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Abstract—Energy-awareness is an important design criterion 
for many mobile real-time applications such as phones, 
handhelds or cars. Normally, high-computing power excludes 
low electrical power consumption. However, with the two 
methods of space-sharing and adaptive clocking that are 
proposed in this paper, both can be reconciled. Space-sharing 
is an alternative design methodology for embedded systems 
that outperforms time-sharing with respect to simplicity and 
power dissipation. Adaptive clocking is an efficient means to 
further reduce power. The results were achieved by a set of 
measurements made with a single-chip multiprocessor 
(MPSoC) that implements space-sharing in a FPGA and by a 
model MPSoC that implements additionally adaptive clocking. 
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I.  INTRODUCTION 
A MPSoC is a multiprocessor on a single silicon chip 

that may contain up to ten or even hundreds of processor-
memory modules (PMMs). In case of up to ten PMMs, we 
speak also of a multi-core processor if the memory modules 
are lumped together into a single first-level cache that is 
shared between all cores. The term many core architecture is 
used for hundreds of cores and more on the same chip that 
are connected together by appropriate means. Fully custom-
designed chips have traditionally implemented MPSoCs, 
multi- and many-core architectures. During the last few years 
the capabilities of Field Programmable Gate Arrays (FPGAs) 
have increased significantly and thus FPGAs allow the 
implementation of these architectures as an alternative, 
although with less powerful PMMs today. 

Furthermore, there are many real-time applications that 
demand more and more computing power but have limited 
energy resources as in mobile devices or controller units in 
cars, for example. Inefficient usage of the available electrical 
energy reduces the usability of mobile devices and reduces 
the operational range of cars and has therefore to be avoided. 
Energy waste also causes thermal dissipation of heat, and as 
a consequence requires additional energy for cooling 
sensitive components. Finally, inefficient usage of energy 
limits the life expectancy of electronic devices because of 
aging processes in the semiconductor materials. The pn-
junctions in the transistors deteriorate with increasing heat 
exposure. Because of these facts, energy-awareness in 
computers systems is an important design criterion. In 
addition to that, high computing power and low energy 
consumption normally exclude one another, which is bad for 

energy-aware embedded systems that require high 
performance CPUs. 

In this paper, we suggest for energy-critical real-time 
applications the usage of MPSoCs on a single FPGA. This is 
possible by applying two methods that are presented by us: 
space-sharing and individual core clocking on the MPSoC. 
Space-sharing instead of time-sharing eliminates the problem 
of finding and guaranteeing a proper schedule of tasks that 
fulfills a given time constraint. As we will see, it allows also 
for a better energy management in embedded systems. This 
means that besides easier handling of complex real-time 
applications, space-sharing is able to save energy. In addition 
to that we propose an MPSoC with space-sharing and 
individual clocking of cores in this paper that optimizes the 
consumed energy by reducing the dynamic fraction of the 
chip's power dissipation to a minimum. 

The paper is organized as follows: In Section 2, the 
architecture of the MPSoC is presented, together with the 
methods of space-sharing and individual core clocking. In 
Section 3, measurements of the energy consumption of 
MPSoCs on FPGAs are presented and discussed that do not 
use space-sharing or individual core clocking. In Section 4, a 
model MPSoC is investigated that uses both methods. 
Section 5 draws a conclusion of the performed work and 
gives an outlook to future work. 

II. STATE-OF-THE-ART 
Real-time applications demand the execution of a list of 

tasks within a given time limit or at a given time point. A 
common method to evaluate the soft or hard real-time 
capabilities of the underlying embedded system that executes 
that task list, is the analysis of how long each task list will 
need to be executed in the worst case (=worst-case 
execution-time analysis, WCET [1]). 

However, the WCET analysis grows exponentially in 
CPU time with the number of tasks because it is a NP-
complete problem. Many task scheduling strategies have 
been created to solve this by heuristic approaches, such as 
priority scheduling, earliest deadline first or round robin [2]. 
Also, many analysis tools as well have been developed and 
commercialized to simplify the WCET analysis for the 
designer of embedded systems [3,4]. 

With space-sharing, there is no need for scheduling tasks 
and therefore also no need for WCET tools as well. Space-
sharing was introduced first by the authors in [5]. 
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A. Space-Sharing 
In time-sharing, a single processor is divided in its 

computing time among multiple tasks. Each task gets one 
time slice of the processor in a round-robin manner, and after 
a specific interval all tasks have got some of the computing 
power of the processor. After that, the whole procedure is 
repeated periodically. The more the number of tasks and the 
harder the required time constraints are, the more difficult it 
is for the processor to get all the tasks done before their 
deadlines come up. Thus, time-sharing requires that the 
cumulative CPU needs of all tasks do not exceed the 
processor's computing power and that a schedule can be 
found such that all time constraints are met. 

In space-sharing, every task is allocated statically to an 
own processor. No scheduling is needed because tasks are 
never competing for the same computing resource. This 
means that the number of processors exactly matches the 
number of executable tasks (Figure 1). 

 
Figure 1.  Time-sharing and space-sharing. 

Space-sharing requires of course that so many processors 
are available as tasks are defined by the application 
programmer and that practical methods exist for allocating 
tasks to processors and for inter-task communication as well. 
On the other hand, complex real-time applications can 
comprise hundreds of tasks and thousands of inter-task 
communications. However, technological advancements are 
such that this can be handled by state-of-the art FPGAs. A 
Virtex-7 FPGA from Xilinx for instance is able to host 
hundreds of PMMs, provided that they have a low clock 
frequency compared to full-custom processors and only 
small on-chip memory. However, for many real-time 
applications this is sufficient because they have no need for 
GHz and GBytes in their feed forward and feed back control 
algorithms. This means that MPSoCs on a FPGA are a 
convenient way to implement space-sharing in real-time 
applications. 

B. The MPSoC Architecture 
Figure 2 shows the MPSoC we have implemented on 

various FPGAs from Xilinx. The MPSoC consists of n 
PMMs; where n is configurable, an interconnection network 
for inter-task communication, an on-chip shared memory and 
optionally of three hardware ports called bridges to 
peripheral I/O devices, network interfaces and external 
memory.  

1) Soft Core Processors: The processors used in our 
MPSoC are so-called soft-core CPUs. This means that each 
processor exists only as a logic in a hardware description 

 
Figure 2.  MPSoC architecture on a FPGA. 

language, such as VHDL or Verilog that emulates a real 
processor. We have used a processor description from Xilinx 
of type MicroBlaze [6]. MicroBlaze emulates an in-order, 
non-superscalar 32 bit RISC CPU with a clock rate of up to 
100 MHz. Because MicroBlaze is a simple RISC architecture 
it allows one to predict the needed CPU cycles for a given 
real-time task more easily than in the case of a fully featured 
CPU. Software development for MicroBlaze can be made in 
C or C++ because of compilers in the Xilinx EDK. Please 
note that a virtual processor that is emulated by a small area 
of the FPGA chip executes every compiled application code. 

2) Local Memory: The local memories in our MPSoC 
are split into instruction and data stores according to 
Harvard architecture. The maximum memory sizes and 
increments depend on the FPGA type. For the Xilinx 
XC4VFX100 FPGA for example, local memories can be 
incremented in steps from 4 KB to 256 KB up to a 
maximum of 6768 KB for the whole chip. 

3) Non-Blocking Real-Time Interconnection Network: 
An on-chip interconnection network establishes 
communication links between processors, i.e., between task 
pairs. The links carry messages in a point-to-point manner 
but it is also possible to implement multicast and broadcast 
in the 2x2 switches out of which the network is constructed. 
The network operates asynchronously to the PMM clocks 
and in circuit switching mode. Asynchronous 
communication requires a message FIFO at each network 
input to decouple message creating in a PMM from message 
transfer in the network. Circuit switching means that a path 
through the network is established for every point-to-point 
connection as long as the communication persists. 

The most important feature of the interconnection 
network in our MPSoC is however that it is non-blocking by 
construction because it consists of multiple stages of 2x2 
switches in Benes topology [7]. This non-blocking feature is 
mandatory for real-time. If the network would block, no 
upper limit could be guaranteed for the latency of message 
delivery from one task to another. 

4) Software Development for Space-Sharing: The 
software development process for space-sharing is identical 
to that of time-sharing. The application is implemented in 
both cases by the code, i.e., the same set of tasks and the 
same inter-task communication. Only the way of mapping 
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the tasks and the way how inter-task communication is 
accomplished is different. 

In time-sharing, all tasks are mapped onto time slots and 
communicate via system calls that a real-time operating 
system may provide. In space-sharing, all tasks are mapped 
onto physical areas on a silicon chip, and inter-task 
communication is implemented by an interconnection 
network. This is fully transparent to the application because 
the programmer can use the same API for inter-task 
communication. This allows for direct portability of code 
between conventional time-sharing and new space-sharing. 

Once the application has been partitioned into tasks, the 
MPSoC can be built either manually or automatically by 
configuring in the VHDL or Verilog description of the 
MPSoC with so many PMMs as needed, plus an 
interconnection network to couple them. Furthermore, space-
sharing allows the adapting of every local memory in its size 
exactly to the needs of the task. It is also possible to add a 
coprocessor to a PMM that executes parts of the task as a 
hardware accelerator. The processor description has to be 
modified and extended therefore. Finally, space-sharing 
allows for task isolation and memory protection by 
construction because each local memory in the MPSoC can 
be accessed only by its own processor. In space-sharing, 
inter-task isolation is a feature that requires a memory 
management unit and at least a basic operation system. 

5) The number of PMMs on the FPGA: The number of 
achievable PMMs on the chip varies with the used FPGA 
type and the amount of external memory that is available on 
the FPGA board. In order to explore the achievable amount 
of PMMs per FPGA, we tested various types of FPGAs as 
listed in table I. On the Virtex-4 FPGA, which provides less 
than 5 percent of the capability of the recent Virtex-7 
XC7V2000T FPGA, we could accomodate a maximum of 
34 PMMs including 16 KB memory each. 

TABLE I.  LIST OF TESTED FPGAS 

FPGA 
FPGA 

Chip Board 

Spartan-3 Xilinx XC3S1000 Digilent Starter-Kit 

Virtex-4 Xilinx XC4VFX100 PLDA XpressFX 

Virtex-5 Xilinx XC5VLX50T Xilinx ML505 

Independent from the used FPGA type, it holds that the 
summed computing and memory requirements cannot 
exceed the chip resources. Although only one FPGA and 
some external memory are involved, the cumulative 
processing power of all PMMs is nevertheless considerably 
high if the on-chip parallel processing is effectively 
organized. In addition to that, task-specific algorithms can be 
outsourced to a PMM coprocessor where they are executed 
in hardware, i.e., with maximum speed. 

6) Energy awareness: The execution of every 
application needs consumption of electrical power. With 
space-sharing, only that chip area on a FPGA is occupied 
that is really needed by the application. It holds that chip 
areas that are not involved consume much less power than 

those whose transistors are switching between low and high 
states. Furthermore, the sizes of the local memories in 
space-sharing matches the sizes of the programmed code 
and data structures because no surplus is generated by 
VHDL or Verilog chip synthesis tools. As a consequence, 
power dissipation is as low as the underlying FPGA chip 
technoloy allows and as low as the application demands. 
This is in contrast to time-sharing on a classic embedded 
system that has to use standard microcontrollers and 
standard memory chips with given transistor count and 
therefore power dissipation. 

Please note that the energy consumption of our MPSoC 
is low because of space-sharing but it does not yet reach the 
absolute minimum. Only if individual PMM clocking is 
added as a new feature to space-sharing then the key is found 
for combining real-time and high CPU power with extremely 
low energy consumption.  

III. INDIVIDUAL CLOCKING OF PMMS 
Individual clocking of PMMs means that every PMM 

gets that clock speed that it needs to fulfill the time 
constraints of the task it executes. Individual clocking saves 
energy because the faster the processor operates the more 
dynamic power it consumes. 

Space-sharing allows the clocking of every PMM at its 
best rate and even to vary it dynamically over time, if 
needed. Individual clocking was implemented by us by 
means of a clock rate controller in every PMM and by 
extensions to the application code that can adaptively adjust 
the clock rate to the various phases a task can have. 

A. Clock Rate Controller 
Figure 3 shows the set-up of the clock rate controller. It 

consists of a master oscillator and a clock generator for all 
PMMs and an individual clock divider for each PMM. The 
clock divider is set by the processor program and controls 
thereby the processor clock rate. 

 
Figure 3.  Set-up of the clock rate controller. 

To benefit from the clock rate controller, the application 
programmer of the MPSoC must explicitly set the clock 
frequency for every task. If the task has several phases with 
different time constraints then he may set the rate in a fine-
grain manner. A first step to accomplish this is to divide each 
task in clock segments according to Figure 4. After that, he 
can set the rate for every segment by two methods: either he 
uses a system call which becomes valid during runtime, or he 
uses a compiler directive which is evaluated during compile 
time. Both methods need the introduction of time constraints 
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Figure 4.  Clock rate adaptation by task segmenting. 

that extend the real-time code. A paragon of real-time code 
extension by time constraints is given in [8]. 

B. System call for clock rate adaptation 
Figure 5 shows an example code where the predefined 

routine set_clock_rate is responsible for the clock rate. The 
routine check_new_data periodically tests a sensor on the 
arrival of new data. This is accomplished at a slow sampling 
rate of 2 MHz. If new data is present, then the routine 
calc_value is executed at a rate of 40 MHz, which quickly 
processes the input. By this method, the processor clock 
varies dynamically during the program run and thus saves 
energy. The disadvantage of this method is that the 
programmer must define clock rates in the program. These 
clocks depend furthermore on the used processor type 
because more powerful soft processors can do more jobs at a 
lower clock rate. This means that the application code has to 
take into account the concrete MPSoC on which a task is 
executed and is thus less portable. 

 
Figure 5.  System call for setting processor clock rate. 

C. Compiler directive for clock rate adaptation 
The second and better method for clock rate adaptation is 

to add deadlines to the code segments according to Figure 4. 
Each deadline Ti defines, until which each segment, i.e., task 
phase, must be completed. Compiler directives accomplish 
the definition of deadlines in the code. The directives are 
formatted as a comment to avoid language extensions or 
system calls but they are not treated as comments. Instead, a 
compiler preprocessor reads all meaningful comments and 
evaluates them. In addition, the compiler knows for what 
concrete MPSoC it compiles the code, and its preprocessor 
can therefore count the number of clock cycles needed to 
execute a task segment in that code. With that information, 
the preprocessor can set the clock rate MPSoC-dependent, 
and the programmer does not have to care about that.  

 
Figure 6.  Compiler directive for setting processor clock rate. 

Figure 6 shows the same example application of Figure 
5, but with additional deadlines of 20 and 30 µs for the 
segments event and terminate that have to be met after the 
initiate segment. The resulting preprocessor evaluation is 2 
MHz as a clock rate for the event and 40 MHz as clock rate 
for the terminate segment, which is the same as in method 1, 
but that result was achieved more conveniently. 

IV. MEASUREMENTS OF POWER CONSUMPTION 
We conducted several series of measurements on 

MPSoCs with and without individual clocking to obtain 
concrete Figures of the power dissipation of every MPSoC 
component. All measurements were made on the boards of 
Section II. 

According to [9], total power consumption P of a chip 
consists of static power Pstat and dynamic power Pdyn: 

 P = Pstat + Pdyn  (1) 

Leakage currents inside the semiconductor material cause 
static power consumption. There are two ways for leakage 
currents: the sub-threshold leakage, which is an inversion 
current across the device, and the gate-oxide leakage, which 
is a tunneling current through oxide insulation of a transistor 
gate. Both are technology-dependent and cannot be altered 
by the chip user. Dynamic power in contrast arises from 
switch activities of transistors. Equation (2) determines the 
dynamic power consumption [10] as a function of supply 
voltage V, clock frequency f and chip capacitance C. 

 Pdynamic = CV 2 f!  (2) 

In the following, measurements are presented for the case 
of no individual clocking. In Section 5, that technique is 
added. 

A. Static and Dynamic Dissipation 
In Figure 7, the static and dynamic dissipation is shown 

that we have measured for the Xilinx Virtex-4 FPGA. The 
diagram shows that dynamic power grows nearly linearly 
with the number of processors. Deviations from a straight 
line are caused by the place and route function of the used 
chip synthesis tool, which was XST from Xilinx. All 
processors have been clocked with 100 MHz first, while the 
total power consumption of the FPGA was measured. After 
this, the clock was disconnected to measure static power 
consumption only. Dynamic power was obtained as the 
difference between both. 
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Figure 7 shows that in MPSoCs of 10 PMMs and more 
the dynamic power dominates in the case of Virtex-4 on the 
PLDA board. Not shown in Figure 7 but measured by us is 
that in numbers Spartan-3 needs 268 mW of dynamic 
dissipation, Virtex-4 needs 120 mW, and Virtex-5 requires 
53 mW for every added processor. The low power of Virtex-
5 accounts mainly from the 65 nm process, while Spartan-3 
and Virtex-4 share the older 90 nm process technology. 

 
Figure 7.  Static and dynamic power consumption versus the number of 

processors for Virtex-4. 

B. Influence of Processor Clock Rates 
A second measurement series was conducted to get the 

dynamic dissipation versus the processor clock rates. The 
number of processors was parameterized. In Figure 8, the 
results of several MPSoCs with 1 to 6 processors in a 
Spartan-3 FPGA are shown. The results were already 
predicted in theory by equation 2, but concrete values were 
not known. 

C. Influence of Local Memory 
Figure 9 shows the influence of local memory for a 

Virtex-4 FPGA at a clock rate of 100 MHz. The number of 
processors was again parameterized. As one can see in 
addition in Figure 9: if a PMM has no memory, about 100 
mW remains that is needed by processor logic only. 

D. Influence of Interconnection Network 
As all PMMs, also the interconnection network has its 

own clock. In Figure 10, the influence of this clock rate on 
the dynamic power consumption of the FPGA is illustrated. 
The diagram shows that dynamic power dissipation increases 
linearly with a slope of about 0.85 mW per MHz for the 
tested Virtex-4 FPGA. Furthermore, we found out that the 
dynamic power consumption of the network mainly depends 
on the FIFOs at its inputs, not on the switching matrix itself. 
The FIFO in turn depends on the number of messages that 
have to be stored, their size and how big the differences 
between processor clock rates and network clock rates can 
become. Big differences need deep FIFOs to balance-out 
message sending and transporting, at least for a while. 

E. Power Consumption Parameters 
From the conducted measurements, we got the following 

numbers for parameters of an MPSoC that is implemented on 
a Virtex-4 for dynamic power consumption: 

 
Figure 8.  Dynamic power consumption versus processor clock rates for 

Spartan-3. The number of processors is parameterized. 

 
Figure 9.  Dynamic power consumption versus size of local memory for 

Virtex-4. The number of processors is parameterized. 

 
Figure 10.  Dynamic power consumption of the interconnection-network 

versus its clock-rate for Virtex-4. 
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 Pprocessor !1
mW
MHz

 (3) 

 Pmemory ! 0.01
mW

KB "MHz
 (4) 

 Pnetwork ! 0.85
mW
MHz

 (5) 

We used those parameters to define a model MPSoC that 
comprises 8 PMMs (Figure 11) in order to test the 
effectiveness of individual clocking. 

V. EFFECTIVENESS OF INDIVIDUAL CLOCKING 
The defined model MPSoC has individual clock rates and 

local memory sizes that reflect the requirements of an 
example application. The accumulative dynamic power 
consumption of this configuration is 529 mW without phase-
adaptive clocking. However, we did not employ that for the 
model MPSoC in order to have a better comparison to a 
MPSoC of same PMM number and architecture but with 
phase-adaptive clocking. It turned out that such a MPSoC 
would consume 1.9 W with a chip-wide clock rate of 100 
MHz and with fixed memory sizes of 64 KB for all PMMs. 
Out of this, a factor of 3.6 less dissipation is computed. 
According to that it can be stated that individual clocking of 
PMMs is an efficient method for energy saving, already 
without phase-adaptivity. With phase-adaptivity, one can 
obtain the least possible power dissipation. 

A. Set-Up of Model MPSoC 

 
Figure 11.  Set-Up of Model MPSoC. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, the concepts of space-sharing and adaptive 

clocking have been explained. Space-sharing eliminates the 
need to find a proper schedule for a list of tasks that have to 
be executed within a given time interval or at a given time 
point. It also eliminates the analysis of worst-case execution 
time of tasks in embedded systems, and the tools created 

here for. Additionally, space-sharing allows for a better 
electrical power management of real-time systems, for 
simpler task isolation and memory protection and for 
minimal power dissipation if combined with adaptive 
clocking. A convenient implementation of space-sharing is 
accomplished by a single-chip multiprocessor (MPSoC) in 
which the processor-memory modules are clocked 
individually due to the task phases and where the sizes of the 
local memories and the processor performance exactly match 
the application requirements. Furthermore, we conducted 
series of measurements to obtain concrete Figures for the 
power dissipation of the proposed MPSoC on Spartan-3, 
Virtex-4 and Virtex-5 FPGAs from Xilinx. 

Future work will create a tool for the automatic FPGA 
configuration out of a XML-based description of the task set 
and inter-task communication of any given real-time 
application, such that the application can be ported into 
space-sharing and thus executed by our MPSoC without 
code modification to obtain minimal chip area consumption 
and thus very low power dissipation. 
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