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Abstract—In this paper we discuss the mathematical pro-
perties of kinetic events computation for kinetic data structures
with polynomial-type certificate functions. We show that it is
neither theoretically possible nor numerically safe to ignore
the multiplicities of roots of these equations. The multiplicities
of the roots are sometimes ignored in order to speed up the
process of estimating their location, however, they must be
taken into account during the management of the kinetic data
structures. Some of the roots obtained by the computations
of these equations do not necessarily carry the expected
information (i.e., the times of future kinetic events) and they
may be therefore avoided entirely during the computation. This
text shows how to distinguish these roots before their exact
location is computed and thus to avoid their computation.

Keywords-Computational geometry, Polynomials, Data struc-
tures.

I. INTRODUCTION

Since many modern applications use a set of moving
primitives (points, triangles) or even more complex objects
as the input data, the kinetic data structures (KDS). Note that
this term is used in the meaning of a set of rules that defines
the mutual relationships for a given set of primitives – the
eventual implementation is not considered. KDS represent a
valid tool in applications such as collision detection, physical
and mathematical simulations, simulations of crowds, etc.
We may also encounter them in less obvious applications
such as kinetic-based management of function envelopes or
motion interpolation.

The mathematical properties of KDS are rarely discussed
in literature. In this paper, we are going to explore one
specific mathematical property of kinetic data structures.
Since the general topology of each kinetic data structure
has to change as a result of the movement of the input data,
we need to compute the time instants of these changes.
Experiments have shown that this particular task is the
most time-consuming part of KDS management. Therefore
it would be very convenient to be able to either speed
up the computation or omit some of the calculations. We
show that it is possible to ignore a nontrivial part of the
computation based solely on the algebraic properties of the
given equations.

This text will be organized in the following fashion:
in Section II, the previous work in the field of kinetic
data structures will be discussed. Section III will focus

on the basic principles and properties of the kinetic data
structures. Section IV will discuss the types of roots one may
encounter during the management of kinetic data structures.
Section V will summarize various aspects of our research
and Section VI will provide the reader with the results of
our work and will conclude the paper.

II. STATE OF THE ART

A. Kinetic Data Structures Use

Kinetic data structures were first introduced by Basch et
al. in [1] as a means of maintaining several different data
structures (such as 2D convex hull or an envelope of convex
functions) over a set of moving points with the aim to
create an apparatus for managing a kinetic Voronoi diagram.
Since then, the kinetic data structures have been undergoing
an extensive research (with a special focus on the spatial
division kinetic data structures such as the aforementioned
Voronoi diagram and Delaunay triangulation) – see [2]–[6]
and others. There are many different fields of application
of KDS: kinetic Delaunay triangulation was proposed as
a means of detecting collisions in [4]. Examples of this
approach include the collision detection between convex
polygons by Erickson et al. who showed in [7] that the
kinetic approach may be used to detect collisions between
convex polygons in E2. Their work was further extended
by Guibas et al. in [8] by employing a kinetic regular trian-
gulation for managing the bounding spheres of the moving
polyhedra. Practical use may include such applications as
the one proposed by Goralski and Gold in [9] which uses
the kinetic Voronoi diagram for the purpose of managing
a spatial relationships between marine vessels to aid the
human navigators (see Fig. 1), or the work of Ferrez –
[3] which uses a kinetic regular triangulation to simulate
the behavior of a granular material within a container. This
particular KDS was used in order to detect the collisions
between grains of various sizes (the different radii of the
grains were reflected by altering the weights of the points
in the triangulation).

Another field of application of KDS is the area of crowd
simulation. If the crowd is simulated in the agent-based
fashion, the spatial relationship among pedestrians may be
managed by a kinetic data structure at the local level (i.e.,
to prevent collisions between pedestrians) – see [10].
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Figure 1. An example of the collision detection application of kinetic
Voronoi diagram in the marine environment, [9].

The area of mathematical and physical simulations may
also benefit from using KDS. Beni adressed the problem of
solving partial differential equations in [6] and suggested
that KDS may be used for the purposes of fluid dynamics
simulations in 3D.

Although there are various types of kinetic data structures
and the mathematical properties explained in this text are
common to all of them, we will often explain them on the
specific case of kinetic Delaunay triangulation (KDT) which
is a typical and the most widely used KDS.

B. Mathematical Properties of KDS

Several different papers and theses have discussed the
problem of mathematical properties of the kinetic data
structures, namely the problem of computational complexity
of KDS – see [2] and the problem of speedup by making
the necessary computation more efficient or reducing their
amount – see [5], [11]. Since the KDS management is
often strongly dependent on the method of the computation
of the kinetic events, which is commonly in the form of
solving polynomial equations (see further), various methods
for this particular task have been considered. Because these
polynomials are most often nontrivial (with degree at least
four) it is not practical or even not possible to solve them
analyticaly. The methods most commonly used for solving
these equations are the eigenvalue methods [12], methods
based on interval arithmetic [5], [11] or various kinds of
hybrid methods [11]. Since the computation is highly time-
consuming, it is often convenient to speed up the process by
exploiting various features of the polynomial functions. For
this purpose, such tools as the Sturm sequences of polyno-
mials or Descartes’ rule of signs are sometimes employed,
allowing us to separate the roots more effectively [13].
Another method of simplifying the computation is to replace
the original polynomial equations with different equations
with the same positions of the roots and their multiplicities
reduced to one as suggested in [11]. In this text we will
show that this modification is not correct and may lead to
distortions in the topology of the managed KDS if the further

root management is based on the polynomial equations with
reduced root multiplicities. As far as the root location goes,
this method of simplification is possible, however, we will
show that finding the roots with even multiplicities may be
ommited entirely as they are not necessary for the KDS
management.

III. KINETIC DATA STRUCTURES

In order to preserve the properties of a data structure for
the mobile data, a flight plan is added to the primitives in
the construction set – a continuous motion function which
describes its movement. Furthermore, a means of computa-
tion of the events is implemented and a queue for storing
these events is utilized. The trajectory of each primitive
is therefore described by a function (often restricted to
a function type such as real polynomial) for which we
are able to compute and sort its roots (that determine the
aforementioned events). The properties (as well as the use)
of the queue may be found in [6]; they are not discussed
here as they are not important for our purposes.

A. Predicates and Certificates

Definition 1 (Predicate): Let us have a set P =
{P1, P2, . . . , Pn} of n primitives, a data structure DS(P)
constructed over these primitives and a finite set of discrete
values V ⊂ R. The following function:

p : p(P̄) → V (1)

where P̄ ⊂ P is a subset of the set of the primitives of a
given (pre-defined) size, is called a predicate of DS(P).

An example of a predicate may be for instance the
orientation test or incicrcle test, see later. The predicates
often consider only the location of the primitives, but it is
not a general rule (e.g., the point weights are considered
in the case of regular triangulation). The predicates define
the data structures as they are used by the certificates to
determine the correctness of these structures:

Definition 2 (Certificate): The evaluation of a predicate
function p (as defined earlier) for a given subset P̄ ∈ P in
a given data structure DS(P) is called a certificate. With
respect to the parameters of p and DS(P), a certificate may
either yield a failure, a correct state or a singular state.

Let us show an example of the incircle test – a predicate
for a Delaunay triangulation DT(P) over a given set of
n points in Euclidean plane P = {p1, p2, . . . , pn} (where
pi = [xi, yi]) [14] and the associated certificate. For the
sake of simplicity, let us assume that all the triangles in the
triangulation are oriented counter-clockwise.

I(pi, pj , pk, pl) =

= sgn

det


xi yi x2

i + y2i 1
xj yj x2

j + y2j 1
xk yk x2

k + y2k 1
xl yl x2

l + y2l 1


 (2)
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where pi, pj , pk, pl ∈ P and V = {−1, 0, 1}. The function I
determines the position of a point against a circumcircle of
a triangle given by the other three points. We may see that it
satisfies the formula given by (1). The associated certificate
is then defined in such a way that it yields a correct state if
the result of (2) is −1 (point pl lies outside the circumcircle
of the triangle given by pipjpk), a singular state if the result
is 0 (point lies on the circle) and a failure if the result is 1
(point lies inside the circumcircle).

Definition 3 (Certificate function, certificate failure):
Let us have a kinetic data structure KDS(Pk) defined on a
set of n kinetic primitives Pk = {P k

1 (t), P
k
2 (t), . . . , P

k
n (t)}

(i.e., their properties are functions of time t ∈ R). Let us
have a subset P̄k ⊂ Pk of a given predefined size as in
Def. 1. The certificate function is then defined as:

c : c(t, P̄k) → R (3)

Let us assume that c yields a correct state, a singular state
and a failure ⇐⇒ c > 0, c = 0, c < 0 respectively. Given
a time value tf ∈ R and a subset Pk

f ⊂ Pk for which
c(tf ,P

k
f ) = 0 and there are ε1, ε2 > 0 such that ∀t1 ∈

(0, ε1) , t2 ∈ (0, ε2) : c(tf−t1,P
k
f ) > 0∧c(tf+t2,P

k
f ) < 0,

we call tf a time of certificate failure.
As we may see, unlike (1), the image of function (3)

I(c) = R. This is caused by the fact that the certificate
functions are used not only to determine whether the KDS
is in a correct state but also to determine the time instants
when a certificate failure occurs (if any). Therefore, the most
important mathematical challenge in the management of a
kinetic data structure is the task of computing the roots of
the certificate functions.

B. Primitives Movement

As stated before, the kinetization of a data structure is
based on the fact that some properties of the underlying
primitives become a function of time. The most straighfor-
ward example of this behavior is of course movement – for
instance a Delaunay triangulation constructed over a set of
points which move over time becomes a kinetic Delaunay
triangulation. An example of non-moving data may be for
example sorting of time-dependent values.

It is obvious that in reality, the movement may follow
virtually any type of trajectory, but in the kinetic data
structures we usually limit the movement to polynomial type
trajectories in order to keep the computations managable.
If some type of a more complex trajectory is required by
the application, it is usually approximated by piecewise-
polynomial curves.

C. Kinetic Delaunay Triangulation

Let us now consider the special case of kinetic DT(P):
we will use a kinetic data set Pk = {p1(t), p2(t), . . . , pn(t)}
where pi(t) = [xi(t), yi(t)] is a point in the Euclidean
plane with coordinates being functions of time. We may see

that since the used data structure is a (kinetic) Delaunay
triangulation, the associated certificate is the incircle test.
However, since the coordinates of the generating points are
functions of time, the incircle test itself becomes a function
of time, thus forming a certificate function:

Ik(pi(t), pj(t), pk(t), pl(t)) =

= det


xi(t) yi(t) x2

i (t) + y2i (t) 1
xj(t) yj(t) x2

j (t) + y2j (t) 1
xk(t) yk(t) x2

k(t) + y2k(t) 1
xl(t) yl(t) x2

l (t) + y2l (t) 1

 (4)

The exact properties of (4) depend solely on the nature of
the movement of the kinetic primitives. If we only allow
movement along polynomial trajectories, function (4) will
become a polynomial function. The roots of this function
will determine the time instants when any four points from
Pk become cocircular and the data structure reaches a state
of certificate failure.

IV. ROOT CLASSIFICATION

Note that not all of the roots of a certificate function
are usable as time instants of topologic event occurance.
These roots are easily recognizable by considering their
multiplicities. Some of the existing solutions to the KDS
management problem [11] recommend that prior to the ac-
tual root computation, their method replaces each certificate
function c(t) with a polynomial function d(t) which has
the same roots but all with multiplicities equal to one. This
approach is not correct, as we may see in Fig. 2.

In this figure, we may see that the point p4 moves tangen-
tially to the circumcircle of the triangle p1p2p3 (which is not
moving). There is only one (double) root of the certificate
function c(t) which corresponds to the time instant when the
triangulation reaches the singular state depicted in Fig. 2(b)
(for this single time instant, both possible triangle config-
urations are Delaunay-legal). This situation is the simplest
possible case of this type of event and it is recognizable
by obtaining a double root of the certificate function. If we
reduce the root multiplicity and schedule a single event for
this time, the triangulation will cease to be Delaunay and
eventually it may even cease to be a triangulation. Therefore,
it is necessary to be able to recognize these cases. We may
see that there is no certificate failure, because there is no time
period for which the associated certificate function would
yield a failure. According to Def. 3 the existence of such a
time period is a necessary condition for a certificate failure.
The following lemma shows how these situations can be
detected for polynomial certificate functions:

Lemma 1: When determining the times of topologic
events, the roots of a polynomial certificate function c(t)
may be divided into two groups as follows:

• Roots of even multiplicity may be ignored.
• Roots of odd multiplicity determine the time of a single

topologic event.
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(a) Initial situation. (b) Singular state. (c) Point p4 moves on; topology
does not change.

Figure 2. Three phases of tangential movement of a point against the circumcircle of a triangle.

Proof: Let us rewrite the polynomial c(t) as:

c(t) = (t− t0)
r · q(t) (5)

where t0 is a root of c(t) with multiplicity r and q(t) is a
polynomial function. Let us now find an arbitrary small ε >
0 such that there will be an interval I = (t0−ε; t0+ε) such
that q(t) has no roots in I (i.e., r is the maximum positive
integer that satisfies the formula); let c0(t) = (t− t0)

r.
If t0 is of even multiplicity, we may say that r = 2k and

thus:
c0(t) =

[
(t− t0)

2
]k

(6)

We may see that ∀t ∈ R : c0(t) ≥ 0 and since q(t) does
not have any roots in I (and thus the sign of its value does
not change over I because it is a continuous function), we
may clearly see that the sign of c(t) does not change over
I (if the zero at t = t0 is ignored). Moreover, we may see
that the certificate with the certificate function c(t) does not
fail for any time t ∈ I and since t0 is the only root of c(t)
in I , it does not mark a certificate failure.

If t0 is of odd multiplicity, then r = 2k + 1 and we have:

c0(t) =
[
(t− t0)

2
]k · (t− t0) (7)

We may see that the sign of c0(t) does change exactly once
in the interval I and thus the sign of c(t) changes too and
the certificate function fails, determining the time of a single
topologic event.

Lemma 1 shows that the multiplicities of the roots of c(t)
need to be taken into consideration when handling the kinetic
data structures. If we, for instance, replace the certificate
function c(t) with other polynomial function d(t) which
has the same roots but all with multiplicities equal to one,
we will incorrectly obtain a certificate failure for the cases
similar to the one shown if Fig. 2(b). This would cause
a nonexistent topologic event to be executed and lead to a
topology distortions upon the event execution (thus breaking
the precondition of having a specific data structure). Finaly,
due to these errors, the whole process of managing the KDS
will probably become unstable as the distorted topology may

cause scheduling even more nonexistent events until it is
virtually impossible (or at least meaningless) to handle the
damaged data structure. Using the information in Lemma 1,
we may safely ignore this case and avoid the damage to the
data structure.

The situation depicted in Fig. 2 is specifically related to
the special case of the kinetic Delaunay triangulation and,
as stated before, it is recognizable by obtaining a double
root of the certificate function. For different kinetic data
structures, similar examples may include a point moving
tangentially towards the convex hull of the data set for
kinetic convex hull management or comparison of such time-
dependent values as v1(t) = t2 and v2(t) = 0 for kinetic
sorting as shown in Fig. 3. Note that these situations are
also mathematically recognizable by finding double roots of
the associated certificate functions.

5

6

m(t)

(a) Kinetic convex hull.

1
(t)v

2
(t)v

(b) Kinetic sorting.

Figure 3. More examples of KDS configurations with roots of even
multiplicity.

V. DISCUSSION

Lemma 1 shows that it is necessary to distinguish between
the types of roots (given by their multiplicities) obtained
during KDS management since not all of them are viable
for topologic event determination. Even though the principle
was presented on the example of kinetic Delaunay triangula-
tion, the same situation will occur for any type of kinetic data

35Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-172-4

ADVCOMP 2011 : The Fifth International Conference on Advanced Engineering Computing and Applications in Sciences



structure if the time change of the primitives is described by
polynomial equations.

However, in practical applications, the limited precision
of floating-point representation of numbers will most prob-
ably effectively prevent vast majority of these cases from
occuring by slightly altering the polynomials in such a way
that the multiple roots will be separated. In such cases, the
roots will be processed in the usual way one after another
and the resulting data structure may stay correct. However,
this feature cannot be relied on, especially for the roots of
multiplicities greater than two, and it is obviously numeri-
caly more stable to try to avoid these cases completely.

Even though the presented theory is demonstrated only
on the example of kinetic Delaunay triangulation, it is
applicable on any type of kinetic data structure that is based
on polynomial certificate functions since Lemma 1 only
considers the multiplicities of the roots of a polynomial
certificate function and is thus independent on the specific
meaning of these equations (and the nature of the parenting
kinetic data structure).

VI. CONCLUSION

We show that it is not mathematically correct to simplify
the polynomial certificate equations by reducing the multi-
plicities of all of their roots to one. It is not correct if done
in order to speed up the computation by processing them
as simple roots regardless of their original multiplity during
the KDS management. The presented theory shows that this
simplification is only valid for roots of odd multiplicity.
The roots of even multiplicity should either preserve even
multiplicity or they should be removed entirely because they
provide us with no information about the changes in the
kinetic data structure. This would also simplify the certificate
equation even further.
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