
An Analysis of MOSIX Load Balancing Capabilities

Siavash Ghiasvand, Ehsan Mousavi Khaneghah, Sina Mahmoodi Khorandi, Seyedeh Leili Mirtaheri, Najmeh

Osouli Nezhad, Meisam Mohammadkhani, and Mohsen Sharifi

School of Computer Engineering

Iran University of Science and Technology

Tehran, Iran

ghiyasvand@comp.iust.ac.ir, emousav@iust.ac.ir, sina_mahmoodi@comp.iust.ac.ir, Mirtaheri@iust.ac.ir,

{n_osouli, m_mohammadkhani}@comp.iust.ac.ir, and msharifi@iust.ac.ir

Abstract—Mosix has long been recognized as a distributed

operating system leader in the high performance computing

community. In this paper, we analyze the load-balancing

capabilities of a Mosix cluster in handling requests for different

types of resources through real experiments on a Mosix cluster

comprising of heterogeneous machines.

Keywords-Mosix Load balancing; CPU–intensive process;

I/O-intensive process; IPC-intensive process; Memory- intensive

process.

I. INTRODUCTION

Mosix used to be a pioneerd distributed operating system
for cluster computing. It was built as an extension to the
UNIX operating system kernel and provided a single system
image to applications. Using Mosix, developers could build
SMP machines by clustering a number of dispersed
homogeneous machines running under UNIX.

Load balancing the computational power of clustered
machines is a well-known mandatory requirement to the
provision of single system image and performance (i.e.,
response time) in homogeneous clusters [1]. Mosix has used
a decentralized and probabilistic approach to balance the
computational loads on clustered off-the-shelf machines. It
has used a special mechanism for scalable dissemination of
load information too. To prevent process or system
thrashing, it has also used a process reassignment policy
through sharing of memory.

In this paper, we intend to show experimentally the
capabilities of Mosix in balancing the loads on a Mosix
cluster comprised of heterogeneous machines. We have
designed and ran a number of tests to investigate if Mosix
achieves its acclaimed capabilities in balancing the load on
the cluster when requests for different cluster resources are
called.

The rest of paper is organized as follows. Section 2
presents a brief description of the Mosix load-balancing
mechanism. Section 3 presents our test programs and the
results of running them on a 5-node Mosix cluster, and
Section 4 concludes the paper.

II. MOSIX LOAD BALANCING MECHANISM

The load balancing mechanism of Mosix works in a
decentralized manner using load information of the clustered
machines. Process is the basic unit of load balancing in
Mosix . It includes appropriate mechanisms such as process

migration and remote system call for adaptive load
balancing. It reassigns processes when it decides to balance
the load between two nodes [2].

Mosix load balancing mechanism is based on three
components, load information dissemination, process
migration, and memory information dissemination. Mosix
can assign a new process to the best machine as well as
balancing the load on entire cluster [3]. In the remaining
parts, we describe load dissemination and balancing
mechanisms and our experiments written in C language
based on process behaviors.

Mosix employs CPU load, memory usage, and IPC
information to calculate machine‟s load and process needs.
Indeed these are load indices in Mosix. Mosix monitors these
resources, gathers their information and status, and packs
them into a message [3], [4]. It then sends the built message
to some other machines. Mosix uses depreciation to calculate
load information. When a new index is calculated, Mosix
changes it with respect to the depreciation rate. With this
idea, Mosix employs a history-based approach to balance the
load. Mosix monitors resources many times in a second. At
the end of each second, Mosix normalizes indices and sends
them into two randomly selected machines in the cluster.
Mosix stores information about a few numbers of machines
due to scalability reasons. This limited number is called
information window. When Mosix gathers information about
local resources, it selects two machines, one from its window
and the other from non-window machines. This mechanism
makes Mosix scalable. The main challenge with this
mechanism is what size of window is suitable. Simulations
show that if there is N machines in the cluster, a window size
equal to logN is suitable [3], [5].

One of the major drawbacks of Mosix information
dissemination is its periodic approach. The periodic
information dissemination can result in waste of network
bandwidth and CPU time. On the other hand, if there are
many changes in indices during a period, it will result in
unsuitable information. Event-driven information
dissemination solves these problems [6].

As mentioned earlier, Mosix employs CPU load, memory
usage and IPC information to balance and distribute load
among machines belonging to a cluster [3]. In the following,
we first describe the Mosix basic load balancing mechanism
and then discuss its memory sharing and IPC optimization.
In general, a load-balancing algorithm must provide four
steps: (1) indices computation (2) information dissemination

100Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

mailto:sina_mahmoodi@comp.iust.ac.ir
mailto:m_mohammadkhani%7D@comp.iust.ac.ir

(3) load balancing trigger, and (4) load balancing operation.
In step four, load balancer must decide on migration
destination and a candidate process.

CPU load balancing in Mosix operates based on the
amount of available CPU for each process. Mosix computes
the amount of CPU time taken by each process. It counts the
number of executable processes in a period (one second) and
normalizes it with CPU speed in favor of maximum CPU
speed in the cluster. Then it changes the index in favor of
depreciation to realize actual load based on load history.
Gathered information is disseminated between some
machines. The Mosix load balancing mechanism is triggered
when the difference between a local machine‟s load and the
windows machines‟ loads exceed a threshold. Load
balancing pair contains a machine with lower load index that
has enough memory space to host a migrant process.
Selecting a migrant process is an important stage of load
balancing operation. CPU-intensive processes have priority
for migration. Mosix limits the number of times a process is
allowed to migrate in order to prevent starvation. In this
paper we have designed three types of processes, CPU-
intensive, memory-intensive and IO-intensive [1], [3], [5],
[7].

Thrashing is a phenomenon in operating systems that
occurs by the growth of page faults. When free memory in
the system is decreased, processes requiring memory to bring
in their pages into memory, page fault. Mosix migrates a
process if free memory size drops below a threshold. Indeed,
this algorithm distributes processes in the memory of the
entire cluster. Although, this algorithm results in unbalanced
CPU load, but it can increase performance when system into
thrashes [3], [4], [8].

When free memory size drops below a threshold,
memory sharing algorithm is triggered. When free memory
size drops below this threshold, Mosix expects increases in
page faults. Therefore, determination of this threshold is a
crucial decision. Target machine at least must satisfy two
conditions. First, target machine must have enough space to
host a new process. Second, target machine must be in
window. Mosix usually selects a target machine with the
least CPU load. It selects a process with the least migration
cost that has caused memory overload. Migration of the
selected process must increase free memory size up to
threshold and migration must not overload the target
machine . If there is no such process, Mosix selects a larger
process that can be placed at the target machine. After this
replacement, if there is still memory overload, Mosix repeats
the above two steps. We have designed a program for this
algorithm [3], [8].

The main goal of balancing load based on IPC is to
reduce the communication overhead between processes
while keeping the load balanced as much as possible. CPU
load balancing tries to utilize all processors equally while
keeping communicating processes together results in lower
communication cost. Therefore, it would reduce response
time in the presence of load balancing if processes have low
communication. However, in real science applications,
communication between processes is high. Therefore,
balancing the load based on IPC information can lower the

response time. Mosix employs a producer consumer model
to optimize its load-balancing algorithm. In this model, each
consumer tries to find a producer that presents its product
with lower cost. In the cluster environment, products are
resources such as CPU cycles, memory and communication
channels. Consumers are processes residing on machines.
The cost of a resource is the amount of time that a process
spends to use one unit of that resource. Whereas a process
can run on another machine with lower cost, it is migrated to
that machine [3], [9].

Mosix computes the cost of each process based on CPU
load, free memory space, and IPC information. It uses a
heuristic to compute an approximate response time. The
algorithm is initiated when the cost difference between
running the process on the current machine and running it on
one of the window machines exceeds the migration cost.
Mosix selects a process with maximum difference and a
machine with the least cost as the target machine [3].

Mosix measures performance in terms of speed of CPU

in GHz unit. It also measures the load of each node by

counting the number of processes in each scheduling time

and computes the primary load as the average of counted

processes. It then normalizes the load relative to CPU

speedup. A load unit represents 100% utilization of a

'standard' processor [2], [3]. We use these measurements in

reporting the results of our experiments in Section III.

III. EVALUATION

We have deployed a 5-node cluster of openMosix to
analyze the behavior of Mosix in balancing the load on the
nodes of the cluster. Each node of cluster had direct access to
other nodes through an 8-port 10/100 Ethernet switch. All
nodes ran openSUSE 11.2 as their operating system and
were equipped with LAM/MPI. Table 1 shows more details
of the testbed.

TABLE 1 SPECIFICATION OF THE DEPLOYED

OPENMOSIX CLUSTER

System ID CPU Memory OS MPI

Node1 Intel1.7GHz 256MB openSUSE11.2 LamMPI

Node2
IntelCeleron
2.4GHz

256MB openSUSE11.2 LamMPI

Node3 Intel1.8GHz 256MB openSUSE11.2 LamMPI

Node4
IntelCeleron
2.4GHz

256MB openSUSE11.2 LamMPI

Node5
IntelCeleron
2.4GHz

1GB openSUSE11.2 LamMPI

We have designed and ran 7 test programs to examine the

behavior of openMosix„s load balancing mechanism with
different types of node overloading including CPU, I/O, and
IPC. We also tested its behavior on MPI directives.

A. Test No. 1, CPU-intensive

In this test, we check how openMosix reacts when

cluster is overloaded with CPU-intensive processes. We use

101Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

a process (Figure 1) with an infinite loop that consumes as

much CPU cycles as it could.

while (1){

;

 }

Figure 1 - Pseudo code of a CPU-intensive process

We ran 20 instances of this process with mosrun

command. Table 2 shows the results of these runs; the

number in each cell shows the number of instances of the

process on that node; we have ignored non-Mosix

processes; the mosrun command started from Node1. As it

is shown in Table 2, openMosix spreads the load on the

entire cluster, with respect to nodes‟ abilities.

TABLE 2 CPU-INTENSIVE TEST RESULTS

 Node1 Node2 Node3 Node4 Node5

Startup 20 - - - -

Balanced 4 4 4 4 4

The performance of each node depended on its processor

power. Figure 2 shows the performance of cluster on each

node.

Figure 2 - Performance of nodes

Figure 3 shows the loads on the cluster nodes when 5

instances of a specific process ran on the cluster. Mosix

calculates load for each node in the cluster with respect to

relative node performance and number of processes in run

queue. When numbers of processes on each machine are

equal the output load diagram is look like Figure 3.

Figure 3 – Loads on nodes for CPU-intensive processes

Normalizing load with respect to node‟s relative

performance, Mosix attempts to overcome the impact of

performance heterogeneity. It calculates relative

performance through dividing each node‟s performance by

maximum performance in cluster.

B. Test No. 2, I/O-intensive

In this test, we check how openMosix deals with I/O-

intensive processes. We use a process (Figure 4) with an

infinite loop that sends an empty string to the standard

output in each iteration.

while(1){

 printf(“”);

}
Figure 4 – Pseudo code of an I/O-intensive process

After running 20 instances of this I/O-intensive process

on the cluster, Mosix migrated them to other nodes with

respect to each node‟s performance. But before migrating

each I/O-intensive process, it created a shadow process with

a “./” prefix in front of its name on the main host mosrun

executed. While the process was migrated, the shadow

process remained to handle future references of the migrated

process to its local host. Due to the existence of these

shadow processes and remote references from the migrated

process to the local host, Mosix was reluctant to migrate

I/O-intensive processes like CPU-intensive processes. Table

3 shows the results of this test, wherein the number in

parentheses shows how many shadow processes were

located on the local host.

TABLE 3 I/O-INTENSIVE TEST RESULTS

 Node1 Node2 Node3 Node4 Node5

Startup 20 - - - -

Balanced 4 (20) 4 4 4 4

102Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

C. Test No. 3, Memory-intensive

In this test, we checked how openMosix dealt with

memory-intensive processes. We used a process (Figure 5)

containing CPU-intensive parts because memory-only-

intensive processes did not trigger the Mosix load balancer

mechanism.

for(i=1;i<1000000;i++){

 malloc(10000);

 }

while (1){

 ;

 }

Figure 5 - Pseudo code of a memory-intensive process

By running the code shown in Figure 5, a large amount

of RAM was occupied at the beginning and then a CPU-
intensive phase started. In regular situations, Mosix tried to
reduce the load on a specific node by migrating some of the
processes in that node to other nodes. Nevertheless, in this
case it refused to do any migration although the nodes were
overloaded. Migration of a large amount of memory is
costly. Therefore, Mosix keeps memory-intensive processes
in their places as long as the administrator does not force a
migration.

D. Test No. 4, IPC-intensive – Direct

A process is IPC-intensive when it repeatedly sends

messages to other processes. When a process sends too

many messages, it becomes a candidate for migration by

Mosix. However, as in the case of memory-intensive

processes, the migration is costly and Mosix does not

migrate them automatically. This reaction is a part of

Mosix‟s policy in dealing with communicating processes.

Figure 6 shows the results of running our test on 17

instances of two IPC-intensive sender and receiver

processes.

Figure 6 – Loads for IPC-intensive processes before migration

Mosix does not migrate any IPC-intensive processes in

this experiment due to their communication cost. Migrating

each IPC-intensive process may result in heavy

communication cost. So, Mosix attempt to extract process‟

IPC behaviors and make decision based on it. But when a

process passes its IPC age, Mosix does not find its transition

soon.

In the next experiment, processes on the first node were

migrated to another node manually. After moving all

processes to Node 5, the load of the first machine remained

almost unchanged (Figure 7), implying that all IPC

messages were redirected to the home node.

Figure 7 – Loads for IPC-intensive processes after migration

Whereas IPC-intensive processes have heavy

communication cost, migrating them does not change their

home node‟s load. Migrated processes communicate with

their deputy on home node and communicate via their home

node. Therefore, home node‟s load increases and processes

response time falls down.

E. Test No. 5, IPC-intensive – Shared memory

Shared memory is another popular IPC mechanism that we
had to investigate its support in Mosix. When the “mosrun”
command was executed, Mosix returned the error message
“MOSRUN: Attaching SYSV shared-memory not supported
under MOSIX (try ‘mosrun -e’ or ‘mosrun -E')”. This error
means that MOSIX does not support shared-memory-based
communication between processes.

F. Test No. 6, Forked processes

A child process inherits the features of its parents. In

Mosix, a parent can fork a child that can in turn fork its own

child. The hierarchy of parent-child can grow until the

number of processes reaches a threshold.

We tested the inheritability of parent features in their

children in Mosix and found out that whenever a parent

process created a child process, Mosix passed the features of

the parent to the child process (Table 4).

103Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

TABLE 4 FEATURE INHERITANCE OF FORKED

PROCESSES
 Node1 Node2 Node3 Node4 Node5

Startup 1 - - - -

Balanced * * * * *

G. Test No. 7, Pipe-based processes

To investigate the behavior of Mosix in pipe-based IPC

communications, we tested a pair of producer consumer

processes. We initialized the consumer process manually

that later created the producer process to provide input for

the consumer process.

When the “mosrun” command was executed, Mosix

returned the error message “MOSRUN: Attaching SYSV

shared-memory not supported under MOSIX (try ‘mosrun -

e’ or ‘mosrun -E')”. This error means that MOSIX does not

support pipe-based IPC communication between processes.

We thus used the “mosrun –e” command instead. The

results were interesting. After running the test program with

“mosrun -e” command, 10 processes were initialized on the

first node but after a short time Mosix migrated some of

them. Figure 8 shows the cluster status immediately after

initializing processes on the first node while Figure 9 shows

the cluster status some time after migrations happened and

cluster became stable.

Figure 8 – Loads for Pipe-based processes before migration

Mosix treats piped processes as like as IPC-intensive

processes but there is some difference. When processes

communicate via pipe, their waiting time is more than the

time they uses messages. Since Mosix counts number of

processes in ready queue at each scheduling period, it

calculates fewer loads.

The interesting point is that although Mosix migrated

some processes to other nodes than their home (first node),

the load on the home node remained unchanged (Figure 9).

This was because copies of migrated processes remained on

the home node to communicate with their producer

counterparts. We can thus conclude that this migration had

been redundant and only had increased the network traffic

with undesirable effect on overall performance.

Figure 9 – Loads for Pipe-based processes after migration

By migrating some piped processes to other cluster
nodes, communications must take place through
communication infrastructures and file system. So, the home
node‟s load does not changed after migrating piped
processes.

H. Test No. 8, MPI-based processes

MPI uses sockets and shared memory [10], while Mosix
does not efficiently support these two communication
mechanisms. Therefore, MPI processes could not be
migrated by Mosix. A new “direct communication” feature
has been recently added to Mosix that provides migratable
sockets for MOSIX processes, but there is still no support for
shared memory in Mosix [11], [12].

Therefore, it is impossible to run default MPI-based
applications on a Mosix cluster yet. However, there are some
short ways. LamMPI, configured with the “--with-rpi=tcp”
option can bypass this limitation of Mosix.

In fact, “--with-rpi=tcp” option ensures that no shared
memory is used in communications between processes.
Therefore, when there is no shared memory in use, Mosix
handles an MPI process like any other process.

I. Test No. 9, Priority in migration

To investigate how Mosix prioritizes processes for

migration, we ran a number of tests. We tried to identify

what processes become candidates for migration by Mosix.

We compared two types of processes in each test, but

compared all four types of CPU-intensive, I/O-intensive,

IPC-intensive, and memory-intensive processes in our final

experiment.

In our experiments, Mosix migrated CPU-intensive

processes with low allocated memory first. It then migrated

I/O-intensive processes and at last equally migrated the IPC-

intensive and memory-intensive processes. However, this

order was not fixed on all Mosix clusters because of Mosix

decision making function. For example, if the power of

machines and the amount of available physical memory

installed on each machine in a Mosix cluster were widely

different, the pattern of Mosix migration priority might be

diverse.

104Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

IV. CONCLUSION AND FUTURE WORKS

We ran a number of test programs on a 5-node Mosix
cluster to check the real abilities of Mosix in providing a
reasonably high performance in handling different requests.
We found that Mosix did not guarantee the performance
improvement in all cases and that it even reduced the
performance by making wrong decisions.

We showed that the Mosix cluster handled CPU-
intensive, memory-intensive, and I/O-intensive processes
effectively although it was slow and sometimes inaccurate
when the cluster was overloaded with large memory-
intensive processes. It also properly supported feature
inheritance by inheriting all features of parents in the forked
children.

We also showed that Mosix did not support shared-
memory-based communications between processes and as a
result did not support MPI-based processes too unless
processes used a different mechanism for their
communications than the shared memory. Worst of all,
Mosix misbehaved in dealing with pipes and made decided
wrongly in migrating tightly-connected processes to other
machines, lowering the performance and increasing the
network traffic rather than improving the performance.

REFERENCES

[1] A. Barak, S. Guday, and R. G. Wheeler, The MOSIX
Distributed Operating System: Load Balancing for UNIX,
Secaucus, Ed. New York, USA: Springer, 1993.

[2] A. Barak and O. La'adan, "The Mosix Multicomputer
Operating System for High Performance Cluster Computing,"
Future Generation Computer Systems, vol. 13, no. 4-5, pp.
361-372, Mar. 1998.

[3] A. Barak, A. Braverman, I. Gilderman, and O. Laadan, "The
MOSIX Multicomputer Operating System for Scalable NOW
and its Dynamic Resource Sharing Algorithms," The Hebrew
University Technical 96-11, 1996.

[4] A. Barak, O. La'adan, and A. Shiloh, "Scalable Cluster
Computing with Mosix for Linux," in the 5th Annual Linux
Expos, Raleigh, 1999, pp. 95-100.

[5] J. M. Meehan and A. Ritter, "Machine Learning Approach to
Tuning Distributed Operating System Load Balancing
Algorithms," in Proceedings of the ISCA 19th International
Conference on Parallel and Distributed Computing Systems
(ISCA PDCS), San Francisco, 2006, pp. 122-127.

[6] M. Beltrán and A. Guzmán, "How to Balance the Load on
Heterogeneous Clusters," International Journal of High
Performance Computing Applications , vol. 23, no. 1, pp. 99-
118, Feb. 2009.

[7] R. Lavi and A. Barak, "The Home Model and Competitive
Algorithms for Load Balancing in a Computing Cluster ," in
the 21st International Conference on Distributed Computing
Systems , Washington DC, Apr, 2001, pp. 127-136.

[8] A. Barak and A. Braverman, "Memory ushering in a scalable
computing cluster," Microprocessors and Microsystems , vol.
22, no. 3-4, pp. 175-182, Aug. 1998.

[9] A. Keren and A. Barak, "Opportunity Cost Algorithms for
Reduction of I/O and Interprocess Communication Overhead
in a Computing Cluster," IEEE Transactions on Parallel and
Distributed Systems, vol. 14, no. 1, pp. 39-50, Jan. 2003.

[10] "MPI: A Message-Passing Interface Standard," Message
Passing Interface Forum Standard 2.2, 2009.

[11] S. D. S. Pty/Ltd. Mosix updates.
http://www.mosix.com.au/updates.html. Jul, 2011, [retrieved:
Sep, 2011].

[12] A. S. Amnon Barak. The MOSIX Management System for
Linux Clusters, Multi-Clusters, GPU Clusters and Clouds.
http://www.mosix.org. Apr, 2010, [retrieved: Sep, 2011].

105Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

