
A Fuzzy Test Cases Prioritization Technique for Regression Testing Programs with
Assertions

Ali M. Alakeel

Faculty of Computing and Information Technology
University of Tabuk
Tabuk, Saudi Arabia
alakeel@ut.edu.sa

Abstract—Program assertions have been recognized as a
supporting tool during software development, testing, and
maintenance. Therefore, software developers place assertions
within their code in positions considered to be error prone or
have the potential to lead to software crash or failure. Like any
other software, programs with assertions have to be maintained.
Depending on the type of modification applied to the modified
program, assertions also may have to go through some
modifications. New assertions may also be introduced in the new
version of the program while some assertions may be kept the
same. This paper presents a novel approach for test cases
prioritization using fuzzy logic for the purpose of regression
testing programs with assertions. The proposed approach builds
upon previous research in the fields of assertions-based software
testing and assertions revalidation. In a first step, our method
utilizes fuzzy logic concepts to measure the effectiveness of a
given test case in violating a program assertion. The result of the
first step is then used in prioritization test cases during the
regression testing of programs with assertions. The main
objective of this research is to show that fuzzy logic concepts may
be employed to measure the effectiveness of a given test case in
violating programs assertions during the regression testing of a
modified program.

Keywords--Regression Testing; Fuzzy Logic; Program
Assertions; Software Testing; Software Test Data Generation.

I. INTRODUCTION
Program assertions have been recognized as a supporting

tool during software development, testing, and maintenance,
e.g., [1-5]. Therefore, software developers place assertions
within their code in positions considered to be error prone or
have the potential to lead to software crash or failure, e.g., [4].
An assertion specifies a constraint that applies to some state of
computation. When an assertion evaluates to a false during
program execution (this is called assertion violation), there
exists an incorrect state in the program. Many programming
languages support assertions by default, e.g., Java and Perl. For
languages without built-in support, assertions can be added in
the form of annotated statements. For example, Korel and Al-
Yami [2], presents assertions as commented statements that are
pre-processed and converted into Pascal code before
compilation. Many types of assertions can be easily generated
automatically such as boundary checks, division by zero, null
pointers, variable overflow/underflow, etc. For this reason and
to enhance their confidence in their software, programmers
may be encouraged to write more programs with assertions.

Recognizing the importance of program assertions, some
recent research efforts have been devoted for the development
of algorithms and methods specifically designed for programs

with assertions. For example, Korel et al. reported in [6] an
algorithm for assertions revalidations during software
maintenance. In [3], an algorithm is presented for the efficient
processing and analysis of a large number of assertions present
in the program. Also, a regression testing method for program
with assertions was proposed in [7].

Like any other software, programs with assertions have to
be maintained. Software maintenance usually involves
activities during which the software is modified for different
reasons. Some of the reasons for which software may be
modified are fixing faults, introducing a new functionality,
improving the performance of some parts of the software
through the introduction of new algorithms, etc. A study in [8]
shows that there is a probability of 50-80% of introducing
faults to the modified software during software maintenance.
For this reason regression testing is performed during software
maintenance for the purpose of testing the modified software.
There exists many regression testing methods which may be
classified as specification-based or code-based. Specification-
based regression testing strategies, e.g., [9-11] generate test
cases based on the specification of the software, while code-
base regression testing, e.g., [7], [12-15] strategies depends on
the software structural elements to generate test cases.

Regression testing is a very labor intensive and may be
responsible for approximately 50% of software maintenance’s
cost [16]. In a systematic software development environment,
all types of regression testing methods usually involve the
usage of an original test suite which is used for the purpose of
testing the original program before it has been modified.
Sensible regression testing methods have to utilize existing test
suite in some form. For example, a simple regression testing
strategy would rerun existing testing suite, as it is, on the
modified program while introducing new test cases to test new
features. Although this method is simple, it is not practical for
commercial software because existing test suite is usually very
large and may take weeks to rerun on the new modified
software. Therefore, regression test selection techniques, test
suite minimization technique and test case prioritization
techniques are proposed in the literature.

To mitigate the cost associated with running the whole
existing test suite, the main objective of regression test
selection techniques, e.g., [17-18], and test suite minimization
techniques, e.g., [19-20], is to select a representative subset of
the original test suite using information about the original
program, its modified version and the original test suite. It
should be noted that both of the regression test selection and
test suite minimization techniques eliminate some elements of
the original test suite which may undermine the performance of

78Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

these techniques. Test case prioritization techniques, e.g., [21-
24] order elements of the original test suite based on a given
criterion. Furthermore, test case prioritization techniques do not
involve the selection of a subset of the original test suite. In this
presentation, we will concentrate on test case prioritization
techniques, therefore regression test selection and test suit
minimization will not be discussed any further.

Depending on the type of modification applied to the
modified program which includes assertions, assertions also
may go through some modifications. New assertions may also
be introduced in the new version of the program while some
assertions may be kept the same as in the original program.
This paper presents a novel approach for test cases
prioritization using fuzzy logic for the purpose of regression
testing programs with assertions. The main objective of this
research is to show that fuzzy logic concepts may be employed
to measure the effectiveness of a given test case in violating
programs assertions during the regression testing of a modified
program. The proposed method builds upon previous research
in the fields of assertions-based software testing and assertions
revalidation reported in [6-7]. In a first step, our method
utilizes fuzzy logic concepts [25-27] to measure the
effectiveness of a given test case in violating a program
assertion. The result of the first step is then used in
prioritization test cases during the regression testing of
programs with assertions.

The rest of this paper is organized as follows. Related work
is discussed in Section II. We present our proposed fuzzy test
cases prioritization model in Section III. Our conclusions and
future work is discussed in Section IV.

II. RELATED WORK
Previous research in using fuzzy logic for the purpose of

test case prioritization is scant. In [28], a fuzzy expert system is
reported where this system is used for a telecommunication
application. To build the required knowledge base for the
expert system reported in this research, the researchers had to
acquire knowledge from different sources such as customer
profile, past test results, system failure rate, and the history of
system architecture changes. Although this expert system has
shown promising results with respect to the specific application
it was designed for, it is necessary to acquire a new knowledge
base for new applications. Also, the proposed method in [28]
treats the software under test as a black box; therefore, it
cannot be used for the purpose of regressing testing programs
with assertions.

A. Regression Tesing for Programs with Assertions
This section briefly introduces the concept of regression

testing for programs with assertions. For more detail, the reader
is referred to [7]. Given an original program Po and a modified
version of this program Pm, let Ao= {ao1, ao2, ao3, … aon} be a
set of assertions found in Po and Am= {am1, am2, am3, … amz} be
a set of assertions found in Pm. Let V ⊆ Am be a set of
assertions that are nominated for revalidation [6], using
previous test suits, during the process of regression testing of
Pm. Depending on the type of modification applied to the
modified version, Pm, some assertions may have been kept the
same; some assertions may have been modified, and new

assertions may have been introduced. The main objective of
regression testing for programs with assertions reported in [7]
is to reduce the cost of regression testing of programs with
assertions through the utilization of previous test suits that are
used during the initial development process. Furthermore, this
method concentrates on assertions that are kept the same and
those which are modified; new assertions are not covered
because new test cases must be generated to explore these
assertions. The main elements of this method are described in
the next paragraph.

Let ami ∈ Am be an assertion found in Pm. Assume that ami
was not changed from its original form in Po nor was it affected
by the modifications [6] introduced to produce Pm. Therefore,
ami, will be nominated, by the proposed approach, to belong to
the set V, i.e., ami ∈ V. Suppose that assertions-oriented
testing as reported in [2], has been performed on the original
version Po and a set of test cases were generated during this
process and were kept for later usage during regression testing.
Specifically, let aok ∈ Ao be an assertion found in Po and let
T(aok)= {tk1, tk2, tk3,…, tkr} be the set of test cases which were
generated to explore this assertion during the application of
assertion-oriented testing [2] on the original program Po. In
order to ensure that faults are not introduced during the
production of the modified version Pm, regression testing has to
be performed on Pm which has a set of assertions Am. Given aok
∈ Ao, T(aok)= {tk1, tk2, tk3,…, tkr}, and ami ∈ V, it has been
shown in [7] that the old test suit, T(aok), may be used to
revalidate assertion ami during regression testing of the
modified version Pm. Furthermore, it has been shown that using
previous test suits to revalidate assertions may uncover faults in
the modified version if these revalidated assertions were
violated. Especially, faults for which assertions were originally
designed to guard against in the original version of the program
had these faults re-introduced in the modified version Pm [7].

Although the regression testing method for programs with
assertions [7] has succeeded in saving the time to develop new
test cases through the utilization of previous test suites that was
used during the initial testing of the program, this method still
consider using all test cases found in the previous test suit.
Therefore, this method may not perform well in the present of a
large previous test suit with thousands of test cases. In this
paper we propose a test case prioritizing method which uses
fuzzy logic concepts to select only a subset of the previous test
cases. The proposed method is described in Sec. III.

B. Test Case Prioritization
The main goal of the prioritization techniques is to increase

the probability of detecting faults at an earlier stage of testing
[21-24]. Additionally, test case prioritization techniques
objective is the utilization of previous test cases for the purpose
of future testing. As stated in [21], there may exists several
goals of test cases prioritization such as: (1) to increase test
suites fault detection rate; (2) to minimize the time required to
satisfy a testing coverage criterion; (3) to enhance tester’s
confidence in the reliability of the software in a shorter time
period; (4) to be able to detect risky faults as early as possible;
(5) to increase the chances of detecting faults related to
software modification during regression testing.

79Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

In [21], an extensive study of nine different test case
prioritization techniques was presented and compared
according to their ability in fault detecting during regression
testing. During that study a detection rate function is used to
reorder test cases according to their ability to reveal program
faults during regression testing. In [24], Extended Finite State
Machine (EFSM) system model is proposed to be used instead
of real programs to apply the same technique presented by [21]
in order to reduce the cost of running test cases in real
programs. Bryce et al. [22] presented a test prioritization model
for Event-Driven software. This model concentrates on testing
those parts related to the interface in GUI applications.

C. Assertions Revalidation
To deal with assertions in modified programs during

regression testing, an assertions revalidation model was
proposed in [6]. This approach is based on data dependency
analysis and program slicing. In that research an algorithm is
presented which is based on the computation of a static slice
[29-30], for each assertion found in both the original and the
modified program. These program slices are then compared to
decide which assertions are to be revalidated. Although this
method is very useful in identifying assertions that need to be
revalidated, new test cases to revalidate assertions are
generated from scratch for each assertion. For industrial size
programs with a possibly large number of assertions, this
approach may be very expensive.

D. Fuzzy Logic Background
In our daily life we use words and terms which are vague or

fuzzy such as:

“The server is slow” or

“The weather is hot” or

“John is tall.”

Fuzzy Logic concepts, e.g., [25-27], give us the ability to
quantify and reason with words which have ambiguous
meanings such the words (slow, hot, tall) mentioned above. In
fuzzy sets [25], an object may belong partially to a set as
opposed to classical or “crisp” sets in which an object may
belong to a set or not. For example, in a universe of heights (in
feet) for adult people defined as µ= {5, 5.5, 6, 6.5, 7, 7.5, 8}, a
fuzzy subset TALL can be defined as follows:

TALL = [0/5, .125/5.5, .5/6, .875/6.5, 1/7, 1/7.5, 1/8].

In this example, the degree of membership for the members
of the universe, µ, with respect to the set TALL may be
interpreted as that the value “6” belongs to the set TALL 60%
percent of the time while the value 8 belongs to the set TALL
all the time.

III. A FUZZY TEST CASES PRIORITIZATION TECHNIQUE
In this paper, our objective is to prioritize test cases

according to their relative rate to violate a given program
assertion. Note that it has been shown in [2] that violating an
assertion implies revealing a programming fault. Our proposed
fuzzy logic model for prioritization test cases during regression
testing of programs with assertions is described as follows.
Given an original program Po and a modified version of this

program Pm, let Ao= {ao1, ao2, ao3, … aon} be a set of assertions
found in Po and Am= {am1, am2, am3, … amz} be a set of
assertions found in Pm. Assume that we are performing
regression testing for the modified version Pm using the
regression testing method for programs with assertions as
reported in [7]. Let To={t1, t2, t3,…, tq} be a previous test suite
that was used during the process of assertion-oriented test data
generation [2] of the original version Po. For commercial
software, testers usually deal with a very large number of test
cases which make running all of them impractical. Therefore,
given a set of test cases, our objective is to only reorder them
according to some criterion that may convince us that some test
cases may have better chances in violating a given assertion
than the others. In this research, our criterion is the history of
the test case during the process of testing the original program
Po.

Our problem is stated as follows. Given an assertion aok ∈
Ao and T(aok)= {tk1, tk2, tk3,…, tkr} as the test suite which were
generated to explore assertion, aok, during the application of
assertion-oriented testing [2] on the original program Po. Our
goal is to measure the effectiveness of a given test case, tkj ∈
T(aok), in violating a given program assertion amr ∈ Am, during
the regression testing process of the modified version, Pm. To
solve this problem we propose a fuzzy logic test cases
prioritization technique shown in Fig. 1. The following
paragraph describes how the proposed approach works.

Let tkj ∈ T(aok), be a test case which was used to explore
assertion aok ∈ Ao during the initial testing of a program Po. To
measure the effectiveness of tkj in violating the corresponding
assertion amr ∈ Am in the modified version, Pm, during the
process of regression testing the program Pm, we create a fuzzy
set [25] called Effectiveness as follow. Effectiveness = {low,
moderate, high}. Test cases related to any assertion aok ∈ Ao
where aok belongs to the set “Affected” will have low
effectiveness in exploring the corresponding assertion in the
modified version of the program. Similarly, test cases related
to any assertion aok ∈ Ao where aok belongs to the set “Partially
Affected” will have moderate effectiveness in exploring the
corresponding assertion in the modified version of the
program. By the same token, test cases related to any assertion
aok ∈ Ao where aok belongs to the set “Not Affected” will have
high effectiveness in exploring the corresponding assertion in
the modified version of the program.

Figure. 2. The S-function

80Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

In order to define the membership or grade values for each
test case in the fuzzy set Effectiveness, we apply fuzzy logic
techniques as follows. Each test case is assigned a membership
depending on its “effectiveness,” i.e., low, moderate or high.
The membership value is in the interval [0,1] and reflects the
compatibility of each specific test case to the fuzzy set
Effectiveness. The assignment of membership values (grades)
is based on the S-function [27] which is shown in Fig. 2. Note
that other fuzzy clustering techniques other than the S-function
may be used for the purpose of building up fuzzy sets and the
assignment of membership functions. S-functions may be
described as follows [27].

▫ A mathematical function that is used in fuzzy sets as a
membership function.

▫ A simple but valuable tool in defining fuzzy functions
such as the word “tall”.

▫ The objects × are elements of some universe X. In this
research, × represents the set of test cases we are
dealing with during our prioritization mechanism,
where these test cases are elements of the universe of
the program possible input data.

▫ α, β, and γ are parameters which may be adjusted to fit
the desired membership data. The parameter α
represents the minimum boundary and γ represents the
maximum boundary. The parameter β is the middle
point between α and γ and is computed as (α + γ) / 2.

▫ Depending on the application, a membership function
may be controlled from different sources [27]. For
example, in an expert system, the membership function
will be constructed based on the experts’ opinion
modeled by the system.

▫ In this research, values of the parameters α and γ are
determined after extermination with the proposed
approach. As described previously, the history of each
test case will be monitored during this experiment with
regard to the ability of this specific test case in
violating a given assertion in the program under test.

Figure 1. Fuzzy Regression Testing Model for Programs with Assertions

The model shown in Fig. 1 may be described as follows.
First, we analyze both Po and Pm in order to classify assertions,
Am, found in Pm with respect to how much the modifications
inflected on Pm had affected those assertions. To perform this
analysis, we use assertions revalidations model [6] to classify
the set of assertions, Am, found in Pm into three different sets:
“Affected,” “Partially Affected” and “Not Affected.” Based on
the categorization of assertions in the analysis’s step, the next
step is to categorize test cases according to their expected
effectiveness during regression testing of the modified, version
of the program, i.e., Pm. Because the “effectiveness” of a test
case is a “fuzzy” term which is very hard to measure in crisp
value, we propose using fuzzy logic techniques to deal with
measuring the effectiveness of a given test case as described
previously.

IV. CONCLUSION and FUTURE WORK
In this paper, we presented a new technique for test cases

prioritization to be used during regression testing of programs
with assertions. The proposed model employs fuzzy logic
concepts to measure the effectiveness of a given test case in
violating programs assertions during the regression testing of a
modified program. Our proposed method builds upon the
concepts of previous research in the fields of assertions-based
software testing and assertions revalidation. Furthermore, the
proposed method is intended to be used in conjunction with
traditional black-box and white-box software testing methods.
In order to evaluate the proposed method, we intend to
perform and extensive experimental study using a variety of
programs with assertions. The results of this experiment will
then be compared with existing test case prioritizations
techniques reported in the literature.

REFERENCES

[1] Rosenblum, D., “Toward A Method of Programming
WithAssertions,” Proceedings of the International Conference
on Software Engineering, pp. 92-104, 1992.

[2] Korel B. and Al-Yami A., “Assertion-Oriented Automated Test
Data Generation,” Proc. 18th Intern. Conference on Software
Eng., Berlin, Germany, pp. 71-80, 1996.

[3] Alakeel A., “An Algorithm for Efficient Assertions-Based test
Data Generation,” Journal of Software, vol. 5, no. 6, pp. 644-
653, 2010.

[4] Alakeel A. and Mahashi M., “Using Assertion-Based Testing in
String Search Algorithms," Proceedings of The Third Int. Conf.
on Advances in System Testing and Validation Lifecycle,
Barcelona, Spain, pp. 1-5, 2011.

[5] Alakeel A., “A Framework for Concurrent Assertion-Based
Automated Test Data Generation,” European Journal of
Scientific Research, vol. 46, no. 3, pp. 352-362, 2010.

[6] Korel B. , Zhang Q., and Tao L., “Assertion-Based Validation of
Modified Programs,” Proc. 2009 2nd Int'l Conference on
Software Testing, Verification and Validation, Denver, USA,
pp. 426-435, 2009.

[7] Alakeel A., “Regression Testing Method for Programs with
Assertions,” American Journal of Scientific Research, no. 11,
pp. 111-122, 2010.

Original Program
with Assertions Po

Modified Version of
Po (i.e. Pm)

Assertions Revalidations Process

Pm with Tagged Assertions

A Previous Test Suite
Generated for Po

Proposed Fuzzy Logic Model for
Regression Testing

Affected
Assertions

Partially
Affected

Not
Affected

Assertions Tagging Process in Pm

81Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

[8] Hetzel W. and Hetzel B., "The Complete Guide to Software
Testing," John Wiley & Sons, Inc., New York, NY, 1991.

[9] Beydeda S. and Gruhn V.,"An Integrated Testing Technique for
Component-Based Software," Proc. ACS/IEEE Int'l Conference
on Computer Systems and Applications, pp. 328-334, 2001.

[10] Tsai W., Bai X., Paul R., and Yu L., "Scenario-Based Functional
Regression Testing," Proc. IEEE Int’l Conference on Sofware
and Applications, pp. 496-501, 2001.

[11] Korel B., Tahat L., and Vaysburg B., "Model Based Regression
Test Reduction Using Dependence Analysis," Proc. IEEE Int'l
Conferance on Software Maintenance, pp. 214-233, 2002.

[12] Chen Y., Rosenblum D., and Vo K., "Testtube: System for
Selective Regression Testing," Proc. IEEE. Int'l Conference on
Software Engineering, pp. 211-220, 1994.

[13] Gupta R., Harrold M., and Soffa M., "An Approach to
Regression Testing Using Slices," Proc. IEEE Int'l Conference
on Software Maintenance, pp. 299-308, 1992.

[14] Korel B. and Al-Yami A., "Automated Regression Test
Generation," Proc. ACM Int'l Symposium on Software Testing
and Analysis, pp. 143-152, 1998.

[15] Rothermel G. and Harrold M., "A Safe, Efficient Regression
Test Selection Technique," ACM Tran. on Software Eng. and
Methodology, vol. 6, no. 2, pp.63-68, 1996.

[16] Beizer B., “Software System Testing and Quality Assurance,”
Thomson Computer Press, 1996.

[17] Rothermel G. and Harrold M., "Selecting Tests and Identifying
Test Coverage Requirements for Modified Software," Proc.
IEEE Int'l Conference on Software Maintenance, pp. 358-367,
1994.

[18] Masri W., Podgurski A., and Leon D., "An Empirical Study of
Test Case Filtering Techniques Based on Exercising Information
Flows," IEEE Trans. Software Eng., vol. 33, no. 7, pp. 454-477,
2007.

[19] Logyall J., Mathisen S. , Hurley P., and Williamson J.,
"Automated Maintenance of Avionics Software," Proc. IEEE
Aerospace and Electronics Conference, pp. 508-514,1993.

[20] Tsai W., Bai X., Paul R., and Yu L., "Scenario-Based Functional
Regression Testing," Proc. IEEE Int’l Conference on Sofware
and Applications, pp. 496-501, 2001.

[21] Rothermel G., Untch R., Chu C., and Harrold M., "Prioritizing
Test Cases for Regression Testing," IEEE Trans. Software Eng.,
vol. 27, no. 10, pp. 929-948, 2001.

[22] Bryce C, Sampath S., and Memon A., “Develping a Single
Model and Test Prioritization Strategies for Event-Driven
Software,” IEEE Trans. Software Eng., vol. 37, no. 1, pp. 48-64,
2010.

[23] Korel B., Koutsogiannakis G., and Tahat L., "Application of
System Models in Regression Test Suite Prioritization," Proc.
IEEE Int'l Conference on Software Maintenance, pp. 247-256,
2008.

[24] Korel, B., Tahat L., and Harman M., "Test Prioritization Using
System Models," Proc. IEEE Int'l Conference on Software
Maintenance, pp. 559-568, 2005.

[25] Zadeh L., “Fuzzy Sets,” Information and Control, no. 8, pp. 338-
353, 1965.

[26] Kosko B., “Neural Networks and Fuzzy Systems: A Dynamical
Systems Approach to Machine Intelligence,” Prentice-Hall,
Englewood Cliffs, NJ, 1992.

[27] Giarratano J., “Expert Systems: Principles and Programming,”
PWS-KENT Publishing Company, Boston, 1989.

[28] Xu Z., Gao K., and Khoshgoftaar T., “Application of Fuzzy
Expert System in Test Case Selection for System Regression
Test,” IEEE International Conference on Information Reuse and
Integrationon , pp. 120-125, 2005.

[29] Horowitz S., Reps. T., and Binkley D., "Interprocedural Slicing
using Dependence Graphs," ACM Trasn. Programming
Languages and Systems, vol. 12, no. 1, pp. 26-60, 1990.

[30] Weiser M., 1984, "Program Slicing," IEEE Trans. Software
Engineering, vol. 10, no. 4, pp. 352-357, 1984.

82Copyright (c) IARIA, 2012. ISBN: 978-1-61208-237-0

ADVCOMP 2012 : The Sixth International Conference on Advanced Engineering Computing and Applications in Sciences

