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Abstract—In production engineering, the process of reverse
engineering often requires modifications of CAD/CAM data.
In general, CAD surfaces are modified according to a set of
discrete displacement vectors. For this purpose, smoothing space-
deformation techniques like free-form deformation (FFD) can be
used. We present a B-spline-based adaptive FFD, which is able
to ensure a user-defined shape accuracy. In an iterative process,
the control-point lattice of the B-spline volume is automatically
refined so that the approximation errors resulting from the
direct free-form deformation decrease. Therefore, the areasinside
the volume with the highest deformation are identified and
subsequently refined by inserting new knots into the B-spline
volume. Numerical studies have shown that the presented method
improves the common B-spline-based FFD technique with respect
to accuracy and efficiency.

Index Terms—CAD; free-form deformation; reverse engineer-
ing

I. I NTRODUCTION

There are several applications in production engineering,
in which the geometry of a designed part has to be modi-
fied. First of all, during product development, modifications
of the product are often required in order to optimize or
change the product properties. This process is generally called
reverse engineering [1], or reengineering; it begins with a
prototype being manufactured with respect to the designed
CAD model (CAD - Computer-Aided Design), followed by
manual modifications by the engineer. To incorporate these
modifications, first, the manufactured workpiece is measured
by an optical or tactile scanning device. Then, the digitized
data is compared to the designed CAD model by a registration
process [2]. Normally, the outcome of the registration is a
discrete displacement field, which is used for the following
modification of CAD/CAM data (CAM - Computer-Aided
Manufacturing). Another important application is the com-
pensation of springback in sheet metal forming. Here, the
geometry of forming tools has to be modified with respect to
a modification field [3], which is obtained by a finite element
simulation of the forming process or by a registration of the
digitized data.

Free-Form Deformation (FFD) is a technique for space
deformation and is used for the modification of 3D objects [4]
in computer graphics and geometric modeling. Due to its
continuity and flexibility, this method was already applied
for industrial applications, e.g., rapid manufacturing [5] or

the compensation of form errors by modifying CAD/CAM
data [6][7]. However, approximation errors always occur,
thus, the desired shape accuracy cannot be ensured. In this
paper, we present an adaptive FFD method, which allows the
modification of 3D shapes with regard to a specified shape
accuracy.

This paper is organized as follows. In Section II, a short
overview of free-form deformation techniques is provided.
Section III presents the new approach for the adaptive free-
form deformation using B-splines. The presented method is
validated in Section IV using two examples from sheet metal
forming. Finally, a conclusion is given in Section V.

II. RELATED WORK

A first approach for free-form deformation was introduced
by Barr [4]. He used differential affine transformations for
regular global deformations, like scaling, tapering, bending, or
twisting. Additionally, rules for the transformation of tangent
and normal vectors were developed. Sederberg and Parry [8]
presented a more general approach for spatial deformation.
They defined the deformation function as a trivariate Bernstein
polynomial tensor product (B́ezier volume). The FFD volume
is represented by a parallelepiped lattice of control points, and
the space deformation is realized by moving the control points.
This FFD technique proceeds as follows:

1) Define a lattice of control points, which encloses the
object to deform

2) Calculate the local parameters of every point describing
the embedded object

3) Deform the FFD volume by moving the control points
4) Displace the embedded object points.
Based on the work of Sederberg and Parry, Coquillart [9]

developed an Extended Free-Form Deformation (EFFD) us-
ing arbitrarily shaped, non-parallelepipedical lattices. This
method uses the B́ezier technique, in which the lattice size
depends on the degree of Bernstein polynomials, thus, only
global deformations are possible. Extensions to B-splines[10]
or NURBS (Non Uniform Rational B-spline) [11] increase
the flexibility of FFD and provide the possibility for local
deformations. Hsu et al. [12] developed a method for the
direct manipulation of FFD, which allows to control the free-
form deformation by displacing object points directly. They
compute the repositioning of the control points in a sense of
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least squares using the pseudo-inverse matrix. Hu et al. [13]
introduced an explicit and more efficient solution for the direct
manipulation problem. Sarraga [6] adopted the FFD-method
for modifying CAD/CAM surfaces according to displacements
prescribed at a finite set of points.

Biermann et al. [7] presented an approach for manufacturing
modified workpieces, in which a B-spline volume is used
for the direct deformation of original NC programs (NC -
Numerical Control). The requirements for the FFD were
accuracy and efficiency by deforming CAD/CAM data, which
consist of several thousand points. Here, the accuracy increases
with the number of control points, but it is still hard to ensure
that the approximation error is within the required tolerance.

III. A DAPTIVE FFD

In this section, an adaptive FFD method is presented that is
able to ensure a user-defined shape accuracy by deforming
an object in the described manner. The data at hand is a
shape (e.g., mesh or CAD model of a workpiece) and a finite
set of displacement vectors according to the desired shape
modification. For this purpose, Biermann et al. [7] used a
B-spline volume with a regular lattice of a fixed size. The
innovation of the presented FFD method, which also uses
a B-spline volume, is the iterative refinement of the lattice
and recomputation of the control point positions so that the
approximation error decreases in each iteration.

The adaptive FFD proceeds as follows:
1) Initialize a B-spline volume with a regular, paraxial

lattice of minimal size
2) Compute the deformation according to the displacement

vectors
3) Deform the object and update the displacement vectors
4) If the shape deviation (e.g., least squares distance be-

tween source and target shape) is not within the toler-
ance, refine the lattice and go to step 2.

In the following, the individual steps are explained in more
detail.

A. Definition and initialization

The B-spline volumeF : R3 → R
3 of degreep, q, andr is

defined by:

F (u, v, w) =

l,m,n
∑

i,j,k=1

Bi,p(u)Bj,q(v)Bk,r(w)Pi,j,k, (1)

wherePi,j,k are the control points on a (l × m × n)-lattice,
(u, v, w) are the local parameters of a point inside the B-spline
volume, andBi,p(u), Bj,q(v), andBk,r(w) are the nonrational
B-spline basis functions defined on the knot vectors

U = {umin, . . . , umin
︸ ︷︷ ︸

p+1

, up+1, . . . , ul, umax, . . . , umax
︸ ︷︷ ︸

p+1

},

V = {vmin, . . . , vmin
︸ ︷︷ ︸

q+1

, vq+1, . . . , vm, vmax, . . . , vmax
︸ ︷︷ ︸

q+1

},

W = {wmin, . . . , wmin
︸ ︷︷ ︸

r+1

, wr+1, . . . , wn, wmax, . . . , wmax
︸ ︷︷ ︸

r+1

}.

In general, the parameter space and, therefore, the knot
vectors are normalized to[0, 1]. This requires the embedding
of the objects, where for every pointpi = (xi, yi, zi) the
local parameters(ui, vi, wi) have to be found. In case of
a Bézier volume, this can be easily done by solving linear
equations [8]. In case of a B-spline or NURBS, due to the
multiplicity of outer knots, the local parameters have to be
found by numerical search [14]. Regarding the deformation
of complex and large objects, this operation may be very
costly. To overcome this problem, we define the initial B-
spline volume as the identity so that the embedding operation
vanishes. The initial B-spline volume has a regular, paraxial
lattice of minimal size. This meansl = p + 1, m = q + 1,
and n = r + 1. For the normalized parameter space, the B-
spline volume is equivalent to a Bézier volume, and for the
embedding functionE : R3 → [0, 1]× [0, 1]× [0, 1] yields:

E(x, y, z) =

(
x− x1

xl − x1

,
y − y1

ym − y1
,
z − z1

zn − z1

)

, (2)

where P1,1,1 = (x1, y1, z1) and Pl,m,n = (xl, ym, zn).
By reparameterizing the parameter space to
[x1, xl]× [y1, ym]× [z1, zn], the embedding function
becomes identity:E(x, y, z) = (x, y, z). This means that the
local parameters of a point are equal to its coordinates.

B. Computing the deformation

The direct manipulation of an FFD volume requires the
computation of control point displacements so that the distance
between the deformed source pointpi and corresponding
target pointqi is minimized for every pair(pi, qi), 0 < i ≤ d,
whered is the number of displacement vectors. This can be
formulated as a least-squares problem:

R =

d∑

i=1

‖qi − F (pi)‖
2

2
→ min . (3)

The deformation of a pointp = (x, y, z) is given by:

F (p) = F (x, y, z)

=

l,m,n
∑

i,j,k=1

Bi,j,k(x, y, z)(Pi,j,k + δi,j,k)

= p+

l,m,n
∑

i,j,k=1

Bi,j,k(x, y, z)δi,j,k,

(4)

whereδi,j,k are the displacement vectors of the control points
and Bi,j,k(x, y, z) = Bi,p(x)Bj,q(y)Bk,r(z). The minimiza-
tion problem (3) can be formulated as a set of linear equations
and solved in a sense of least squares using the Singular Value
Decomposition (SVD) [7].

In order to allow an iterative recalculation of control point
displacements, equation (4) can be defined recursively:

Fs(p) = Fs−1(p) +

l,m,n
∑

i,j,k=1

Bi,j,k(x, y, z)δ
s
i,j,k, (5)
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where F0(p) = p and δsi,j,k are the displacements of the
control points in the iterations, which updates the positions of
the control points from the previous iteration. By considering
only the control points which were involved in the refinement
of the lattice in the previous iteration, the complexity of the
least-squares problem (3) decreases and, thus, the computing
time is reduced significantly. In doing so, the FFD volume is
optimized locally in each iteration and the shape deviations
decrease continuously.

C. Refinement of the lattice

In order to reduce the approximation errors, the flexibility
of the FFD volume has to be increased. One well-known
technique for increasing the degrees of freedom and thereby
the flexibility of B-splines is knot insertion [14]. In case of a
B-spline curves, adding a new knot does not change the shape
of the curve. Therefore, inserting a new knot cause additionof
a new control point and the displacing of some existing control
points. In case of a B-spline volume with an(l×m×n)-lattice,
e.g. inserting of a knot into the knot vectorU increases the
lattice size to((l + 1)×m× n) control points. By inserting
knots successively into the knot vectorsU , V , and W , the
lattice can be expanded to an arbitrary size.

The challenge is to decide where the knots are to be inserted,
so that the approximation error decreases as much as possible.
Here, it is important to keep the lattice size small in order
to not increase the computing time unnecessarily. Therefore,
we subdivide the FFD volume into cells or subspaces and
analyze the discrete deformation field inside each cell. Cells
with strong deformation will be refined by knot insertion.

An intuitive subdivision of the FFD volume is given by
the knot vectorsU , V , and W . With respect to the ini-
tialization of the minimal B-spline volume, the parameter
space is equal to the model space and the unequal knots
inside a knot vector indicate the partitioning of the vol-
ume into the corresponding direction. For instance, the knot
vector U = {umin, . . . , umin

︸ ︷︷ ︸

p+1

, umax, . . . , umax
︸ ︷︷ ︸

p+1

} yields only

one partition of the initial B-spline volume intox-direction,
in particular, [umin, umax] with respect to parameter space
or, equivalently,[xmin, xmax] with respect to model space.
Furthermore, inserting a knotu1 would subdivide the model
space into cells[xmin, u1]× [ymin, ymax]× [zmin, zmax] and
[u1, xmax]× [ymin, ymax]× [zmin, zmax]. In this process, we
consider three partitionings of the FFD volume, one in each
direction.

In the next step, the deformation field inside each cell is
analyzed in order to decide which cell has to be subdivided.
For the comparison of the cells, an appropriate measureD is
required, which describes the strength of space deformation
inside a cell. The simplest one is the maximum lengthM of
all deformation vectors. This will force the refinement of at
least three cells, one for each direction, which is not always
necessary. In fact, the disturbance of the vector field or, rather,
its gradients into the corresponding direction, e.g., gradient
into x-direction for u-cells, should be taken into account by

Fig. 1. Source and target shape of the hat profile.

the measureD. Additionally, large cells should be preferred
for the refinement. These requirements are combined into one
measure, e.g., for theu-cells, by:

Dx = M · Lx ·
1

d

d∑

i=1

δx(~vi), (6)

whereLx is the length of the cell intox-direction andδx(~vi) is
the partial derivative of the vector field at vector~vi = (pi, qi).
We approximateδx(~vi) for the k-neighborhood by:

δx(~vi) =
1

k

k∑

j=1

||Fs(~vj)− Fs(~vi)||2 · |(pj − pi) · bx|

||pj − pi||22
, (7)

where bx = (1, 0, 0)T is one of the canonical basis vector
in R

3 and Fs(~vi) = (qi − Fs(pi)) is a residual deviation
vector after deformation withFs. Note, F0(pi) = pi. The
deformation measuresDy and Dz for v- and w-cells are
calculated analogously. Among all cells we first determine
the maximum valueDmax and then refine the cells with
D ≥ αDmax, 0 ≤ α ≤ 1, by inserting a knot into the
middle of the cell. By varying the scalarα, it is possible to
control the number of subdivided cells: forα = 1, only one
cell is refined and, forα = 0, all cells are refined. Due to the
cubic time complexity of SVD, inserting only one knot per
iteration results in the shortest total computing time, although
the number of iterations and the lattice size are not necessarily
minimal. Thus, we setα = 1 in the following numerical
studies.

IV. RESULTS

The presented method is validated on the basis of two
examples from sheet metal forming. The first example is a
simple hat profile, see Fig. 1. It is a2.5D object, i.e., the
object has no variation of the shape along thex-axis, and the
corresponding mesh has5, 859 vertices. The target shape is
the reference shape of the workpiece and the source shape
was obtained from the target shape by bending. Thus, the
displacements of the mesh vertices are known.

We use FFD for the adjustment of the source shape to the
target shape with respect to the displacement vectors. Initially,
the B-spline volume has a lattice with(2× 4× 4) control
points. The adjustment is proceeded by the adaptive FFD and
the process terminates if the normalized residualRN = 1

d
R is

below a user-defined thresholdǫ, which we set to0.0001. For
this simple example from Fig. 1, ten iterations were required
to achieve the desired approximation quality. In this process
the lattice has been refined to the size of(2× 13× 4) control
points in approx.7 seconds. The calculated B-spline volume
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Fig. 2. Adjustment of the source shape to the target shape by adaptive FFD
for the hat profile.
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Fig. 3. Initial shape deviation of the tank.

and the deformed shape are presented in Fig. 2. It visualizes
the Euclidean distance between the source and the target shape
with respect to the displacement vectors after the adjustment
with FFD. The maximum and average distances between the
deformed source shape and the target shape were lowered from
9.0 mm and4.958 mm to 0.06 mm and0.007 mm, respec-
tively. As expected, the lattice was refined intoy-direction,
which has the most space disturbance. For comparison, using
a common, uniform B-spline volume with(2×13×4) control
points for this adjustment, the maximum and average distance
were reduced to0.08 mm and 0.014 mm, respectively, in
approx. 4 seconds. For this example, the presented FFD
approach outperforms the common method with respect to
accuracy.

The second example is the geometry of the die for a tank
wall, which we simply call the tank. The die was designed in a
CAD environment and exported to a mesh with5, 577 vertices.
The target shape was generated from the source shape by
displacing some of the vertices, see Fig. 3. Here, the deviations
of the target shape are local in nature and vary from−2.4 mm

to 2 mm. This is a more challenging and practically relevant
shape. Again, the displacements of vertices are known and we
fit the source shape into the target shape by using the adaptive
FFD.

The initial B-spline volume has a lattice with(4× 4× 4)
control points, which encloses both shapes. The termination
threshold was set to0.0001. Since the deformation of the
tank is complex in shape, the adjustment process needs34
iterations and a computing time of approx.8 minutes. The
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Fig. 4. Shape deviation of the tank after the adjustment by FFD.
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Fig. 5. Development of the approximation errorRN with regard to the
number of control points.

lattice was refined to the size of(20× 21× 4) control points.
The deviation of the source shape from the target shape after
adjustment is shown in Fig. 4. The maximum and average
distances have been reduced to0.11 mm and 0.005 mm,
respectively. Furthermore, it can be observed that the FFD
lattice has a high density of control points in the deformed
areas. The calculation of the uniform B-spline volume with
the same size for5, 577 displacement vectors takes approx.
23 minutes. Thereby the maximum and average distance were
lowered to0.24 mm and0.012 mm, respectively.

Additionally, we analyze the convergence behavior of our
algorithm. Fig. 5 presents the development of the approxi-
mation errorRN with regard to number of control points.
Considering the logarithmic scales, it can be seen that, in this
case, the convergence behavior of the presented method is
superlinear.

V. CONCLUSION

In this paper, an adaptive free-form deformation technique
was presented, which is used for modifying a workpiece
geometry according to a set of displacement vectors. The
novelty of this method is the iterative approach, in which
the lattice of the FFD volume is automatically refined with
regard to the current shape deviations. Due to the locality of
B-splines, only a small number of control points is recomputed
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in each iteration, thus, the computing time was decreased
significantly. Another advantage is the possibility to control the
approximation quality of the FFD. This increases the accuracy
and the efficiency of the manufacturing process, in which the
FFD volume is used for shape modification of the workpiece.

The numerical studies have shown that the desired shape
modifications can be obtained by deforming the object using
the adaptive FFD. The presented method is more efficient than
the common FFD method using a B-spline volume with a
uniform control point lattice. The rate of convergence appears
to be superlinear with respect to the lattice size. Further
improvements can be achieved by a nonuniform subdivision
of cells. For practical use, the initial lattice of FFD can be
roughly adapted to the object shape by the user in order to
reduce the number of iterations and speed up the calculation.
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