1249.16

a
 4169.16

b
 Y-1659.58

a
 

3369.58
b
 Z+1514.7

a
 3724.7

b
 Z,33.8

a
 66.2

b
 X+33.4

a
 66.6

b
 

Y+40.5
a
 59.5

b
 Z,37.4

a
 62.6

b
 X+45.3

a
 54.7

b
 Y+49.1

a
 50.9

b
 Z}  

Using the ,  elasticity proposed in [17] as a, b values, 
we obtain the liniar polynomials: 

R = 45.3457 X+48.6099 Y+49.7656 Z 
M = 43.4613 X+43.2359 Y+46.7666 Z  
The GroebnerBasis function reduces the X variable 

(corresponding to year 2002) from the R polynomial and the 

Y variable (corresponding to year 2003) from the M 
polynomial, generating the following simplified set:  

{1. Y+0.27755 Z,1. X+0.799942 Z} 
We may infer that during the period 2002-2004, for 

Romania and Moldova, the most relevant evolution years 
from the production point of view were 2003 and 2004 for 
Romania and 2002 and 2004 for Moldova. Such results have 
to be correlated with other macroeconomic variables.  

Another possible application case would be the one 
taking into account countries from Latin America, 
considering the K values as capital flows and the L values 
given in [18]. Simplified polynomials would mean similar 
evolutions in different countries.  

VII. CONCLUSION AND FUTURE WORK  

We addressed a problem from an economic field, namely 
a generalized model for production functions, by applying 
computer algebra tools.  

We generalized Cobb-Douglas model for production 
functions in multi-product and regional contexts by 
constructing a representative polynomial set in respect with 
the production inputs (labour, capital, other variables) and 
we propose the application of Buchberger’s algorithm in 
simplifying the polynomial set that is obtained. We consider 
that Gröbner basis algorithm is important in processing 
(according to various variable orderings) the polynomial set 
that is constructed and in synthesizing the most important 
economic characteristics taken into account by the model.  

We presented our Mathematica categorical 
implementation of Buchberger’s algorithm for Gröbner basis 
algorithm that can be applied for performing necessary 
computations. We underline the importance of such abstract 
implementations, which can be easy adapted for various 
domains based on parameterized principles. Our 
implementation is actually an extension of Mathematica with 
a type system.  

We applied the Gröbner basis algorithm for Gross 
Domestic Product (GDP) functions of Romania and 
Moldova for the period 2002-2004 using data proposed by 
Zaman et al in [17] and we discuss the results of applying 
Buchberger’s simplification algorithm on these polynomial 
sets. Similar processings can be performed for other 
countries, using specific values that are available in 
economic analyses for the input data in the production 
functions.  

We intend to further work on the proposed model and to 
study other cases from the economic literature. We also 
intend to extend our implementation of Buchberger 
algorithm for new domains, based on the same abstract 
principles.  
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