
A UsiXML Proposal for a Pattern-Oriented and Model-Driven Architecture for

Interactive Systems

Mohamed Taleb
Department of Software Engineering &

Information Technology

Software Engineering Research Laboratory

École de technologie supérieure, University

of Quebec, Montreal, Quebec, Canada

mohamed.taleb.1@ens.etsmtl.ca

Ahmed Seffah
Depatment of Computer Science and

Software Engineering

Human-Centered Software Engineering Group

Concordia University, Montreal, Quebec,

Canada

seffah.ahmed@yahoo.fr

Alain Abran
Department of Software Engineering &

Information Technology

Software Engineering Research Laboratory

École de technologie supérieure, University of

Quebec, Montreal, Quebec, Canada

alain.abran@etsmtl.ca

Abstract—Despite its obvious and well-publicized potential to

support the model-driven engineering of user interfaces, the

(re)use of the rich variety of Human-Computer Interaction

(HCI) design patterns, we have today has not achieved the

acceptance and widespread applicability of HCI design

patterns within the existing model-driven engineering

framework. This paper proposes a specification and a User
Interface eXtensible Markup Language (UsiXML)-based

formalization of a unifying Pattern-Oriented and Model-driven

Architecture (POMA). We have already introduced a set of

extensions, called the POMA Markup Language (POMAML),

designed to facilitate the specification of all the intrinsic

components of the POMA architecture, including its patterns

and models, and the relationships between these two artifacts

within the model.

Keywords-Pattern-Oriented; Model-Driven Architecture;

UsiXML; User Interface; POMA.

I. INTRODUCTION

Day-to-day experience suggests that it is not enough to
approach a complex design with a set of models and model-
driven engineering languages and tools. The developers
must also be able to use (reuse) proven solutions emerging
from the best model-driven practices for building models
and their transformations, as well as for generating code for
diverse platforms.

Without these solutions, developers are unable to
properly define valid models, and so cannot take full
advantage of the power of the model orientation, resulting in
poor performance. Invalid models will lead to poor
scalability and usability. Furthermore, the designer might
find himself “reinventing the wheel” when attempting to
develop an application.

We propose to enhance, extend, or rethink the activities
and artifacts of the model-driven engineering frameworks
using patterns for model construction, transformation, and
mapping. We proposed POMA (Pattern-Oriented and
Model-driven Architecture) [1] as a unifying architecture to
bridge the gap between patterns and models, as well as
between the model-driven engineering and pattern-oriented
design frameworks.

Specifically, we consider the possible extensions to the
User Interface eXtensible Markup Language (UsiXML)
collection of models [2] and the four basic levels of model

abstraction defined in the Cameleon Reference Framework
[2]. UsiXML defines, validates, and standardizes an open
User Interface Description Language, while increasing the
productivity and reusability of multi-platform and multi-
context interactive applications. It also improves the
usability and accessibility of these applications.

In our ongoing research, we are aiming at specifying and
representing the components of the POMA architecture. We
suggest extensions to the concepts of UsiXML to formalize
a language called POMAML (Pattern-Oriented and Model-
driven Architecture Markup Language). In other words,
POMA is a unifying architecture to bridge the gap between
patterns and models using POMAML.

This paper is organized as follows. Section 2 introduces
related work on POMA fundamentals, the basic concepts of
the POMA architecture, and the basic structural notation of
UsiXML. Section 3 primarily describes the application of
UsiXML in the POMA architecture. Section 4 presents an
illustrative case study. Section 5 presents a summary and
directions for future work.

II. RELATED WORK

Over the past two decades, research on interactive

system and User Interface (UI) engineering has resulted in

several architectural models, which constitute a major

contribution not only to facilitate the development and

maintenance of interactive systems, but also to promote the

standardization, portability, and ergonomic usability (ease

of use) of the interactive systems developed. Such

architectures provide a clear separation of concerns [3]. In

particular, they decouple the UI from the system semantics,

and define the reusable and the standardized UI

components.

A number of UI languages and notations have been

suggested to specify architecture and model user interfaces

for different platforms and at different levels of abstraction.

For example, User Interface Markup Language (UIML) [4]

is a meta-language that allows the developer to describe the

UI in generic terms and to use style descriptions to map the

UI to various target platforms. UIML was developed to

address the need for a uniform UI description language for

building multi-platform systems. eXtensible User-interface

Language (XUL) [5; 6] is an official Mozilla initiative,

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

which provides an XML-based language for describing

window layout. The goal of XUL is to build cross platform

systems that are easily portable to all the operating systems

on which Mozilla runs. XUL provides a clear separation

between the UI definition (the various widgets that make up

the UI) and its visual appearance (the layout and the “look

and feel”).

EXtensible Interface Markup Language (XIML)

followed a declarative interface modeling language called

MIMIC [7], and provides a way to describe the UI without

worrying about its implementation. The aim of XIML is to

describe the various abstract aspects (domain, task, and

user) and concrete aspects (presentation and dialog) of the

UI throughout the development life cycle. In addition,

XIML supports the definition of mapping from abstract

elements to concrete elements [8].

TERESA [9] provides tools to allow developers to

interactively define mappings between the various models.

Web Services eXtensible Markup Language (WSXML) [10]

integrates Web services and XML into the Service Oriented

Architecture. Web services constitute a technological

approach that is well suited to bridge information systems,

and can enable this integration, even when systems are

implemented on disparate platforms or through differing

technologies. XML is useful for a variety of data exchange

applications, and is a foundation technology for such

enterprise strategies as Web services, and likely has a future

in enterprises.

GrafiXML, developed by Limbourg et al. [2], is an

original UI builder, in that it enables designers and

developers to design several UIs simultaneously for multiple

contexts of use, i.e., for many users, platforms, and

environments. GrafiXML is an intelligent UI builder, in that

it maintains model consistency between these

representations through a set of mappings based on the UI

ontology.

Following the lead of the object-oriented software

design community, HCI practitioners investigated design

patterns as one possible way to capture and use the best

design practices. An HCI design pattern is defined as a

named, reusable solution to a recurring user problem in

different contexts of use, including the various computing

platforms (Web, Graphical User Interface (GUI), mobile

applications, etc.). Relationships between patterns have been

explored to combine related patterns into pattern languages,

resulting in a lingua franca for design [12].

Hundreds of HCI design patterns are freely available on

the Web. However, providing a list of patterns and their

loosely defined relationships, as is done for most HCI

pattern languages, is insufficient for effectively driving

design solutions. Understanding when a pattern is applicable

during the design process and how it can be used, as well as

how and why it can or cannot be combined with other

related patterns, are key notions in the application of

patterns.

Javahery and Seffah [3] proposed a design approach,

called Pattern-Oriented Design (POD), which provides a

framework for guiding designers through stepwise design

suggestions. At each predefined design step, designers are

given a set of applicable patterns. This process is in stark

contrast to the current use of pattern languages, where there

is no defined link to any sort of systematic method. Pattern

relationships are explicitly described, which allows

designers to compose patterns based on an understanding of

these relationships. In POD, patterns are building blocks at

different levels of abstraction, which makes them extremely

useful for designers when driving the UI design based on

user experiences [14; 15; 3].

The proposed Pattern-Oriented and Model-driven

Architecture (POMA) (Figure 1) [1] identifies an extensive

list of pattern categories and types of models aimed at

providing a pool of proven solutions to these problems. The

models of patterns span several levels of abstraction, such as

domain, task, dialog, presentation, and layout. The proposed

POMA architecture illustrates how several individual

models can be combined at different levels of abstraction

into heterogeneous structures, which can then be used as

building blocks in the development of interactive systems.

The various components of the POMA architecture are

detailed in [1], and include:

 The architectural levels and various categories of
patterns [16], [17], and [19];

 The Platform Independent Model (PIM) and
Platform Specific Model (PSM) [18];

 The pattern composition rules for selecting and
composing patterns corresponding to each type of
PIM model [16] and [18];

 The rules for mapping patterns and PIM models to
produce PSM models for multiple platforms [16]
and [18];

 The rules for transforming PIM to PIM models and
PSM to PSM models [20];

 The rules for source code generation;

 The generation of the whole of application.
The rationale and strengths of the POMA architecture

are as follows:

 POMA facilitates the use of patterns by beginners as
well as experts;

 POMA supports the automation of both the pattern-
driven and model-driven approaches to design;

 POMA supports the communication and reuse of
individual expertise regarding good design
practices;

 POMA can integrate all the new technologies,
including traditional office desktops, laptops,
Palmtops, PDAs (with or without keyboards),
mobile telephones, and interactive televisions,
among others.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

 Domain Model

[POMA.PIM]

Task Model

 [POMA.PIM]

Dialog Model

[POMA.PIM]

Layout Model

 [POMA.PIM]

Transformation

T1

Transformation

T2

Transformation

T4

The Symbol Represents an interaction

Transformation

T3

Presentarion

Model

[POMA.PIM]

 Domain Model

[POMA.PSM]

Task Model

[POMA.PSM]

Dialog Model

[POMA.PSM]

Layout Model

[POMA.PSM]

Transformation

T’
1

Transformation

T’
2

Transformation

T’
4

Transformation

T’
3

Presentation

Model

[POMA.PSM]

POMA : Pattern-Oriented and Model-driven Architecture

PIM : Platform Independent Model

PSM : Platform Specific Model

GenerationCode

Generation

rules

Architectural Level

and Categories of

Patterns

Interactive

Syatem Source

Code

Language

used

1. Navigation

Patterns

2. Interaction

Patterns

3. Visualization

Patterns

4. Presentation

Patterns

6. Information

Patterns

5. Interoperability

Patterns

Transformation

rules

Mapping

rulesComposition

rules

Patterns

Composition
Patterns

Mapping
(PIM to PSM)

L
a

n
g

u
a

g
e

u
s

e
d

PIM PSM

(PIM to PIM)

and/or

(PSM to PSM)

(PSM to source code)

Figure 1. POMA architecture for interactive system development [1].

The User Interface eXtensible Markup Language

(UsiXML) [21; 24] is an XML-compliant markup language.

It is an approach for describing the structure and

presentation aspects of the UI to describe dialog modeling

[22]. Limbourg et al. [2] describe the structured UsiXML,

based on the following four basic levels of abstraction

defined in the Cameleon reference framework. This

framework is intended to represent the UI development life

cycle for context-sensitive interactive applications. In other

words, the framework defines UI development steps for

multi-context interactive applications. It structures

development processes for two contexts of use into four

development steps (each development step being able to

manipulate any specific artefact of interest as a model or a

UI representation):

1. Task and Concepts (the highest level), where the user

task is defined based on his viewpoint, along with the

various objects that are manipulated by it.

2. Abstract User Interface (AUI): abstracts the Concrete

User Interface (CUI) into a UI definition that is

interaction modality independent (e.g.,

graphical/vocal interaction);

3. Concrete User Interface (CUI): abstracts the Final

User Interface (FUI) into a UI definition that is

independent of any computing platform;

4. Final User Interface (FUI): a UI running on a

particular platform, either by interpretation or by

execution.

UsiXML is defined as a set of XML schemas, each

corresponding to one of the models within the scope of the

language. It consists of a User Interface Description

Language (UIDL), which is a declarative language

capturing the essence of what a UI is, or should be,

independently of physical characteristics. It describes the

constituent elements of the UI of an application at a high

level of abstraction: widgets, controls, containers,

modalities, interaction techniques, etc. Despite that,

UsiXML does not require the use of any particular

development process, which means that designers are free to

choose the most appropriate abstraction level at which to

begin their projects [23].

III. POMA COMBINED WITH THE USIXML APPROACH

To tackle some of the weaknesses identified in related

work, a set of UsiXML concepts proposes to specify and

formalize the POMA architecture within the UsiXML

perspective (Figure 3) and its language, which is called the

POMA Markup Language (POMAML) and is described in

section 4 (Pattern-Oriented Modeling Architecture Markup

Language). The formalization is achieved in visual,

structural, and formal notations using XML for modeling

the patterns and models of the POMA components

described in section II in order to generate the specifications

for various types of UI engineered for interactive systems.

Our aim is to persevere with this objective, and continue to

design and reuse POMA architecture specifications that

span different levels of abstraction, such as the domain,

task, dialog, presentation, and layout models, until the final

layout of the various UIs has been generated.

Because of the number of concepts it embodies,

UsiXML is used to illustrate the POMA architecture (Figure

3). On the left is a series of development steps that comply

with the Cameleon reference framework [22], and on the

right are the concepts supported by UsiXML, and the

transformations and mappings applied to it. POMA

architecture based on UsiXML classifies UIs for supporting a

target platform and a context of use, and enables to structure

the development life cycle into five levels of abstraction and

patterns categories as follows (Figure 2):

1. Categories patterns library. These patterns of

different categories are defined and formalized in

XML language;

2. Five categories of models in PIM and PSM (Task,

Domain, Dialog, Presentation, Layout) used in

POMA architecture, providing examples, for a

model-driven architecture for interactive systems to

resolve many recurring design problems, examples of

which include: (1) decoupling the various aspects of

Web applications such business logic, the user

interface, navigation and information architecture; (2)

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

isolating platform-specific problems from the

concerns common to all interactive systems.
3. Abstract User Interfaces (AUI) of PIM. This

abstraction level defines a generic user interface

description of PIM models completely independent of

the considered UI toolkit and multi-platforms.

4. Concrete User Interface (CUI) Platform Independent

Model (PSM) for different platforms (Laptop, PDA,

Cellular, Palmtop, interactive television, iPhone,

etc.). This level defines the graphical concrete user

interfaces, including the concrete interaction objects

(CIO), for each specific platform.

5. Final User Interface (FUI). This level is to generate

the source code of the entire application for a specific

platform.

Categories Patterns

Library of POMA architecture

Five categories of Models

(Task, Domain, Dialog,

Presentation, Layout)

Abstract User Interface (AUI)

Platform Independent Model

(PIM)

Concrete User Interface (CUI)

Platform Independent Model

(PSM) for different platforms

Final User Interface

Source code Generation

Composition = selection + composition of

different categories of patterns by applying

rules

PIM = UML class diagram based on Patterns

Transformation of models = PIMPIM and/or

PSM  PSM by applying rules

AUI = Generic PIM completely independent of

the considered UI toolkit (Java Swing, Windows

Forms, etc.) and different platforms

CUI = Graphical Concrete Interaction Object

(dialog box, check box, check options, menus, etc.)

Formalization of PSM model in XML

Code generation of the entire application for each

platform (Laptop, PDA, Cellular, Palmtop,

interactive television, etc.) in C++, Java, etc.

M
a

p
p

in
g

 o
f
 p

a
t
t
e

r
n

s

f
r
o

m
 P

I
M

 t
o

 P
S

M

Domain and Task Model = CTTE based on

Paternò description + UML class diagrams

Dialog model = DialogGrapgEditor for

interaction and navigation + UML class diagram

Presentation and Layout models = UML class

diagram

C
o

m
p

o
s
it

io
n

P
a

t
t
e

r
n

s

T
r
a

n
s
f
o

r
m

a
t
io

n
 o

f
 m

o
d

e
ls

 =

P
I
M

 t
o

 P
I
M

 m
o

d
e

ls
 a

n
d

/o
r

P
S

M
 t

o
 P

S
M

C
o

d
e

g
e

n
e

r
a

t
io

n

o
f
 P

S
M

m
o

d
e

l

Figure 2. POMA architecture in UsiXML perspective.

In this section, we describe a design that illustrates and

clarifies the core ideas underlying the approach combining

the POMA architecture with the UsiXML, and explain its

practical relevance. The proposed POMA architecture

combined with UsiXML (Figure 2) shows how UsiXML

concepts are used to represent the components of the POMA

architecture to generate the source code of the various

concrete UIs of the application.

With the POMA architecture, it is possible to design a

formalism to describe a software architecture based on the

composition of several patterns to generate different types

of applications. This formalism can take three forms:

 Structural, using the XML formalization language
called POMAML;

 Formal, using mathematical methods and concepts;

 Visual, using UML specifications such as sequence
diagrams and class diagrams.

Here, we focus essentially on the use of the structural

notation to describe the entire POMAML language (Figure

3) of the POMA architecture components, such as patterns,

composition rules, levels of PIM and PSM models,

transformation rules, mapping rules, and generation rules

based on the XML notation.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 3. POMAML language

IV. AN ILLUSTRATIVE CASE STUDY

This following example presents the domain model

(Figure 4) of the POMA architecture for a laptop platform

using UsiXML concepts. In this case, the more those high-

level tasks are decomposed, the easier it is to use the

reusable task structures that have been obtained or captured

from other projects or systems. Here, these reusable task

structures are documented in the form of patterns. This

approach ensures an even greater degree of reuse.

Figure 4. Domain Model in POMAML language

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

V. SUMMARY AND FUTURE WORK

In this paper, we have discussed a perspective from

which the POMA architecture is specified and represented

using the UsiXML approach. Previously, we had provided a

set of extensions, called POMAML, which makes it possible

to generate source code in different programming languages

for each platform of an interactive system.

Our research has resulted in the integration and

formalization of UsiXML for the POMA architecture. It has

also led to avenues for further research, such as:

 Description of a process for the generation of source
code from POMA’s five PSM models;

 Development of a tool that automates the POMA
architecture-based engineering process;

 Standardization of the POMA architecture to all
types of systems, and not only to multi-platform
interactive systems;

 Quality assurance of the applications produced,
since a pattern-oriented architecture will also have
to provide for the encapsulation of quality attributes
and facilitate prediction;

 Validation of the migration, usability, and overall
quality of the POMA architecture for interactive
systems using existing methods;

 Evaluation of the effectiveness and learning time of
the POMA architecture for both novices and expert
users.

REFERENCES

[1] M. Taleb, A. Seffah, and A. Abran, “Interactive Systems Engineering:
A Pattern-Oriented and Model-Driven Architecture”, The 2009

International Conference on Software Engineering Research and
Practice (SERP'09), July 2009, pp. 636-642, Las Vegas, USA.

[2] Q. Limbourg, J. Vanderdonckt1, B. Michotte1, L. Bouillon1, and V.
López-Jaquero, “USIXML: A Language Supporting Multi-path

Development of User Interfaces”, vol. 3425/2005, Engineering

Human Computer Interaction and Interactive Systems, July 2005, pp.
200-220, DOI 10.1007/b136790, ISBN 978-3-540-26097-4, Springer

Berlin/Heidelberg Publisher.

[3] H. Javahery and A. Seffah, “A Model for Usability Pattern-Oriented
Design”, in Proceedings of TAMODIA2002, July 2002, pp. 104-110,

Bucharest, Romania.

[4] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M. Williams, and J.

E. Shuster, “UIML: An Appliance-Independent XML User Interface

Language”, Proceedings of the 8th International WWW Conference,
May 1999, pp. 1695–1708, Elsevier Science Publishers, Toronto,

Canada.

[5] XUL, The XML User Interface Language, 2004, at:
http://www.xulplanet.com, [retrieved: April, 2013].

[6] XUL, XUL Tutorial, 2004, at:

http://www.xulplanet.com/tutorials/xultu, [retrieved: April, 2013].

[7] A. Puerta and D. Maulsby, “Management of Interface Design
Knowledge with MODI-D”, in Proceedings of IUI’97, January 1997,

pp. 249-252, Orlando, FL, USA.

[8] A. Puerta and J. Eisenstein, “Towards a General Computational
Framework for Model-Based Interface Development Systems”, in

Proceedings of IUI’99, January 1999, pp. 171-178, Los Angeles, CA,
ACM Press, New York, USA.

[9] TERESA, Transformation Environment for Interactive Systems
Representation, 2004, at: http://giove.cnuce.cnr.it/teresa.html,

[retrieved: April, 2013].

[10] P. Classon and J. Prem, “SOA: Integrating XML and Web Services,”

LiquidHub Inc., 2004, at:

http://www.liquidhub.com/docs/Horizons_WSXML_primer_v3.pdf,

[retrieved: April, 2013].

[11] B. Michotte and J. Vanderdonckt, “GrafiXML, A Multi-Target User

Interface Builder based on UsiXML”, Fourth International

Conference on Autonomic and Autonomous Systems, IEEE
Computer Society, March 2008, pp. 15-22, DOI

10.1109/ICAS.2008.29, ISBN 0-7695-3093-1/08.

[12] T. Erickson, “Lingua Franca for Design: Sacred Places and Pattern
Language”, in Proceedings of Designing Interactive Systems, August

2000, pp. 357-368, ACM Press, New York (NY), USA.

[13] J. O. Borchers, “Pattern Approach to Interaction Design”,

Proceedings of the DIS 2000 International Conference on Designing
Interactive Systems, August 2000, pp. 369-378, ACM Press, New

York, USA.

[14] A. Granlund and D. Lafrenière, “A Pattern-Supported Approach to
the User Interface Design Process”, Workshop Report, UPA’99

Usability Professionals’ Association Conference, June-July 1999a,
Scottsdale, AZ.

[15] M. Taleb, H. Javahery, and A. Seffah, “Pattern-Oriented Design

Composition and Mapping for Cross-Platform Web Applications, the
13th International Workshop, DSV-IS 2006, vol. 4323/2007, Springer-

Verlag, July 2006, Trinity College, Dublin Ireland, DOI 10.1007/978-

3-540-69554-7, ISBN 978-3-540-69553-0, Berlin Heidelberg,
Germany.

[16] M. Taleb, A. Seffah, and A. Abran, “Pattern-Oriented Architecture
for Web Applications”, 3rd International Conference on Web

Information Systems and Technologies (WEBIST 2007), March

2007, pp. 117-121, ISBN 978-972-8865-78-8, Barcelona, Spain.

[17] M. Taleb, A. Seffah, and A. Abran, “Model-Driven Design

Architecture for Web Applications”, The 12th International
Conference on Human Centered Interaction International (FIC-HCII

2007), Beijing International Convention Center, Beijing, P. R. China,

vol. 4550/2007, July 2007, pp. 1198-1205, Springer-Verlag, Berlin
Heidelberg, Germany.

[18] M. Taleb, A. Seffah, and A. Abran, “Pattern-Oriented Design for
Cross-Platform Web-based Information Systems”, The 2007 IEEE

International Conference on Information Reuse and Integration (IEEE

IRI-07), August 2007, pp. 122-127, Las Vegas, USA.

[19] M. Taleb, A. Seffah, and A. Abran, “Transformation Rules in POMA

architecture”, The 2010 International Conference on Software

Engineering Research and Practice (SERP'10), July 2010, pp. 636-
642, Las Vegas, USA.

[20] UsiXML, What is UsiXML?, Université catholique de Louvain,
Belgium, 2007, at:

http://www.usixml.org/index.php?mod=pages&id=2, [retrieved:

April, 2013].

[21] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, M. Florins,

and D. Trevisan: “UsiXML: A User Interface Description Language
for Context-Sensitive User Interfaces”, in Proceedings of the

AVI’2004 Workshop on Developing User Interfaces with XML:

Advances on User Interface Description Languages, UIXML’04,
Gallipoli, Italy, EDM-Luc, May 2004, pp. 55–62.

[22] M. Winckler, F. M. Trindade, A. Stanciulescu, and J. Vanderdonckt,
“Cascading Dialog Modeling with UsiXML,” Proceedings of the 15th

Int. Workshop on Design, Specification, and Verification of

Interactive Systems DSV-IS’2008, Kingston, Canada, Lecture Notes
in Computer Sciences, vol. 5136, Springer, Berlin, July 2008, pp.

121-135.

[23] Cover Pages (website hosted by OASIS): online resource for markup
language technologies, “User Interface eXtensible Markup Language

(UsiXML), 2005, at:

http://xml.coverpages.org/userInterfaceXML.html#usixm, [retrieved:
April, 2013].

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-290-5

ADVCOMP 2013 : The Seventh International Conference on Advanced Engineering Computing and Applications in Sciences

