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Abstract—In production engineering, the process of reverse the compensation of form errors by modifying CAD/CAM
engineering often requires mOdIflca"[_IOI’lS of CAD/CAM data. data [6][7]. However, approximation errors always occur,
In general, CAD surfaces are modified according to a set of y,,5 the desired shape accuracy cannot be ensured. In this

discrete displacement vectors. For this purpose, smoothing spac . .
deformation techniques like free-form deformation (FFD) can be paper, we present an adaptive FFD method, which allows the

used. We present a B-spline-based adaptive FFD, which is ablemodification of 3D shapes with regard to a specified shape
to ensure a user-defined shape accuracy. In an iterative pross, accuracy.

the control-point lattice of the B-spline volume is automatically This paper is organized as follows. In Section Il, a short

refined so that the approximation errors resulting from the  gyepiew of free-form deformation techniques is provided.

direct free-form deformation decrease. Therefore, the areamside Secti m ts th h for th daptive f
the volume with the highest deformation are identified and ection presents the new approach for the adapuve iree-

subsequently refined by inserting new knots into the B-spline form deformation using B-splines. The presented method is
volume. Numerical studies have shown that the presented method validated in Section IV using two examples from sheet metal

improves the common B-spline-based FFD technique with respect forming. Finally, a conclusion is given in Section V.
to accuracy and efficiency.

Index Terms—CAD; free-form deformation; reverse engineer- Il. RELATED WORK
ing A first approach for free-form deformation was introduced
by Barr [4]. He used differential affine transformations for
l. INTRODUCTION regular global deformations, like scaling, tapering, begdor

There are several applications in production engineerirfy/isting. Additionally, rules for the transformation ofnigent
in which the geometry of a designed part has to be modihd normal vectors were developed. Sederberg and Parry [8]
fied. First of all, during product development, modificaonPresented a more general approach for spatial deformation.
of the product are often required in order to optimize ofhey defined the deformation function as a trivariate Be&inst
change the product properties. This process is generdlgdca Polynomial tensor product @ier volume). The FFD volume
reverse engineering [1], or reengineering; it begins with i& represented by a parallelepiped lattice of control goiand
prototype being manufactured with respect to the designdt§ space deformation is realized by moving the controltgoin
CAD model (CAD - Computer-Aided Design), followed by This FFD technique proceeds as follows:
manual modifications by the engineer. To incorporate thesel) Define a lattice of control points, which encloses the
modifications, first, the manufactured workpiece is measure  object to deform
by an optical or tactile scanning device. Then, the digitize 2) Calculate the local parameters of every point describing
data is compared to the designed CAD model by a registration the embedded object
process [2]. Normally, the outcome of the registration is a 3) Deform the FFD volume by moving the control points
discrete displacement field, which is used for the following 4) Displace the embedded object points.
modification of CAD/CAM data (CAM - Computer-Aided Based on the work of Sederberg and Parry, Coquillart [9]
Manufacturing). Another important application is the comdeveloped an Extended Free-Form Deformation (EFFD) us-
pensation of springback in sheet metal forming. Here, tlveg arbitrarily shaped, non-parallelepipedical lattic8his
geometry of forming tools has to be modified with respect t@ethod uses the &ier technigue, in which the lattice size
a modification field [3], which is obtained by a finite elementiepends on the degree of Bernstein polynomials, thus, only
simulation of the forming process or by a registration of thglobal deformations are possible. Extensions to B-splihek
digitized data. or NURBS (Non Uniform Rational B-spline) [11] increase
Free-Form Deformation (FFD) is a technique for spadbe flexibility of FFD and provide the possibility for local
deformation and is used for the modification of 3D objects [4]leformations. Hsu et al. [12] developed a method for the
in computer graphics and geometric modeling. Due to itirect manipulation of FFD, which allows to control the free
continuity and flexibility, this method was already appliedorm deformation by displacing object points directly. Vhe
for industrial applications, e.g., rapid manufacturindg 8 compute the repositioning of the control points in a sense of
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least squares using the pseudo-inverse matrix. Hu et dl. [13In general, the parameter space and, therefore, the knot
introduced an explicit and more efficient solution for theedt vectors are normalized t@, 1]. This requires the embedding
manipulation problem. Sarraga [6] adopted the FFD-method the objects, where for every point; = (x;,v:,2;) the
for modifying CAD/CAM surfaces according to displacement®cal parametergw;,v;,w;) have to be found. In case of
prescribed at a finite set of points. a Bézier volume, this can be easily done by solving linear

Biermann et al. [7] presented an approach for manufacturiequations [8]. In case of a B-spline or NURBS, due to the
modified workpieces, in which a B-spline volume is usedhultiplicity of outer knots, the local parameters have to be
for the direct deformation of original NC programs (NC found by numerical search [14]. Regarding the deformation
Numerical Control). The requirements for the FFD weref complex and large objects, this operation may be very
accuracy and efficiency by deforming CAD/CAM data, whiclzostly. To overcome this problem, we define the initial B-
consist of several thousand points. Here, the accuracgases spline volume as the identity so that the embedding operatio
with the number of control points, but it is still hard to ensu vanishes. The initial B-spline volume has a regular, palaxi
that the approximation error is within the required tolemn lattice of minimal size. This means=p+ 1, m = ¢ + 1,

. ADAPTIVE FED andn = r + 1. For the normalized parameter space, the B-

) ) i . spline volume is equivalent to aéRier volume, and for the
In this section, an adaptive FFD method is presented thare'l%bedding functiorE : R3 — [0, 1] x [0,1] x [0, 1] yields:
able to ensure a user-defined shape accuracy by deforming

an object in the described manner. The data at hand is a (2,9, 2) = (fr—ld Yy—y1 z—2 > @)
shape (e.g., mesh or CAD model of a workpiece) and a finite T Ty — X1 Ym — Y1 Zn — 21
set of displacement vectors according to the desired shape
modification. For this purpose, Biermann et al. [7] used €€ Pii1= (@1,91,21) and Prmn = (21, Yim, 2n)-
B-spline volume with a regular lattice of a fixed size. Th y  reparameterizing  the paramete_r space to
innovation of the presented FFD method, which also usgg*! X [y1:yml X [21,2,], the  embedding function
a B-spline volume, is the iterative refinement of the latticRSOMES identityZ(z, y, z) = (z,y,2). This means that the
and recomputation of the control point positions so that t %cal parameters of a point are equal to its coordinates.
approximation error decreases in each iteration.
The adaptive FFD proceeds as follows:

1) Initialize a B-spline volume with a regular, paraxial '€ direct manipulation of an FFD volume requires the
lattice of minimal size computation of control point displacements so that theadist

2) Compute the deformation according to the displaceme?ftween the deformed source poipf and corresponding
vectors target pointg; is minimized for every paifp;, q;),0 < i < d,

3) Deform the object and update the displacement vectgiered is the number of displacement_ vectors. This can be
4) If the shape deviation (e.g., least squares distance f¥mulated as a least-squares problem:

B. Computing the deformation

tween source and target shape) is not within the toler- d

ance, refine the lattice and go to step 2. R= Z lgi — F(pi)|l5 — min. 3)
In the following, the individual steps are explained in more i=1
detail.

The deformation of a poinp = (z,y, z) is given by:

A. Definition and initialization
F(p) = F(z,y,%)

The B-spline volumeF : R* — R? of degreep, ¢, andr is

l,m,n
defined by:
Y = D Bijr(,y,2) (P + 8ijk) @
l,m,n S 4
i,7,k=1
Flu,v,w) = 37 Bip(u)By(0) Bir(w)Piji, (1) L
biik=1 =p+ Y Bijn(r.y.2)8i
where P; ; ;. are the control points on d & m x n)-lattice, i,5,k=1

(u,v,w) are the local parameters of a point inside the B-spli
volume, andB; ,,(u), B; 4(v), andBy, »(w) are the nonrational
B-spline basis functions defined on the knot vectors

Qﬁhereéi,j,k are the displacement vectors of the control points

and B; ; x(z,y,2) = B p(x)Bj q(y)Bk.(2). The minimiza-

tion problem (3) can be formulated as a set of linear equation

U = {Umin, - - - s Wmins Up+1s - - - » Uy Umnag, - - - s Umaz }» and solved in a sense of least squares using the Singulae Valu
— R Decomposition (SVD) [7].

p+1 p+1 . . . .
In order to allow an iterative recalculation of control poin
V= {Vmin, - -+ Umins Vg+1, - - - » Ums Umazs - - - » Umaz J» displacements, equation (4) can be defined recursively:
q+1 q+1 L
W = {wmin7~--awminawr+1a---7wn>wmaaca---7wmax}~ Fs(p) :st1(P)+ Z Bl‘7 k‘(xvywz)(sfjka (5)
—— S—— s 5Js
r+1 r+1 i,7,k=1
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where Fy(p) = p and §;,, are the displacements of the ___Target shape
control points in the iteratiom, which updates the positions of ‘ )
the control points from the previous iteration. By considgr 2 \ / AN
only the control points which were involved in the refinement ,J—»y Source shape
of the lattice in the previous iteration, the complexity bet
least-squares problem (3) decreases and, thus, the computi Fig. 1. Source and target shape of the hat profile.
time is reduced significantly. In doing so, the FFD volume is
optimized locally in each iteration and the shape deviation
decrease continuously. the measureD. Additionally, large cells should be preferred
. . for the refinement. These requirements are combined into one

C. Refinement of the lattice measure, e.g., for the-cells, by:

In order to reduce the approximation errors, the flexibility d
of thg FFD vplume has to be increased. One well-known D,=M-L,- 12590(171), (6)
technique for increasing the degrees of freedom and thereby d =

the flexibility of B-splines is knot insertion [14]. In casé @ whereL, is the length of the cell inta-direction andb, () is

B-spline curves, adding a new knot does not change the shﬁge : o .
. - . € partial derivative of the vector field at vectyr= (p;, g, ).
of the curve. Therefore, inserting a new knot cause adchfonWe approximate,, (&) for the k-neighborhood by:

a new control point and the displacing of some existing aintr
points. In case of a B-spline volume with 8k m x n)-lattice,
e.g. inserting of a knot into the knot vect6r increases the
lattice size to((I + 1) x m x n) control points. By inserting
knots successively into the knot vectdis V, and W, the whereb, — (1,0,0)” is one of the canonical basis vector
lattice can be expanded to an arbitrary size. in R? and F,(#;) = (g; — Fy(p;)) is a residual deviation
The challenge is to decide where the knots are to be insertgdgtor after deformation withF,. Note, Fo(p;) = p;. The
so that the approximation error decreases as much as @ssibformation measure®, and D, for v- and w-cells are
Here, it is important to keep the lattice size small in ordgfa|cylated analogously. Among all cells we first determine
to not increase the computing time unnecessarily. Thegefofhe maximum valueD,,,, and then refine the cells with
we subdivide the FFD volume into cells or subspaces angl > ,p .=~ 0 < o < 1, by inserting a knot into the
analyze the discrete deformation field inside each celllsCelyiggie of the cell. By varying the scalar, it is possible to
with strong deformation will be refined by knot insertion.  control the number of subdivided cells: fer= 1, only one
An intuitive subdivision of the FFD volume is given bycel| s refined and, for. = 0, all cells are refined. Due to the
the knot vectorsU, V, and W. With respect to the ini- cypic time complexity of SVD, inserting only one knot per
tialization of the minimal B-spline volume, the parameteferation results in the shortest total computing timehaiigh
space is equal to the model space and the unequal kngis number of iterations and the lattice size are not netissa

inside a knot vector indicate the partitioning of the Volminimal. Thus, we setv = 1 in the following numerical
ume into the corresponding direction. For instance, thet kngydies.

vector U = {Umin, - - -  Umin, Wmazs - - - » Umaz ; YiEIDS only

k
1 & R®E) - Rl 10— pi) bl
(SI v;) = — J J N 7
@)= F 2 s — Pill "

IV. RESULTS

1 1

one partition of thgrinitial B—splinepJ\r/qume into-direction, The presented method is validated on the basis of two
in particular, [tmin, maz] With respect to parameter space&xamples from sheet metal forming. The first example is a
or, equivalently,[Z,in, Tmaz] With respect to model space.simple hat profile, see Fig. 1. It is 25D object, i.e., the
Furthermore, inserting a knat; would subdivide the model object has no variation of the shape along thaxis, and the
space into cell$z,in, u1] X [Ymin, Ymaz] X [Zmin, Zmaz] @nd  corresponding mesh hds 859 vertices. The target shape is
[1, Tmaz] X [Ymins Ymaz] X [Zmin, Zmaz)- 1N this process, we the reference shape of the workpiece and the source shape
consider three partitionings of the FFD volume, one in eaetas obtained from the target shape by bending. Thus, the
direction. displacements of the mesh vertices are known.

In the next step, the deformation field inside each cell is We use FFD for the adjustment of the source shape to the
analyzed in order to decide which cell has to be subdivide@rget shape with respect to the displacement vectorsallpjt
For the comparison of the cells, an appropriate measuie the B-spline volume has a lattice witf2 x 4 x 4) control
required, which describes the strength of space deformatigoints. The adjustment is proceeded by the adaptive FFD and
inside a cell. The simplest one is the maximum lengthof the process terminates if the normalized residigl = %R is
all deformation vectors. This will force the refinement of abelow a user-defined threshaldwhich we set t@®.0001. For
least three cells, one for each direction, which is not alwaghis simple example from Fig. 1, ten iterations were reqlire
necessary. In fact, the disturbance of the vector field tliera to achieve the desired approximation quality. In this pssce
its gradients into the corresponding direction, e.g., gmatd the lattice has been refined to the sizg®fx 13 x 4) control
into xz-direction for u-cells, should be taken into account bypoints in approx.7 seconds. The calculated B-spline volume
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Fig. 2. Adjustment of the source shape to the target shape dptiad FFD

for the hat profile. Fig. 4. Shape deviation of the tank after the adjustment by.FFD
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and the _deform_ed shape are presented in Fig. 2. It V'sua“%—?gg.‘ 5. Development of the approximation errfy with regard to the
the Euclidean distance between the source and the target shamber of control points.

with respect to the displacement vectors after the adjustme

with FFD. The maximum and average distances between the

deformed source shape and the target shape were lowered flattice was refined to the size ¢£0 x 21 x 4) control points.

9.0 mm and4.958 mm to 0.06 mm and0.007 mm, respec- The deviation of the source shape from the target shape after
tively. As expected, the lattice was refined injedirection, adjustment is shown in Fig. 4. The maximum and average
which has the most space disturbance. For comparison, usiligfances have been reduced®d1 mm and 0.005 mm,

a common, uniform B-spline volume witf2 x 13 x 4) control respectively. Furthermore, it can be observed that the FFD
points for this adjustment, the maximum and average distarlattice has a high density of control points in the deformed
were reduced td).08 mm and 0.014 mm, respectively, in areas. The calculation of the uniform B-spline volume with
approx. 4 seconds. For this example, the presented FRDe same size fob, 577 displacement vectors takes approx.
approach outperforms the common method with respect 28 minutes. Thereby the maximum and average distance were
accuracy. lowered t00.24 mm and0.012 mm, respectively.

The second example is the geometry of the die for a tankAdditionally, we analyze the convergence behavior of our
wall, which we simply call the tank. The die was designed in@gorithm. Fig. 5 presents the development of the approxi-
CAD environment and exported to a mesh witt377 vertices. mation error Ry with regard to number of control points.
The target shape was generated from the source shapeCysidering the logarithmic scales, it can be seen thabia t
displacing some of the vertices, see Fig. 3. Here, the demimt case, the convergence behavior of the presented method is
of the target shape are local in nature and vary fre2d mm  superlinear.
to 2 mm. This is a more challenging and practically relevant
shape. Again, the displacements of vertices are known and we
fit the source shape into the target shape by using the adaptivin this paper, an adaptive free-form deformation technique
FFD. was presented, which is used for modifying a workpiece

The initial B-spline volume has a lattice witfdl x 4 x 4) geometry according to a set of displacement vectors. The
control points, which encloses both shapes. The termimatinovelty of this method is the iterative approach, in which
threshold was set t6.0001. Since the deformation of thethe lattice of the FFD volume is automatically refined with
tank is complex in shape, the adjustment process n8édsregard to the current shape deviations. Due to the locafity o
iterations and a computing time of appraX.minutes. The B-splines, only a small number of control points is recoreput

V. CONCLUSION
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in each iteration, thus, the computing time was decreased
significantly. Another advantage is the possibility to cohthe
approximation quality of the FFD. This increases the aaoura
and the efficiency of the manufacturing process, in which the
FFD volume is used for shape modification of the workpiece.
The numerical studies have shown that the desired shape
modifications can be obtained by deforming the object using
the adaptive FFD. The presented method is more efficient than
the common FFD method using a B-spline volume with a
uniform control point lattice. The rate of convergence ape
to be superlinear with respect to the lattice size. Further
improvements can be achieved by a nonuniform subdivision
of cells. For practical use, the initial lattice of FFD can be
roughly adapted to the object shape by the user in order to
reduce the number of iterations and speed up the calculation
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