
Energy-aware MPSoC with Space-sharing for Real-time Applications

Stefan Aust, Harald Richter
Institute of Computer Science

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

stefan.aust|harald.richter@tu-clausthal.de

Abstract—Energy-awareness is an important design criterion
for many mobile real-time applications such as phones,
handhelds or cars. Normally, high-computing power excludes
low electrical power consumption. However, with the two
methods of space-sharing and adaptive clocking that are
proposed in this paper, both can be reconciled. Space-sharing
is an alternative design methodology for embedded systems
that outperforms time-sharing with respect to simplicity and
power dissipation. Adaptive clocking is an efficient means to
further reduce power. The results were achieved by a set of
measurements made with a single-chip multiprocessor
(MPSoC) that implements space-sharing in a FPGA and by a
model MPSoC that implements additionally adaptive clocking.

Keywords-low power; multiprocessor; FPGA; MPSoC

I. INTRODUCTION
A MPSoC is a multiprocessor on a single silicon chip

that may contain up to ten or even hundreds of processor-
memory modules (PMMs). In case of up to ten PMMs, we
speak also of a multi-core processor if the memory modules
are lumped together into a single first-level cache that is
shared between all cores. The term many core architecture is
used for hundreds of cores and more on the same chip that
are connected together by appropriate means. Fully custom-
designed chips have traditionally implemented MPSoCs,
multi- and many-core architectures. During the last few years
the capabilities of Field Programmable Gate Arrays (FPGAs)
have increased significantly and thus FPGAs allow the
implementation of these architectures as an alternative,
although with less powerful PMMs today.

Furthermore, there are many real-time applications that
demand more and more computing power but have limited
energy resources as in mobile devices or controller units in
cars, for example. Inefficient usage of the available electrical
energy reduces the usability of mobile devices and reduces
the operational range of cars and has therefore to be avoided.
Energy waste also causes thermal dissipation of heat, and as
a consequence requires additional energy for cooling
sensitive components. Finally, inefficient usage of energy
limits the life expectancy of electronic devices because of
aging processes in the semiconductor materials. The pn-
junctions in the transistors deteriorate with increasing heat
exposure. Because of these facts, energy-awareness in
computers systems is an important design criterion. In
addition to that, high computing power and low energy
consumption normally exclude one another, which is bad for

energy-aware embedded systems that require high
performance CPUs.

In this paper, we suggest for energy-critical real-time
applications the usage of MPSoCs on a single FPGA. This is
possible by applying two methods that are presented by us:
space-sharing and individual core clocking on the MPSoC.
Space-sharing instead of time-sharing eliminates the problem
of finding and guaranteeing a proper schedule of tasks that
fulfills a given time constraint. As we will see, it allows also
for a better energy management in embedded systems. This
means that besides easier handling of complex real-time
applications, space-sharing is able to save energy. In addition
to that we propose an MPSoC with space-sharing and
individual clocking of cores in this paper that optimizes the
consumed energy by reducing the dynamic fraction of the
chip's power dissipation to a minimum.

The paper is organized as follows: In Section 2, the
architecture of the MPSoC is presented, together with the
methods of space-sharing and individual core clocking. In
Section 3, measurements of the energy consumption of
MPSoCs on FPGAs are presented and discussed that do not
use space-sharing or individual core clocking. In Section 4, a
model MPSoC is investigated that uses both methods.
Section 5 draws a conclusion of the performed work and
gives an outlook to future work.

II. STATE-OF-THE-ART
Real-time applications demand the execution of a list of

tasks within a given time limit or at a given time point. A
common method to evaluate the soft or hard real-time
capabilities of the underlying embedded system that executes
that task list, is the analysis of how long each task list will
need to be executed in the worst case (=worst-case
execution-time analysis, WCET [1]).

However, the WCET analysis grows exponentially in
CPU time with the number of tasks because it is a NP-
complete problem. Many task scheduling strategies have
been created to solve this by heuristic approaches, such as
priority scheduling, earliest deadline first or round robin [2].
Also, many analysis tools as well have been developed and
commercialized to simplify the WCET analysis for the
designer of embedded systems [3,4].

With space-sharing, there is no need for scheduling tasks
and therefore also no need for WCET tools as well. Space-
sharing was introduced first by the authors in [5].

54Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

A. Space-Sharing
In time-sharing, a single processor is divided in its

computing time among multiple tasks. Each task gets one
time slice of the processor in a round-robin manner, and after
a specific interval all tasks have got some of the computing
power of the processor. After that, the whole procedure is
repeated periodically. The more the number of tasks and the
harder the required time constraints are, the more difficult it
is for the processor to get all the tasks done before their
deadlines come up. Thus, time-sharing requires that the
cumulative CPU needs of all tasks do not exceed the
processor's computing power and that a schedule can be
found such that all time constraints are met.

In space-sharing, every task is allocated statically to an
own processor. No scheduling is needed because tasks are
never competing for the same computing resource. This
means that the number of processors exactly matches the
number of executable tasks (Figure 1).

Figure 1. Time-sharing and space-sharing.

Space-sharing requires of course that so many processors
are available as tasks are defined by the application
programmer and that practical methods exist for allocating
tasks to processors and for inter-task communication as well.
On the other hand, complex real-time applications can
comprise hundreds of tasks and thousands of inter-task
communications. However, technological advancements are
such that this can be handled by state-of-the art FPGAs. A
Virtex-7 FPGA from Xilinx for instance is able to host
hundreds of PMMs, provided that they have a low clock
frequency compared to full-custom processors and only
small on-chip memory. However, for many real-time
applications this is sufficient because they have no need for
GHz and GBytes in their feed forward and feed back control
algorithms. This means that MPSoCs on a FPGA are a
convenient way to implement space-sharing in real-time
applications.

B. The MPSoC Architecture
Figure 2 shows the MPSoC we have implemented on

various FPGAs from Xilinx. The MPSoC consists of n
PMMs; where n is configurable, an interconnection network
for inter-task communication, an on-chip shared memory and
optionally of three hardware ports called bridges to
peripheral I/O devices, network interfaces and external
memory.

1) Soft Core Processors: The processors used in our
MPSoC are so-called soft-core CPUs. This means that each
processor exists only as a logic in a hardware description

Figure 2. MPSoC architecture on a FPGA.

language, such as VHDL or Verilog that emulates a real
processor. We have used a processor description from Xilinx
of type MicroBlaze [6]. MicroBlaze emulates an in-order,
non-superscalar 32 bit RISC CPU with a clock rate of up to
100 MHz. Because MicroBlaze is a simple RISC architecture
it allows one to predict the needed CPU cycles for a given
real-time task more easily than in the case of a fully featured
CPU. Software development for MicroBlaze can be made in
C or C++ because of compilers in the Xilinx EDK. Please
note that a virtual processor that is emulated by a small area
of the FPGA chip executes every compiled application code.

2) Local Memory: The local memories in our MPSoC
are split into instruction and data stores according to
Harvard architecture. The maximum memory sizes and
increments depend on the FPGA type. For the Xilinx
XC4VFX100 FPGA for example, local memories can be
incremented in steps from 4 KB to 256 KB up to a
maximum of 6768 KB for the whole chip.

3) Non-Blocking Real-Time Interconnection Network:
An on-chip interconnection network establishes
communication links between processors, i.e., between task
pairs. The links carry messages in a point-to-point manner
but it is also possible to implement multicast and broadcast
in the 2x2 switches out of which the network is constructed.
The network operates asynchronously to the PMM clocks
and in circuit switching mode. Asynchronous
communication requires a message FIFO at each network
input to decouple message creating in a PMM from message
transfer in the network. Circuit switching means that a path
through the network is established for every point-to-point
connection as long as the communication persists.

The most important feature of the interconnection
network in our MPSoC is however that it is non-blocking by
construction because it consists of multiple stages of 2x2
switches in Benes topology [7]. This non-blocking feature is
mandatory for real-time. If the network would block, no
upper limit could be guaranteed for the latency of message
delivery from one task to another.

4) Software Development for Space-Sharing: The
software development process for space-sharing is identical
to that of time-sharing. The application is implemented in
both cases by the code, i.e., the same set of tasks and the
same inter-task communication. Only the way of mapping

55Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

the tasks and the way how inter-task communication is
accomplished is different.

In time-sharing, all tasks are mapped onto time slots and
communicate via system calls that a real-time operating
system may provide. In space-sharing, all tasks are mapped
onto physical areas on a silicon chip, and inter-task
communication is implemented by an interconnection
network. This is fully transparent to the application because
the programmer can use the same API for inter-task
communication. This allows for direct portability of code
between conventional time-sharing and new space-sharing.

Once the application has been partitioned into tasks, the
MPSoC can be built either manually or automatically by
configuring in the VHDL or Verilog description of the
MPSoC with so many PMMs as needed, plus an
interconnection network to couple them. Furthermore, space-
sharing allows the adapting of every local memory in its size
exactly to the needs of the task. It is also possible to add a
coprocessor to a PMM that executes parts of the task as a
hardware accelerator. The processor description has to be
modified and extended therefore. Finally, space-sharing
allows for task isolation and memory protection by
construction because each local memory in the MPSoC can
be accessed only by its own processor. In space-sharing,
inter-task isolation is a feature that requires a memory
management unit and at least a basic operation system.

5) The number of PMMs on the FPGA: The number of
achievable PMMs on the chip varies with the used FPGA
type and the amount of external memory that is available on
the FPGA board. In order to explore the achievable amount
of PMMs per FPGA, we tested various types of FPGAs as
listed in table I. On the Virtex-4 FPGA, which provides less
than 5 percent of the capability of the recent Virtex-7
XC7V2000T FPGA, we could accomodate a maximum of
34 PMMs including 16 KB memory each.

TABLE I. LIST OF TESTED FPGAS

FPGA
FPGA

Chip Board

Spartan-3 Xilinx XC3S1000 Digilent Starter-Kit

Virtex-4 Xilinx XC4VFX100 PLDA XpressFX

Virtex-5 Xilinx XC5VLX50T Xilinx ML505

Independent from the used FPGA type, it holds that the
summed computing and memory requirements cannot
exceed the chip resources. Although only one FPGA and
some external memory are involved, the cumulative
processing power of all PMMs is nevertheless considerably
high if the on-chip parallel processing is effectively
organized. In addition to that, task-specific algorithms can be
outsourced to a PMM coprocessor where they are executed
in hardware, i.e., with maximum speed.

6) Energy awareness: The execution of every
application needs consumption of electrical power. With
space-sharing, only that chip area on a FPGA is occupied
that is really needed by the application. It holds that chip
areas that are not involved consume much less power than

those whose transistors are switching between low and high
states. Furthermore, the sizes of the local memories in
space-sharing matches the sizes of the programmed code
and data structures because no surplus is generated by
VHDL or Verilog chip synthesis tools. As a consequence,
power dissipation is as low as the underlying FPGA chip
technoloy allows and as low as the application demands.
This is in contrast to time-sharing on a classic embedded
system that has to use standard microcontrollers and
standard memory chips with given transistor count and
therefore power dissipation.

Please note that the energy consumption of our MPSoC
is low because of space-sharing but it does not yet reach the
absolute minimum. Only if individual PMM clocking is
added as a new feature to space-sharing then the key is found
for combining real-time and high CPU power with extremely
low energy consumption.

III. INDIVIDUAL CLOCKING OF PMMS
Individual clocking of PMMs means that every PMM

gets that clock speed that it needs to fulfill the time
constraints of the task it executes. Individual clocking saves
energy because the faster the processor operates the more
dynamic power it consumes.

Space-sharing allows the clocking of every PMM at its
best rate and even to vary it dynamically over time, if
needed. Individual clocking was implemented by us by
means of a clock rate controller in every PMM and by
extensions to the application code that can adaptively adjust
the clock rate to the various phases a task can have.

A. Clock Rate Controller
Figure 3 shows the set-up of the clock rate controller. It

consists of a master oscillator and a clock generator for all
PMMs and an individual clock divider for each PMM. The
clock divider is set by the processor program and controls
thereby the processor clock rate.

Figure 3. Set-up of the clock rate controller.

To benefit from the clock rate controller, the application
programmer of the MPSoC must explicitly set the clock
frequency for every task. If the task has several phases with
different time constraints then he may set the rate in a fine-
grain manner. A first step to accomplish this is to divide each
task in clock segments according to Figure 4. After that, he
can set the rate for every segment by two methods: either he
uses a system call which becomes valid during runtime, or he
uses a compiler directive which is evaluated during compile
time. Both methods need the introduction of time constraints

56Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 4. Clock rate adaptation by task segmenting.

that extend the real-time code. A paragon of real-time code
extension by time constraints is given in [8].

B. System call for clock rate adaptation
Figure 5 shows an example code where the predefined

routine set_clock_rate is responsible for the clock rate. The
routine check_new_data periodically tests a sensor on the
arrival of new data. This is accomplished at a slow sampling
rate of 2 MHz. If new data is present, then the routine
calc_value is executed at a rate of 40 MHz, which quickly
processes the input. By this method, the processor clock
varies dynamically during the program run and thus saves
energy. The disadvantage of this method is that the
programmer must define clock rates in the program. These
clocks depend furthermore on the used processor type
because more powerful soft processors can do more jobs at a
lower clock rate. This means that the application code has to
take into account the concrete MPSoC on which a task is
executed and is thus less portable.

Figure 5. System call for setting processor clock rate.

C. Compiler directive for clock rate adaptation
The second and better method for clock rate adaptation is

to add deadlines to the code segments according to Figure 4.
Each deadline Ti defines, until which each segment, i.e., task
phase, must be completed. Compiler directives accomplish
the definition of deadlines in the code. The directives are
formatted as a comment to avoid language extensions or
system calls but they are not treated as comments. Instead, a
compiler preprocessor reads all meaningful comments and
evaluates them. In addition, the compiler knows for what
concrete MPSoC it compiles the code, and its preprocessor
can therefore count the number of clock cycles needed to
execute a task segment in that code. With that information,
the preprocessor can set the clock rate MPSoC-dependent,
and the programmer does not have to care about that.

Figure 6. Compiler directive for setting processor clock rate.

Figure 6 shows the same example application of Figure
5, but with additional deadlines of 20 and 30 µs for the
segments event and terminate that have to be met after the
initiate segment. The resulting preprocessor evaluation is 2
MHz as a clock rate for the event and 40 MHz as clock rate
for the terminate segment, which is the same as in method 1,
but that result was achieved more conveniently.

IV. MEASUREMENTS OF POWER CONSUMPTION
We conducted several series of measurements on

MPSoCs with and without individual clocking to obtain
concrete Figures of the power dissipation of every MPSoC
component. All measurements were made on the boards of
Section II.

According to [9], total power consumption P of a chip
consists of static power Pstat and dynamic power Pdyn:

 P = Pstat + Pdyn (1)

Leakage currents inside the semiconductor material cause
static power consumption. There are two ways for leakage
currents: the sub-threshold leakage, which is an inversion
current across the device, and the gate-oxide leakage, which
is a tunneling current through oxide insulation of a transistor
gate. Both are technology-dependent and cannot be altered
by the chip user. Dynamic power in contrast arises from
switch activities of transistors. Equation (2) determines the
dynamic power consumption [10] as a function of supply
voltage V, clock frequency f and chip capacitance C.

 Pdynamic = CV 2 f! (2)

In the following, measurements are presented for the case
of no individual clocking. In Section 5, that technique is
added.

A. Static and Dynamic Dissipation
In Figure 7, the static and dynamic dissipation is shown

that we have measured for the Xilinx Virtex-4 FPGA. The
diagram shows that dynamic power grows nearly linearly
with the number of processors. Deviations from a straight
line are caused by the place and route function of the used
chip synthesis tool, which was XST from Xilinx. All
processors have been clocked with 100 MHz first, while the
total power consumption of the FPGA was measured. After
this, the clock was disconnected to measure static power
consumption only. Dynamic power was obtained as the
difference between both.

57Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

Figure 7 shows that in MPSoCs of 10 PMMs and more
the dynamic power dominates in the case of Virtex-4 on the
PLDA board. Not shown in Figure 7 but measured by us is
that in numbers Spartan-3 needs 268 mW of dynamic
dissipation, Virtex-4 needs 120 mW, and Virtex-5 requires
53 mW for every added processor. The low power of Virtex-
5 accounts mainly from the 65 nm process, while Spartan-3
and Virtex-4 share the older 90 nm process technology.

Figure 7. Static and dynamic power consumption versus the number of

processors for Virtex-4.

B. Influence of Processor Clock Rates
A second measurement series was conducted to get the

dynamic dissipation versus the processor clock rates. The
number of processors was parameterized. In Figure 8, the
results of several MPSoCs with 1 to 6 processors in a
Spartan-3 FPGA are shown. The results were already
predicted in theory by equation 2, but concrete values were
not known.

C. Influence of Local Memory
Figure 9 shows the influence of local memory for a

Virtex-4 FPGA at a clock rate of 100 MHz. The number of
processors was again parameterized. As one can see in
addition in Figure 9: if a PMM has no memory, about 100
mW remains that is needed by processor logic only.

D. Influence of Interconnection Network
As all PMMs, also the interconnection network has its

own clock. In Figure 10, the influence of this clock rate on
the dynamic power consumption of the FPGA is illustrated.
The diagram shows that dynamic power dissipation increases
linearly with a slope of about 0.85 mW per MHz for the
tested Virtex-4 FPGA. Furthermore, we found out that the
dynamic power consumption of the network mainly depends
on the FIFOs at its inputs, not on the switching matrix itself.
The FIFO in turn depends on the number of messages that
have to be stored, their size and how big the differences
between processor clock rates and network clock rates can
become. Big differences need deep FIFOs to balance-out
message sending and transporting, at least for a while.

E. Power Consumption Parameters
From the conducted measurements, we got the following

numbers for parameters of an MPSoC that is implemented on
a Virtex-4 for dynamic power consumption:

Figure 8. Dynamic power consumption versus processor clock rates for

Spartan-3. The number of processors is parameterized.

Figure 9. Dynamic power consumption versus size of local memory for

Virtex-4. The number of processors is parameterized.

Figure 10. Dynamic power consumption of the interconnection-network

versus its clock-rate for Virtex-4.

58Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

 Pprocessor !1
mW
MHz

 (3)

 Pmemory ! 0.01
mW

KB "MHz
 (4)

 Pnetwork ! 0.85
mW
MHz

 (5)

We used those parameters to define a model MPSoC that
comprises 8 PMMs (Figure 11) in order to test the
effectiveness of individual clocking.

V. EFFECTIVENESS OF INDIVIDUAL CLOCKING
The defined model MPSoC has individual clock rates and

local memory sizes that reflect the requirements of an
example application. The accumulative dynamic power
consumption of this configuration is 529 mW without phase-
adaptive clocking. However, we did not employ that for the
model MPSoC in order to have a better comparison to a
MPSoC of same PMM number and architecture but with
phase-adaptive clocking. It turned out that such a MPSoC
would consume 1.9 W with a chip-wide clock rate of 100
MHz and with fixed memory sizes of 64 KB for all PMMs.
Out of this, a factor of 3.6 less dissipation is computed.
According to that it can be stated that individual clocking of
PMMs is an efficient method for energy saving, already
without phase-adaptivity. With phase-adaptivity, one can
obtain the least possible power dissipation.

A. Set-Up of Model MPSoC

Figure 11. Set-Up of Model MPSoC.

VI. CONCLUSION AND FUTURE WORK
In this paper, the concepts of space-sharing and adaptive

clocking have been explained. Space-sharing eliminates the
need to find a proper schedule for a list of tasks that have to
be executed within a given time interval or at a given time
point. It also eliminates the analysis of worst-case execution
time of tasks in embedded systems, and the tools created

here for. Additionally, space-sharing allows for a better
electrical power management of real-time systems, for
simpler task isolation and memory protection and for
minimal power dissipation if combined with adaptive
clocking. A convenient implementation of space-sharing is
accomplished by a single-chip multiprocessor (MPSoC) in
which the processor-memory modules are clocked
individually due to the task phases and where the sizes of the
local memories and the processor performance exactly match
the application requirements. Furthermore, we conducted
series of measurements to obtain concrete Figures for the
power dissipation of the proposed MPSoC on Spartan-3,
Virtex-4 and Virtex-5 FPGAs from Xilinx.

Future work will create a tool for the automatic FPGA
configuration out of a XML-based description of the task set
and inter-task communication of any given real-time
application, such that the application can be ported into
space-sharing and thus executed by our MPSoC without
code modification to obtain minimal chip area consumption
and thus very low power dissipation.

REFERENCES
[1] P. Marwedel, “Embedded System Design,” 2nd edition,

Dordrecht; Heidelberg, Springer, 2011.
[2] G. C. Buttazzo, “Hard Real-Time Computing Systems.

Predictable Scheduling, Algorithms and Applications,”
Boston; Dordrecht; London, Kluwer Academic Publishers,
1997.

[3] Rapita Systems Ltd., www.rapitasystems.com (last checked:
11-06-20).

[4] Symtavision GmbH, www.symtavision.com (last checked:
11-06-20).

[5] S. Aust and H. Richter, “Space Division of Processing Power
For Feed Forward and Feed Back Control in Complex
Production and Packaging Machinery,” Proc. World
Automation Congress (WAC 2010), Kobe, Japan, Sept. 2010,
pp. 1-6.

[6] Xilinx, “MicroBlaze Processor Reference Guide,” October
2009.

[7] S. Aust and H. Richter, "Real-time Processor Interconnection
Network for FPGA-based Multiprocessor System-on-Chip
(MPSoC)," The 4th International Conference on Advanced
Engineering Computing and Applications in Sciences
(ADVCOMP 2010), Florence, Italy, Oct. 2010, pp. 47-52.

[8] A. Leung, K. V. Palem, and A. Pnueli, “TimeC: A Time
Constraint Language for ILP Processor Compilation,”
Constraints, vol. 7, no. 2, 2002, pp. 75-115, doi:
10.1023/a:1015131814255.

[9] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, K. S.
Hu, M. J. Irwin, M. Kandemir, and V. Narayanan, “Leakage
Current: Moore‘s Law Meets Static Power,” IEEE Computer,
vol. 36, issue 12, Dec 2003, pp. 68-75.

[10] L. Shang, A. S. Kaviani, and K. Bathala, “Dynamic Power
Consumption in Virtex™-II FPGA Family,” Proc. of the 2002
ACM/SIGDA tenth international symposium on Field-
programmable gate arrays (FPGA '02), Monterey, CA, Feb.
2002, pp. 157-164.

59Copyright (c) IARIA, 2011. ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences

