
Implementing a Generalized Cobb Model for Production Functions

Alina Andreica

IT Department

Babes-Bolyai University, Cluj-Napoca, Romania

alina.andreica@ubbcluj.ro

Florina Covaci

IT Department

Babes-Bolyai University, Cluj-Napoca, Romania

florina.covaci@ubbcluj.ro

Abstract — The paper proposes an extension of Cobb-Douglas

model for production functions applicable in multi-product

and regional contexts and a combined symbolic & numeric

method for solving the system. In this respect, we propose a

new application of Buchberger’s algorithm for computing

Gröbner basis in simplifying the polynomial set that is

obtained by modelling economic production systems. We

present our Mathematica categorical implementation of

Gröbner basis algorithm that can be applied for performing

necessary computations. We apply Gröbner basis algorithm

for some specific production function cases proposed in the

economic literature and discuss the results. We consider that

Gröbner basis algorithm is important in processing (according

to various variable orderings) the polynomial set that is

constructed and in synthesizing the most important economic

characteristics taken into account by the model. Further on,

numeric methods can be applied if necessary. We also note the

importance of generic implementations of Buchberger’s

algorithm, which can be easy adapted for various domains.

Keywords-Cobb-Douglas model; generalized production

functions; symbolic modelling; Buchberger algorithm; generic

implementations.

I. INTRODUCTION AND WORKING FRAMEWORK

Category theory in symbolic computation introduces

techniques for implementing general working contexts of

performing symbolic algorithms. The defined categories can

later be particularized for various domains, by elegantly

using the same definition. Definitions for categories and

domains, from the symbolic point of view, can be found in

[1], [2]. In these papers, we describe an extension of

Mathematica – a computer algebra or symbolic computation

system [15] – with a new type system, containing algebraic

categories and abstract definitions of Gröbner basis [4]

simplification algorithm. Within this package, the

algorithms that implement Buchberger’s method for

computing the Gröbner basis and the reduced Gröbner basis

for a given set of polynomials are applied for multivariate

polynomial domains over various coefficient rings.
Buchberger’s algorithm for Gröbner basis [4] has found

numerous applications in various fields related to polynomial
simplification over various fields [10], [11] including
computational geometry [12].

Within this paper, we present a new application of
Buchberger’s algorithm for Gröbner basis, belonging to the

economic field, namely, for simplifying production function
sets according to Cobb-Douglas model [7].

Section 2 describes the Cobb-Douglas model for
economic production functions [7]. Section 3 presents the
basic principles of Buchberger algorithm for computing the
Gröbner basis. In Section 5, we present the model we
propose for generalizing the Cobb Douglas model at a
macroeconomic scale, taking into account many countries. In
Section 6, we describe the basic principles of categorical
polynomial definition and processing from our Mathematica
implementation, while Section 7 presents our
implementation of computing the Gröbner basis.
Conclusions reveal the most important contributions of the
paper.

II. COBB-DOUGLAS MODEL FOR ECONOMIC

PRODUCTION FUNCTIONS

In economic modelling, the Cobb-Douglas functional
form of production functions [7] is widely used to represent
the relationship of a production output in respect with
specific inputs. The model was proposed by Knut Wicksell
[14], and tested against statistical evidence by Paul Douglas
and Charles Cobb in 1928 [7].

The model states [7] that a production function can be
written in the functional form:

 KALY  (1)
where:
Y the production output
L represents the labour input
K represents the capital input
A, α and β are constants determined by technology. The

exponents α and β are output elasticity coefficients with
respect to labour and capital, respectively. Output elasticity
measures the responsiveness of output to a change in levels
of either labour or capital used in production [7].

According to the original model [7], the following cases
are considered relevant:

 if α+β=1, the production function has constant

returns to scale;

 if α+β<1, returns to scale are decreasing;

 if α+β>1 returns to scale are increasing. Assuming

perfect competition, α and β can be shown to be

labour and capital’s share of output.
Cobb and Douglas were influenced by statistical

evidence that appeared to show that labour and capital shares
of total output were constant over time in developed

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

countries; they explained this feature by applying statistical
fitting in least-squares regression of their production function
[7].

III. BUCHBERGER’S ALGORITHM

Buchberger’s algorithm computes the Gröbner basis [4]

of a given set of polynomials over a coefficient ring as a

“simplified” polynomial set; the Gröbner basis G for a

polynomial set F is a “reduced” form of G [4], [5] that

generates the same ideal as F.

The “simplified” polynomial set that is obtained in the

reduction process is significant in solving various problems

involving polynomial sets. Buchberger synthesizes [5] a

variety of application fields for Gröbner basis algorithm,

revealing its importance in systems theory. The application

presented in this paper is founded on the principles presented

in [5].

Based on category theory and generic principles, recent

versions of Buchberger’s algorithm [6] are abstract

implementations, which offer generic frameworks for

applying the algorithm. The implementation we presented

for Mathematica in [1] and [3] are based on these generic

principles, proving to have important flexibility and

extendibility advantages in applying the algorithm over

various domains

Present built-in Mathematica implementations of

Buchberger algorithm support polynomials over the

following coefficient domains: InexactNumbers, Rationals,

RationalFunctions and Polynomials[x] [16].

IV. GENERALIZED COBB-DOUGLAS MODEL. APPLYING

BUCHBERGER’S ALGORITHM

We generalize the Cobb-Douglas model for production

functions in order to represent production states at a

macroeconomic scale. We consider that such a model is

relevant in order to better grasp the production phenomena

that appear in economies.

In this respect, we propose a set of Cobb-Douglas

functions for expressing the necessary labour input and

capital input to obtain a certain output within an economy.

Taking into consideration the economy of a country, we

consider the variables Lp, Kp as the labour input,

respectively capital input for obtaining the product p and

Gross Domestic Product (GDP) as the global output. For

more economic regions, Gross Domestic Products (GDPs)

can be represented as:

 m1,=i,iY , - Yi being the Gross Domestic Product

(GDP) generated by region i. If we consider that each region

i produces ni products, we arrive to the generalized model

(2).

We consider that the model we propose is relevant for

expressing production characteristics at a macroeconomic

scale. Furthermore, the possibility of expressing production

characteristics in regional development frameworks, can be

very useful in the context of economic European integration.

11

1

11

11

12

2

12

2

11

1

11

1 112111 ... n

n

n

n ppnpppp KLAKLAKLAY




21

2

22

22

22

2

22

2

21

1

21

1 222212 ... n

n

n

n ppnpppp KLAKLAKLAY




.

. (2)

.

mmn

mn

pmn

mnm

mmmm

ppmnppmppmm KLAKLAKLAY


 ...2

2

2

2

1

1

1

1 21

Consequent to defining the functional production

polynomials, an important task is to simplify the polynomial

set in order to obtain in a canonical form the functions that

express labour and capital inputs for different products and

regions at a macroeconomic scale. Such a form is important

for characterizing the production features in a synthesized

manner. In order to obtain this simplified form, we can

apply Buchberger’s algorithm.

For monomial exponents representing elasticity

coefficients that have real values, we can apply the

reduction steps by computing the necessary subtractions of

the exponent lists: in respect with the order relation on the

real set , extended to tuples of real exponents, n, the

“leading” monomial of each polynomial can be reduced by

computing monomials with corresponding exponent

subtractions in respect with the other polynomials. For the

reduction step in Buchberger’s algorithm, instead of taking

into account the least common multiple for pairs of

exponent vector lists, we compute the maximum of two

exponent vector lists in respect with n

In our Mathematica implementation based on generic

principles [1], [3], we easily defined the Lcm (Least

Common Multiple) operator in the exponent vector package

VectExp as a Max operator and we supplementary defined

the real domain in our coefficient domain package DomCoef

– for which a code overview is given in Fig. 1:

DomReal[R_]:=Module[{},
 InelCom[R,"+","*","0","1"];

 (* Mathematica definition [2] *)
 R["+",a_Real,d_Real]:=a+d;
 R["+",a_Real,Infinity]:=Infinity;
 R["+", Infinity, d_Real]:=Infinity;
 R["-",a_Real,b_Real]:=a-b;
 R["*",a_Real,b_Real]:=a*b;
 R["/",a_Real,b_Real]:=a/b;
 R["=",a__,b__]:=SameQ[a,b];
 R["<>",a__,b__]:=UnsameQ[a,b];
 R["<",a__,b__]:=a<b;
 R["<=",a__,b__]:=a<=b;
 R[">",a__,b__]:=a>b;
 R[">=",a__,b__]:=a>=b;
 R["0"]:=0;
 R["max"]:=Infinity;
 R["/",a_List,b_Real]:=a/b;
 R["+",a__,b__]:=a+b;
 R["-",a__,b__]:=a-b;
 R["*",a__,b__]:=a*b;
 R["/",a_List,b_Real]:=a/b;
 R["/",a__,b__]:=a/b;]

Figure 1. Mathematica abstract definition for the real domain.

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

The higher impact of labour L or capital K variables in

the above described polynomials – (2) – can be evaluated by

taking into account appropriate orderings of Li, i=1,m, Ki,

i=1,m. Moreover, the model can be enhanced by

supplementary taking into account new production

variables. In this respect, [17] proposes to take into account

a third variable as a sum of variables with a smaller

production impact. Still, the model we propose may take

into account any number of variables.

We applied Buchberger’s algorithm for sets of 2-3

polynomials representing GDPs in 2 countries by taking

input values and elasticity coefficients proposed in [17].

For cases in which the reduced polynomial set should be

further processed, numeric solving methods may be

consequently applied

V. POLYNOMIAL CATEGORICAL IMPLEMENTATION

In order to implementing the multivariate polynomial

category, we define an auxiliary domain for monomials [1],

naming it the exponent vector domain [9].

An exponent vector with a given base of identifiers (for

example, x,y,z) will be retained by the list of exponents

corresponding to each variable. In operating upon exponent

vectors, we use two types of representations: lists,

respectively products of primes with the exponents in

question [9]. We use the latter representation [1], the

exponent vector e1, e2, ..., en will be retained and processed

by the number

 , (3)

where p1, p2, ..., pn are prime numbers, for simplifying

computations - the first prime numbers. In this

representation, an exponent vector sum reduces to the

corresponding prime numbers product, whereas the greatest

common divisor (Gcd) and the least common multiple

(Lcm) can be computed by similar operations upon prime

products.

The exponent vector domain is an abelian monoid [2]

that introduces the following operations:

• computing neutral, minimum and maximum elements

("0", "Max","Min");

• conversions between the list and number internal forms

("ListaInVectorNr", "VectorNrInLista");

• sum ("+"), greatest common divisor ("Gcd") and least

common multiple ("Lcm") for two exponent vectors;

• positiveness test for an exponent vector ("Pozitiv");

• divisibility test for two exponent vectors ("|");

• relational operators ("<", ">", "=", "<=", ">=", "<>")

between two exponent vectors - we shall consider the

lexicographical ordering corresponding relations are

implemented by string[...] functions);

• conversions between external and internal forms ("Inp",

"Out").

We give in Fig. 2 an overview of the Mathematica

package which defines the exponent vector domain (for the

functions in italics we omitted the body). All operations

within an exponent vector domain V, created by the

function VectExp[V,lv], where lv is the variable list

representing the base, will be prefixed with the domain

name and will have as the first parameter the operation

code. For example, V["+",v1,v2] returns the sum of two

exponent vectors (in internal form), V["Gcd",v1,v2]

computes the greatest common divisor, while

V["Lcm",v1,v2] computes the least common multiple.

BeginPackage["VectoriExp‘"]
VectExp::usage="VectExp[V ,lv List] defines the
exponent vector domain V, with the base lv "
Intreg::usage="Integer domain"
string::usage="string operations"
Begin["VectoriExp‘Private‘"]
Needs["HierMath‘"]

string["Rel",s1 String,s2 String]:= Mathematica definition[2]
(*tests the relation <, =, > between s1 and s2, returning -1,0,1*)
(* "Rel" may be "<", ">", "=", "<>" *)

VectExp[V ,lv List]:= Mathematica definition [2] (*creates the

exponent vector domain V, with the base lv*)

MonoidCom[V,"+",en]; Mathematica definition [2]
(*creates an abelian monoid [2]*)

V["ListaInVectorNr",l List]:= Mathematica definition [2]

V["VectorNrInLista",nr Integer]:= Mathematica definition[2]
V["+",l1 List,l2 List]:=l1+l2;
V["-",l1 List,l2 List]:=l1-l2;

V["Pozitiv",l List]:= Mathematica definition [2]
(*tests if all list elements are >0*)

V["Gcd", l1 List, l2 List]:= Mathematica definition [2]
(*computes greatest common divisor *)

V["Lcm", l1 List, l2 List]:= Mathematica definition [2]
(computes teast common multiple *)

V["Rel", l1 List, l2 List]:= Mathematica definition [2] (*tests the

relation <, =, > between l1 and l2, returning -1,0,1*)

V["|",l1 List,l2 List]:= Mathematica definition[2]
(* divisibility test *)

V["Out",l List]:= Mathematica definition [2]
(* output form *)

V["Inp",e]:= Mathematica definition [2] (*transforms an input with

the syntax x[^e1]*y[^e2]... into the internal list form;
the code is rather complex and based on Mathematica
internal forms*)
V["Max"]:=max; V["Min"]:=min;]
End[]
EndPackage[]

Figure 2. Mathematica abstract definition for the exponent vector domain.

The representation of a polynomial (polinom.m package)

uses a list of two elements: the exponent vector list,

lexicographically ordered, and the corresponding coefficient

list [2]. For example, the polynomial 2*xˆ2*z-5*y (with the

base {x,y,z}) will be represented as {{{0,1,0},{2,0,1}}, {-

5,2}}

We give below the main part of the Mathematica

package which defines the polynomial category (polinom.m

package [2]; we omitted the bodies for the functions in

italics). Within Mathematica definitions, functional and

parametric specification of operations within various

domains can be noticed (Figs. 1, 2).

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

For example, within the polynomial domain Pol, defined

by Polinom[Pol, DCoef, DVect, l], where DCoef is the

coefficient domain and DVect is the exponent vector

domain with the base l, the construction

DVect["|",v,Pol["Monom",i,P]] performs a divisibility test -

within DVect exponent vector domain - between two

exponent vectors, the second one corresponding to a

monomial selected from a polynomial P (by "Monom"

operation, within the polynomial domain Pol).

DVect["+",o1,o2] is the sum of o1 and o2 in DVect domain,

whereas DCoef["+",o1,o2] is a sum in DCoef domain. An

overview of the Gröbner basis package we have defined [1],

[2] is given in Fig. 3:

BeginPackage["Polinom‘"]
Polinom::usage="Polinom[Pol,DCoef,DVect,l] defines the
multivariate polynomial domain Pol, over the coefficient domain
DCoef and the exponent vector domain DVect (of monomials), with
the basis l"
Begin["Polinom‘Private‘"]
Needs["VectoriExp‘","DomCoef‘"]
Polinom[Pol ,DCoef ,DVect ,baza List]:=Module[n,lv,
(*defines a multivariate polynomial domain, with coefficients in
DCoef, over the exponent vector domain Dvect, with the base
baza*)
InelCom[DCoef,"+","*"]; (*creates an abelian ring [2]*)
VectExp[DVect,baza];
Pol["DomCoef"]:=DCoef;
Pol["DomVectExp"]:=VectExp;
Pol["Init"]:=List[List[DVect["Max"]],List[]];
(*returns the null polynomial, with a sentinel in the exponent vector
list*)

Pol["Nul",P]:=Mathematica definition [2] ;
(* returns True if P is null *)
Pol["Nr",P]:=Length[P[[1]]]-1; (*dimension*)
Pol["Monom", i ,P]:=P[[1]][[i]];
(*the ith monomial from the polynomial P*)
Pol["Coef",i ,P]:=If[i<=Pol["Nr",P],P[[2]][[i]],0];

Pol["Indice",l ,P]:= Mathematica definition [2]
(*the index of the monomial l in the polynomial P*)
Pol["MonomGrMax",P]:=P[[1]][[Pol["Nr",P]]];
Pol["CoefGrMax",P]:=P[[2]][[Pol["Nr",P]]];

Pol["AdaugMonom",T ,v ,c]:= Mathematica definition [2]
 (*adds to the polynomial T the monomial formed by the exponent
vector v and the coefficient c taking into account the lexicographical
ordering; if v exponent vector exists, it adds the coefficient c to the
appropriate existing one*)

Pol["MonomInPol",l :List,c :Number]:= Mathematica definition [2]
(*transforms a monomial into the equivalent polyniomial *)

Pol["+",P1 ,P2]:= Mathematica definition [2]
(* returns the sum of P1, P2 *)

Pol["*",P1 :List,P2 :List]:= Mathematica definition [2]
(* returns the product of P1, P2 *)

Pol["&",nr :Number,P :List]:= Mathematica definition [2]
(*multiplies P by the number n*)
Pol["-",P1 ,P2]:=Module[{P}, (*polynomial subtraction *)
P=Pol["&",-1,P2]; Return[Pol["+",P1,P]];];

Pol["/",P ,v List,c :Number]:= Mathematica definition [2]
(* divides each of P’s monomials by the exponent vector v and
coefficient c and returns the result *)

Pol["|",v List,P]:= Mathematica definition [2]
(* tests whether the exponent vector v divides any of P’s monomials
and returns True or False *)

Pol["Out",P]:= Mathematica definition [2] (*polynomial display*)

Pol["Inp",e]:= Mathematica definition [2] (*transforms an input

polynomial into the internal form; the code is rather complex and
based on Mathematica internal forms*)
] (*Module*)
End[]
EndPackage[]

Figure 3. Mathematica abstract definition for the polynomial domain.

The following section is dedicated to the Gröbner basis

algorithm and its application to production functions.

VI. GROEBNER BASIS ABSTRACT IMPLEMENTATION AND

APPLICATION CASES FOR PRODUCTION FUNCTIONS

We implemented Buchberger’s algorithms for

computing the Gröbner basis and the reduced Gröbner basis

[4] of a polynomial set into Mathematica packages:

groebner.m and groebred.m [1], [2]. The functions which

compute the Gröbner bases are parameterized with a

polynomial domain, therefore they can be applied for

polynomial domains over any consistent coefficient domain

that is previously defined. Note that a polynomial domain is

created by using the polynomial categorical definition

within polinom.m package, which is parameterized with a

coefficient domain defined in domcoef.m package [1], [2].

Within groebner.m package [1] we implemented

Buchberger’s Gröbner basis algorithm [4] - BazaGroebner[]

function. We completely described the algorithmic iterations

for computing the normal form of a polynomial modulo a

polynomial set - Normal[Pol,F,g] function, where Pol is the

current polynomial domain. For computing the S-

polynomial of two polynomials, we implemented the

formula proposed in [9] - SPol[] function.

An overview of the Gröbner basis package we have

defined [1], [2] is given in Fig. 4:

BeginPackage["Groebner‘"]
Normal::usage="Normal[Pol,F,g] verifies if g is in normal form mod
F, over the polnomial domain Pol"
FormaNormala::usage="FormaNormala[Pol,DCOef,DVect,F,p]
returns the p’s normal form modulo F; operations are
performed over the polynomial domain Pol"
SPol::usage="SPol[Pol,DCoef,DVect,P1,P2] computes
Rez=SPol(P1,P2), in the polynomial domain
Pol(DCoef,DVect)"
BazaGroebner::usage="BazaGroebner[Pol,DCoef,DVect,F] returns,
for F set of polynomials over the domain
Pol(DCoef,DVect), F’s Groebner base"
MultPolExtInInt::usage="MultPolExtInInt[Pol,M] transforms a set of
polynomials in external representation into internal representation
(operations over Pol domain)"
MultPolIntInExt::usage="MultPolIntInExt[Pol,M] transforms a set of
polynomials in internal representation into external representation
(operations over Pol domain)"
Tiparire::usage="prints a set of polynomials given in internal
representation"
TipPerechi::usage="prints a set of polynomial pairs given in internal
representation"
Begin["Groebner‘Private‘"]
Needs["Polinom‘"]

PolNormal[Pol ,F List,g]:= Mathematica definition [2]
(*Verifies whether g is in normal form mod F, i. e. no

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

monomial of g is divisible by the leading monomial of
any polynomial belonging to F - set of polynomials.
Operations are performed within the polynomial domain Pol*)

FormaNormala[Pol ,DCoef ,DVect ,F List,p]:=]:= Mathematica

definition [2]
(*Returns p’s normal form mod F; operations are performed
within the polynomial domain Pol(DCoef,DVect) *)

SPol[Pol ,DCoef ,DVect ,P1 ,P2]:= Mathematica definition [2]
(*computes, within the polynomial domain P, Rez=SPol(P1,P2)*)

MultPolIntInExt[Pol ,M List]:=]:= Mathematica definition [2]
(*transforms M polynomial set from internal form into a set of
external forms*)

MultPolExtInInt[Pol ,M List]:= Mathematica definition [2]
(*transforms M polynomial set from external form into a set of
internal forms *)

Tiparire[Pol ,M List]:= Mathematica definition [2] (*displays a

polynomial set*)

TipPerechi[Pol ,M List]:= Mathematica definition [2]
(*displays a set of polynomial pairs*)

BazaGroebner[Pol ,DCoef ,DVect ,baza List,M List]:= Mathematica

definition [2]
(* returns the Groebner basis of the polynomial set M
(given as a list), within the polynomial domain Pol *)
End[]
EndPackage[]

Figure 4. Mathematica abstract definition for the Gröbner basis algorithm.

Groebred.m package [1], [2] implements Buchberger’s
algorithm for computing the reduced Gröbner basis [4].

Comparing our implementation to the Mathematica built
in one GroebnerBasis[{poly1, poly2, …},{x1, x2, …}], our
abstract based one is obviously slower, but it enables
computations over various abstract coefficient domains,
which can be defined. The built in GroebnerBasis
implementation works over rational numbers, integers,
rational functions or inexact numbers, with additional
computation options [16].

We have applied the Gröbner basis algorithm in
Mathematica for various cases of production functions
proposed for Romania and Moldova for the period 2002-
2004 in [17]. We have denoted with R the polynomial
corresponding to Romania’s Gross Domestic Product (GDP)
function for this period and with M – the polynomial
corresponding to Moldova’s Gross Domestic Product (GDP)
function for the same period.

For the set of polynomial production functions:
R = 37.4

a
 62.6

b
 X+45.3

a
 54.7

b
 Y+49.1

a
 50.9

b
 Z

M = 33.8
a
 66.2

b
 X+33.4

a
 66.6

b
 Y+40.5

a
 59.5

b
 Z

where X, Y, Z are technology based variables, and using
symbolic elasticity coefficients a, b [17], the Gröbner basis
still contains two polynomials in X, Y, Z:

{-1531.14
a
 3621.14

b
 Y+1249.16

a
 4169.16

b
 Y-1659.58

a

3369.58
b
 Z+1514.7

a
 3724.7

b
 Z,33.8

a
 66.2

b
 X+33.4

a
 66.6

b

Y+40.5
a
 59.5

b
 Z,37.4

a
 62.6

b
 X+45.3

a
 54.7

b
 Y+49.1

a
 50.9

b
 Z}

Using the ,  elasticity proposed in [17] as a, b values,
we obtain the liniar polynomials:

R = 45.3457 X+48.6099 Y+49.7656 Z
M = 43.4613 X+43.2359 Y+46.7666 Z
The GroebnerBasis function reduces the X variable

(corresponding to year 2002) from the R polynomial and the

Y variable (corresponding to year 2003) from the M
polynomial, generating the following simplified set:

{1. Y+0.27755 Z,1. X+0.799942 Z}
We may infer that during the period 2002-2004, for

Romania and Moldova, the most relevant evolution years
from the production point of view were 2003 and 2004 for
Romania and 2002 and 2004 for Moldova. Such results have
to be correlated with other macroeconomic variables.

Another possible application case would be the one
taking into account countries from Latin America,
considering the K values as capital flows and the L values
given in [18]. Simplified polynomials would mean similar
evolutions in different countries.

VII. CONCLUSION AND FUTURE WORK

We addressed a problem from an economic field, namely
a generalized model for production functions, by applying
computer algebra tools.

We generalized Cobb-Douglas model for production
functions in multi-product and regional contexts by
constructing a representative polynomial set in respect with
the production inputs (labour, capital, other variables) and
we propose the application of Buchberger’s algorithm in
simplifying the polynomial set that is obtained. We consider
that Gröbner basis algorithm is important in processing
(according to various variable orderings) the polynomial set
that is constructed and in synthesizing the most important
economic characteristics taken into account by the model.

We presented our Mathematica categorical
implementation of Buchberger’s algorithm for Gröbner basis
algorithm that can be applied for performing necessary
computations. We underline the importance of such abstract
implementations, which can be easy adapted for various
domains based on parameterized principles. Our
implementation is actually an extension of Mathematica with
a type system.

We applied the Gröbner basis algorithm for Gross
Domestic Product (GDP) functions of Romania and
Moldova for the period 2002-2004 using data proposed by
Zaman et al in [17] and we discuss the results of applying
Buchberger’s simplification algorithm on these polynomial
sets. Similar processings can be performed for other
countries, using specific values that are available in
economic analyses for the input data in the production
functions.

We intend to further work on the proposed model and to
study other cases from the economic literature. We also
intend to extend our implementation of Buchberger
algorithm for new domains, based on the same abstract
principles.

REFERENCES

[1] A. B. Andreica, “Parameterized Types for Categorical Definitions in
Mathematica”, Symbolic and Numeric Algorithms for Scientific
Computing - SYNASC 2002 International Workshop, Mirton,
Editors: D. Petcu, V. Negru, D. Zaharie, T. Jebelean, 2002, pp. 8-25.

[2] A. B. Andreica, “Defining Algebraic Categories in Mathematica”,
Analele Universitatii de Vest Timisoara, Seria Matematica -
Informatica, Categ CNCSIS B+, XLI, 2003, pp. 9 - 23

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

http://reference.wolfram.com/mathematica/ref/GroebnerBasis.html

[3] A B. Andreica, “Implementing Parameterized Type Algorithm
Definitions in Mathematica”, Eighth International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, Lisa
O’Connor editor, IEEE Computer Society Press, 2006, pp. 1-6.

[4] B. Buchberger, “Gröbner Bases: An Algorithmic Method in
Polynomial Ideal Theory”, in Mathematics and Its Applications,
Multidimensional Systems Theory, N. K. Bose Ed., D. Reidel
Publishing Co., 1985, chapter 6.

[5] B. Buchberger, “Gröbner Bases and Systems Theory”,
Multidimensional Systems and Signal Processing, 12, Kluwer
Academic Publishers, 2001, pp. 223-251.

[6] B. Buchberger, “Towards the Automated Synthesis of Groebner
Bases Algorithm”, RACSAM, vol Falta, 2004, pp.1-10.

[7] C W. Cobb and P H Douglas, “A Theory of Production”, American
Economic Review, 18, 1928, pp. 139-165.

[8] D. Gruntz and M. Monagan, “Introduction to Gauss”, MapleTech,
Birkhuser, 9, 1993, pp. 23-35.

[9] D. Gruntz, “Gröbner Bases in Gauss”, MapleTech, Birkhuser, 9,
1993, pp. 36-46.

[10] K. Iwancio and M. Singer, “Applications of Groebner Bases”,
http://www4.ncsu.edu/~kmiwanci/app_gbases_2.pdf [retrieved: 05,
2013]

[11] V. Levandovskyy, “Non–commutative Computer Algebra for
polynomial algebras: Groebner bases, applications and
Implementation”, http://d-nb.info/976594358/34 [retrieved: 05,
2013]

[12] V. Powers and B. Reznick, “A new bound for Pólya's Theorem with
applications to polynomials positive on polyhedra”, Journal of Pure
and Applied Algebra, Vol. 164, Issues 1–2, Oct 2001, pp. 221–229
http://www.sciencedirect.com/science/article/pii/S002240490000155
9 [retrieved: 05, 2013]

[13] C. Ratiu-Suciu, F. Luban, D. Hincu, and N. Ene, Modelarea si
simularea proceselor economice , Biblioteca electronică a Academiei
de Studii Economice Bucureşti, [retrieved: 05, 2013]

http://www.ase.ro/biblioteca/carte2.asp?id=70&idb=7

[14] B. Sandelin, “The Early Use of Wicksell-Cobb-Douglas Function: A
Comment on Weber”, Journal of the History of the Economic
Thought, Vol. 21, Issue 02, Cambridge University Press, June 1999,
pp. 191-193, doi: http://dx.doi.org/10.1017/S105383720000314X.

[15] S. Wolfram, Mathematica, 1992.

[16] Mathematica Online Tutorial [retrieved: 06, 2013]
http://reference.wolfram.com/mathematica/guide/Mathematica.html

[17] G. Zaman, Z. Goschin, I. Partachi, and C. Herteliu, “The Contribution
of Labour and Capital to Romania’s and Moldova’s Economic
Growth”, Journal of Applied Quantitative Methods, Vol. 2, Issue 1,
March 30, 2007, http://jaqm.ro/issues/volume-2,issue-
1/pdfs/zaman_goschin_partachi_herteliu.pdf [retrieved: 06, 2013]

[18] Capital flows and labour costs values for countries in 2013
http://www.tradingeconomics.com/country-list/capital-flows,
[retrieved: 09, 2013]

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

http://www.sciencedirect.com/science/journal/00224049
http://www.sciencedirect.com/science/journal/00224049
http://www.sciencedirect.com/science/journal/00224049/164/1
http://www.ase.ro/biblioteca/carte2.asp?id=70&idb=7

