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Abstract—A restoration method of the degraded images based
on Bayesian-based iterative method is proposed. An iterative
method is developed by treating images, point spread functions,
and degraded images as probability measures and by applying
Bayes’ theorem. The method functions effectively in the presence
of noise and is adaptable to computer operation.
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I. I NTRODUCTION

To make a clear image from degraded image, many enhance-
ment techniques have been developed until now. The main
technique is to use one of sharpness filters that are based on
derivatives of the image with respect to pixels [1]-[2]. These
methods used one or more masks to approximate a derivative
operation. Although they could enhance the image, they would
enlarge also noises.

The present method for enhancement of images is to use
the Bayesian rule. This method was first proposed by [3].
The Bayesian rule reflects optimal estimation in a sense to
minimize the cost function under noisy observation and an
iterative algorithm was proposed to find the optimal solution.
The algorithm include two parts, the first one is to estimate
a point spread function (PSF) from the estimated image and
the second one is to estimate the original image by using the
estimated PSF. Thus, this algorithm might be optimal when
the observed image is similar to the original image, that is, in
case of a high S/N ratio. Therefore, the results will depend on
the initial guesses of PSF.

In this paper, we propose a new algorithm to speed up
the convergence and find better restoration compared with the
results of [3]. The idea is to select the observed image as an
initial guess of the restored image and every iteration we use
the observation image instead of an estimated image when we
estimate the PSF.

First, we will show the principle of the Bayesian-based
iterative method proposed by Richardson[3]. Then we will
state the proposed method. After that the simulation results
will be illustrated to show the effectiveness of the present
method.

II. PRINCIPLE OF IMAGE RESTORATION

In image enhancement, the ultimate goal of restoration tech-
niques is to improve a given image in some sense. Restoration
is a process that attempts to recover an image that has been
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Fig. 1. The restoration principle.

degraded by using a priori knowledge of the degradation
phenomenon. As shown in Fig. 1, the degradation process may
be modeled as an operatorH in case of noiseless situation.
It operates on an input imagef(x, y) to produce a degraded
imageg(x, y). For the sake of simplicity, we denotef(x, y)
by f(x) , g(x, y) by g(x), h(x, y) by h(x), etc. In equation
form, we have

g(x) = Hf(x) = h ∗ f(x) =
∞∑

y=−∞
h(x − y)f(y). (1)

whereh(x) is an impulse response and * denotes the operation
of convolution.

Based on the convolution theorem, the frequency domain
representation of Eq.(1) becomes

G(jω) = H(jω)F (jω) (2)

where G(jω), H(jω), and F (jω) are Fourier transforms
of g(x), h(x − y), and f(y), respectively. As shown in
Fig.1,GivenG(jω) and some knowledge aboutH(jω), the
objective of restoration techniques is to recoverF (jω) which
means to recover the original imagef(x) via the inverse
Fourier transform.
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III. R ICHARDSON’ S ITERATIVE METHOD

We will review the iterative method by Richardson [3] in
this section. Given the degraded imageg, the point spread
function h and the original imagef are estimated based on
Bayes’ theorem. It will be effective to estimate the original
imagef from the observed imageg. It was assumed thatg ,
h , andf are discrete and are not necessarily normalized. The
numerical values ofg , h , andf are considered as measures
of the frequency of the occurrence of them at those points.
h is usually in normalized form. Energy off originating at
a point is distributed asg at points according to the energy
indicated byh. Thus,g represents the resulting sums of the
energy off originating at all points.

In the notation of this problem the usual form of the Bayes’
theorem is stated as the conditional probability off , giveng.
It was assumed that the degraded imageg was of the form
g = h ∗ f , where * denotes the operation of convolution such
that

g(x) = h ∗ f(x) =
∞∑

y=−∞
h(x − y)f(y). (3)

Note thatf andg are intensity functions of original image
and observed image, respectively andh is the weighting func-
tion depending on image measurement devices. We assume
that the input image and the weighting function which means
the restoration mechanism are unknown. The values off , g,
andh are not limited within [0,1]. We normalize and denote
them byf ′, g′, andh′. Thus, we have

f ′(x) =
f(x)

∞∑
x=−∞

f(x)

=
f(x)
F

(4)

g′(x) =
g(x)

∞∑
x=−∞

g(x)

=
g(x)
G

(5)

h′(x) =
h(x)

∞∑
x=−∞

h(x) ==
h(x)
H

(6)

where F ,G, and H could be equal since the restoration
process is conservative. Note thatf , g, andh are nonnegative
and the total sums are equal to one. Thus, we could regard
them as probability measures andf ′(x1) as the probability
measure of the original imagef(x1) at x1. This means that
the possibility of the existing intensity of the original image
f(x1) at x1. Similarly, g′(x2) andh′(x1) mean the possibility
of the existing intensity of the observed imageg′(x2) atx2 and
the possibility of the transition weight from the input image
f(x1) at x1 to the output imageg(x2) at x2. Therefore, we
have

P (g(x2)|f(x1)) = P (h(x2 − x1)) = h′(x2 − x1). (7)

The above relation can be derived by using the following

relation.

P (g(x2), f(x1)) = P (g(x2)|f(x1))P (f(x1))
= P (h ∗ f(x2), f(x1))
= P (h(x2 − x1), f(x1))
= P (h(x2 − x1))P (f(x1))

where we have used independence assumption between orig-
inal image and restoration mechanism.

Using the Bayes’ theorem we have

P (f(x)|g(x2)) =
P (g(x2)|f(x))P (f(x))

∞∑
x1=−∞

P (g(x2)|f(x1))P (f(x1))

=
f ′(x)h′(x2 − x)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

. (8)

If we multiply the both sides of Eq.(8) byP (g(x2)) = g′(x2)
and take the summation with respect tox2, we get

P (f(x)) = f ′(x)

= f ′(x)
∞∑

x2=−∞

h′(x2 − x)g′(x2)
∞∑

x1=−∞
f ′(x1)h′(x2 − x1)

.(9)

ConsideringF = G = H and multiplying them both sides of
the above equation, we have

f(x) = f(x)
∞∑

x2=−∞

h(x2 − x)g(x2)
∞∑

x1=−∞
f(x1)h(x2 − x1)

. (10)

Using the above equation, Richardson[3] proposed the follow-
ing recurrence procedure to find the original imagef(x).

fn+1(x) = fn(x)
∞∑

x2=−∞

hn(x2 − x)g(x2)
∞∑

x1=−∞
hn(x2 − x1)fn(x1)

,(11)

n = 0, 1, 2, . . . .

In order to derive the recursive equation of the PSF function
h(x), we will set x3 = x2 − x. Then from Eq.(8) we have

P (f(x2 − x3)|g(x2)) =
f ′(x2 − x3)h′(x3)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

. (12)

Multiplying both sides of the above equation byP (g(x2)) =
g′(x2), we have

P (f(x2 − x3)|g(x2))P (g(x2)) (13)

= g′(x2)
f ′(x2 − x3)h′(x3)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

.
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Using the Bayes’ rule, we have

P (f(x2 − x3)|g(x2))P (g(x2))
= P (f(x2 − x3), g(x2))
= P (g(x2)|f(x2 − x3))P (f(x2 − x3))
= h′(x3)f ′(x2 − x3). (14)

From Eqs.(14)and (14), we have

h′(x3)f ′(x2 − x3)

= g′(x2)
f ′(x2 − x3)h′(x3)

∞∑
x1=−∞

f ′(x1)h′(x2 − x1)

. (15)

Taking the summation of both sides of Eq.(15) with respect to
x2, using the relation of Eqs.(4), (5), and (6), and noting that

∞∑
x2=−∞

f ′(x2 − x3) = 1, (16)

we have the following relation.

h(x) = h(x)
∞∑

x2=−∞

f(x2 − x)g(x2)
∞∑

x1=−∞
f(x1)h(x2 − x1)

. (17)

Thus, using the same recursive relation as Eq.(11), we have

hm+1(x) = hm(x)
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

.

(18)
In order to check the convergences of the recursive relations

given by Eqs.(11) and (18), the following relations are used.

∞∑
x2=−∞

h(x2 − x)g(x2)
∞∑

x1=−∞
h(x2 − x1)fn(x1)

= 1, (19)

∞∑
x2=−∞

f(x2 − x)g(x2)
∞∑

x1=−∞
f(x1)h(x2 − x1)

= 1. (20)

(21)

Thus, we use the following criteria to stop the iterations.

1 − ϵ <

∞∑
x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

< 1 − ϵ, (22)

1 − ϵ <
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

< 1 − ϵ. (23)

Using the above relations, Richardson has proposed the fol-
lowing iterative algorithm(Richardson’s Iterative Method).

Step 1. Setn = 0,m = 0, the initial guesses ofh0(x), and
f0(x), and small positive numberϵ.

Step 2. Solve the following equations:

fn+1(x) = fn(x)
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

(24)

hm+1(x) = hm(x)
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

.

(25)
Step 3. If the following inequalities hold

∣∣∣∣∣
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

∣∣∣∣∣ < 1 − ϵ (26)

and ∣∣∣∣∣
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

∣∣∣∣∣ < 1 − ϵ, (27)

then stop, otherwisen ← n + 1,m ← m + 1 go to Step 2.
The above iteration has no proof of convergence that means

the results obtained by the above iteration may result in the
good results or may not.

IV. PROPOSEDALGORITHM

In order to get the better results compared with Richardson’s
algorithm, we consider a new method based on the property
of degraded images such that the blurred images are similar
to the original images. In the Richardson’s algorithm, if the
bad estimation ofhm(x) at the beginning stage, correspond-
ing recovered images would become different images. After
obtaining the bad estimation of recovered images, worse esti-
mation of the point spread function. As a result, the iteration
will produce worse and worse estimation of the point spread
function and recovered images. Assuming the degraded images
are not so far from the original images, we use the blurred
image to estimate the point spread functionhm(x) instead of
the recovered image that is the estimated image. Therefore,
we have proposed the following algorithm:

Step 1. Setn = 0,m = 0, small positive numberϵ, and
f0(x) = g(x). Set the initial guesses ofh0(x).

Step 2. Solve the following equations:

fn+1(x) = fn(x)
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

(28)

hm+1(x) = hm(x)
∞∑

x2=−∞

g(x2 − x)g(x2)
∞∑

x1=−∞
g(x1)hm(x2 − x1)

. (29)
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Step 3. If the following inequalities hold

∣∣∣∣∣
∞∑

x2=−∞

hm(x2 − x)g(x2)
∞∑

x1=−∞
hm(x2 − x1)fn(x1)

∣∣∣∣∣ < 1 − ϵ (30)

and ∣∣∣∣∣
∞∑

x2=−∞

fn(x2 − x)g(x2)
∞∑

x1=−∞
fn(x1)hm(x2 − x1)

∣∣∣∣∣ < 1 − ϵ, (31)

then stop, otherwisen ← n + 1 and go to Step 2.

V. VARIATION USING THE REVERSEFUNCTION

We consider more simple form of the proposed algorithm.
We set the dominator of Eq.(11) by

Lnm(x2) =
∞∑

x1=−∞
hm(x2 − x1)fn(x1). (32)

It is the convolution sum between the original imagefn(x1)
and the point spread functionhm(x2 − x1). Therefore, if
Lnm(x2) = g(x2), then the estimated imagefn(x1) becomes
the true original image. Furthermore, we have

fn+1(x) = fn(x)
∞∑

x2=−∞

hm(x2 − x)g(x2)
Lnm(x2)

. (33)

We definernm(x2) by

rnm(x2) =
g(x2)

Lnm(x2)
(34)

which means the ratio between the observed degraded image
and the degraded image obtained by using the estimated point
spread function. Then Eq.(33) becomes

fn+1(x) = fn(x)
∞∑

x2=−∞
hm(x2 − x)rnm(x2). (35)

We define the reverse function ofk(x) by k(x) = h(−x).
Then Eq.(??) becomes

fn+1(x) = fn(x)
∞∑

x2=−∞

km(x − x2)rnm(x2)
.

(36)

If we represent the convolution sum by Fourier transform, we
have

fn+1(x) = fn(x)FT−1(FT (kn(x − x2))FT (rnm(x2)))
= fn(x)FT−1(Kn(jω)Rnm(jω)) (37)

whereFT andFT−1 denote the Fourier transform and inverse
Fourier transform. SinceKm(jω) = Hm(−jω), we could save
the computational time by half.

  

  

(a) Original image           (b) Degraded image

(c) Richrdson method      (d) Proposed method

Fig. 2. The comparison for Example 1.

VI. SIMULATION RESULTS

In order to show the effectiveness of the proposed method,
we will consider gray image (Example 1) and color im-
age(Example 2). The computer specification used here is
shown in TABLE I. In Example 1 the gray image of64 × 64
was made using Photoshop. The color image of512 × 512 of
Example 2 was cropped from the standard sample data of high-
resolution color images [4]. The degraded images are made
by using Gaussian filters with the standard deviationσ = 2.0.
We used the stopping parameters ofm andn when maximum
iteration numberk is given. In these simulations, we changed
those parameters(m,n, k) in three cases, that is, (10,100,10),
(5,100,10), and (5,5,100). TABLE II shows simulation results
for three cases with PSNR (Peak Signal-to-Noise Ratio). In
Fig. 2 shows the simulation results of the gray image with
(10,100,10). From this Fig. 2 the proposed method restored
more clear image compared with the results by Richardson’s
method [3]. In Figs.3-6 we show the simulation results of
Example 2. The original image is shown in Fig. 3 and the
degraded image is shown in Fig. 4. The restored images by
[3] and the proposed method are shown in Fig. 5and Fig. 6.

TABLE I
COMPUTING ENVIRONMENT

OS Windows XP
CPU AMD Athlon(tm)64 X2 Dual Core
Memory 2GB

TABLE II
PSNRBETWEEN ORIGINAL IMAGE AND RESTORED IMAGE

Threshold value(m,n,k) Degraded image Richardson Authors
(10,100,10) 14.5 15.7 16.6
(5,100,10) 14.5 16.5 16.0
(5,5,100 14.5 9.2 16.2
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Original image

Fig. 3. Original image for Example 2.

Degraded image

Fig. 4. Degraded image for Example 2.

 

Richardson’ s  method

Fig. 5. Richardson’s method for Example 2.

 

Proposed method

Fig. 6. Proposed method for Example 2.
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VII. C ONCLUSIONS

In this paper, a method of restoration of the degraded images
by using Bayesian-based iterative method. The simulation
results showed that the proposed method could restore the
degraded images more clearly compared with the Richardson’s
method while the threshold values of(n,m, k) must be deter-
mined by trial and error. Furthermore, the computation load
has been decreased by half by introducing the ratio between
the observed degraded image and the degraded image.
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