
Just-In-Time Delivery for NLP Services in a Web-Service-Based IT Infrastructure

Soheila Sahami

Natural Language Processing Group
University of Leipzig, Germany

Email: sahami@informatik.uni-leipzig.de

Thomas Eckart

Natural Language Processing Group
University of Leipzig, Germany

Email: teckart@informatik.uni-leipzig.de

Abstract—Just-In-Time delivery of resources is a standard proce-
dure in the industrial production of goods. The reasons for intro-
ducing this paradigm and its potential benefits are in large parts
applicable for the area of web-based Natural Language Processing
Services as well. This contribution focuses on prerequisites and
potential outcomes of a Just-In-Time-capable infrastructure of
Natural Language Processing services using an example service.
The benefits of such an endeavour are sketched with a focus on
the ongoing development of large scale service delivery platforms
like the European Open Science Cloud or similar projects.

Keywords–NLP Services; Research Infrastructure; Just-In-Time
Delivery; Cluster Computing.

I. INTRODUCTION

In industrial production environments, providing resources
immediately before they are required in the context of a larger
production chain – typically called Just-in-Time Delivery (JIT
delivery) – is a standard procedure for many decades now.
The transfer of this concept into the area of information
technology offers a new competitive opportunity that promises
significant advancements, such as faster responses, improved
quality, flexibility, and reduced storage space [1].

The use of linguistic applications – i.e., tools for prepro-
cessing, annotation, and evaluation of text material – is an
integral part for a variety of applications in scientific and com-
mercial contexts. Many of those tools are nowadays available
and actively used in service-oriented environments where –
often complex – hardware and software configuration is hidden
from the user. In the context of large research infrastructures,
like CLARIN [2] or DARIAH [3], or cross-domain projects,
like the European Open Science Cloud (EOSC) [4], one of
the key goals is to facilitate the use of services which are
seen as integral and indispensable building blocks of a modern
scientific landscape.

These research infrastructure projects can be seen as driv-
ing forces for current trends in the dissemination and delivery
of tools and services. However in many respects, they are
undergoing a similar development as already completed in
many commercial areas where delivery and use of services
is performed in an industrial scale. Systematic assessment and
improvement of quality, measurement of throughput times or
other criteria are prerequisites for the use of services even for
time-critical applications [5].

One of the potential outcomes and goals of a more ”in-
dustrialised” infrastructure could be a just-in-time delivery
of services, providing the benefits – while requiring com-
parable prerequisites – already accustomed in the industrial
production of goods, like reduced response times or reduction

of required storage facilities [6]. However, those topics are
hardly addressed in today’s text-oriented research infrastruc-
tures. Some of the missing preliminary work that is required
to offer JIT delivery of linguistic services – like transparency
of the process and its sub-processes, deep knowledge about
required resources and execution times – are addressed in this
contribution.

One of the important challenges in JIT delivery is the
applied strategy to address the reliability and predictability
of services [7]. In IT infrastructures, utilising fault-tolerant
techniques is one of the solutions to improve the reliability
of an application. Parallelised implementations using cluster-
based processing architectures are technologies that are utilised
to decrease run-times and to enable the processing of large
scale resources. Furthermore, they provide a helpful means
to configure processes in a dynamic manner. This allows
suggesting several configurations based on the available re-
sources of the service provider or temporal requirements of
the user. Clear information about potential expenses and the
estimated delivery time for each configuration gives users a
means to select a suitable service (or service chain) or service
configuration that fits their needs best.

This also helps the users to have a clear strategy for data
storage, duration of data retention, and delivery time. These
features have the potential to enhance the user’s satisfaction
and provide added values that lead to a stronger position in
competitive industrialised IT infrastructures.

In this contribution, we present an example of a Natural
Language Processing (NLP) service with a focus on its trans-
parency regarding execution times and required resources. As a
result, valid resource configurations can be chosen considering
available resources and expected delivery times.

The following Section II gives more details about the paral-
lelism of just-in-time delivery of IT services and their industrial
counterpart. Section III describes the used methodology and
technical approaches. Sections IV and V illustrate and discuss
the outcomes and results and are followed by a brief conclusion
of this contribution in Section VI.

II. JUST-IN-TIME DELIVERY OF IT-SERVICES

Just-in-time delivery (or just-in-time manufacturing) is a
management concept that was introduced in the Japanese
automotive industry [8] and was adopted for many other
areas of production and delivery of goods since. Based on
experiences and best practices, catalogues were developed that
contain extensive lists of requirements that make the usage of
JIT delivery chains manageable and trustworthy.

103Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

Established requirements deal with all kinds of aspects
in the organisational, legal and technical environment of
companies and organisations that are involved in the overall
process. At least a subset of those requirements, is directly
transferable to activities in IT processes and infrastructures
[1], including the more recent deployment, provisioning, and
use of services in complex Service-Oriented Architectures
(SOAs). This contains procedures and guidelines like the strict
use of a ”pull-based” system, process management principles
with a focus on flow management, adequate throughput, and
continuous assessment of quality and fitness of used processes
and outcomes. Its obvious benefits have made the underlying
policies also a cornerstone of modern agile management prin-
ciples (c.f. [9]).

There is some research about transferring the JIT concept
and its principles to service-oriented environments, like the
ones gaining momentum in the area of NLP applications. In
the context of such IT services chains, the term just-in-time
can be understood in different ways. It is often referring to
the specific decision for a set (or chain) of services – out
of a potentially large inventory of compatible services from
different providers – as part of the typical discovery/bind-
process at runtime, i.e., without a fixed decision for specific
providers or even prior knowledge about the current inventory
of available services. This is sometimes called ”just-in-time
integration” of services (for example in IBM’s developer
documentation [10]).

Many essential requirements for a JIT integration are
already handled in existing frameworks – for example
CLARIN’s WebLicht [11] –, like compatibility-checks of all
services regarding their input parameters and generated output,
a systematic monitoring of all participating service providers
of the federation, or – in parts – even adherence to legal
constraints.

A different approach for services-based JIT delivery, fo-
cuses on the estimated time of arrival (ETA) of the required
results for a specific service chain. This is especially impor-
tant considering the growing amount of text material that is
required to be processed. Most academic providers of NLP
services are not able to guarantee acceptable processing times
– or the completion of large processing jobs at all – with their
current architectures for (very) large data sets in the context
of SOAs. However, this kind of functionality is required
to reach new user groups and to make them competitive
offerings in comparison with other (including commercial)
service providers. This aspect is hardly addressed in previous
and current projects of the field but gains significance in
current attempts to make scientific working environments more
reliable and trustworthy with a strong focus on cloud-based
solutions (like the European Open Science Cloud EOSC).

A key idea is the incremental creation and adaptation of
”performance profiles” for all elements of a provider’s ser-
vice catalogue. This contains the identification of all relevant
parameters of a tool and well-founded empirical knowledge
about their effects on the runtime of every single NLP task
for all kinds of plausible inputs. This requires a processing
architecture that is able to dynamically allocate resources for
each assigned job while minimising (or even eliminating) the
effects of other jobs that are executed in parallel.

In the following, we will describe a concrete example of

such a service performance profile depending on the assigned
hardware configuration and sketch its benefits.

III. TECHNOLOGIES AND TOOLS

In this section, we explain the chosen technologies and their
specific features relevant for the context of this contribution.
Afterwards, the implemented NLP tools and utilised resources
are described.

A. Technical Approaches
For services where response times are a critical subject,

the utilised technology should support technical features like
fault-tolerance and high availability. Being fault-tolerant relies
on the ability of the system to detect a hardware fault and
immediately switch to a redundant hardware component. High
availability systems refer to architectures that are able to
operate continuously without failure during a specific time
period. For this contribution, we have selected Apache Hadoop
clusters and the Apache Spark execution engine to address
the topic of fault tolerance and high availability. Furthermore,
this approach supports the parallelisation of tasks to improve
response times significantly.

Apache Hadoop is a popular framework to process large-
scale data in a distributed computing environment. Its large
ecosystem consists of the Hadoop Kernel, MapReduce, HDFS
and some other components [12]. Hadoop Distributed File
System (HDFS) as a highly fault-tolerant distributed storage
system is able to handle the failure of storage infrastructure
without losing data by storing three complete copies of each
block of data redundantly on three different nodes [13].

Apache Spark is also a general-purpose cluster computing
framework for big data analysis with an advanced in-memory
programming model. It uses a multi-threaded model where
splitting tasks on several executors improves processing times
and fault tolerance. Apache Spark uses Resilient Distributed
Dataset (RDD), a data-sharing abstraction, which is designed
as fault-tolerant collections and is capable to recover lost
data after a failure using the lineage approach: during the
construction of an RDD, Spark keeps the graph of all trans-
formations. In the event of a failure, it re-runs all failed
operations to rebuild lost results. The RDDs are persisted and
executed completely in RAM – In-Memory Databases (IMDB)
–, therefore generating and rewriting the recovered data is a
fast process [14] [15].

B. NLP Tools and Resources
Using Hadoop-based cluster computing architecture, a vari-

ety of typical NLP tools were implemented, including sentence
segmentation, pattern-based text cleaning, tokenizing, language
identification, and named entity recognition [16]. These tools
use Apache Hadoop as their framework, Apache Spark as
execution engine and HDFS for storing input data and outputs.
These tools are atomic services that can be integrated into any
SOA-based annotation environment.

In order to have an accurate estimation of execution times,
a variety of benchmarks were carried out for all implemented
tools. As an example, the duration of sentence segmentation
for datasets of German documents with sizes from 1 to 10
Gigabytes was evaluated using different cluster configurations.
The cluster configuration varied in the number of assigned
executors (1 to 32 nodes) and allocated memory per executor

104Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

(8 or 16 GB). Each test was repeated three times; average
execution time over all three runs was used for the following
statistics. Figures 1 and 2 show these execution times for
sentence segmentation from 1 to 10 GB of input data with
different resource configurations.

Figure 1. Run-times for segmenting 1 to 10 GB text materials using 1 to 32
executors and 8 GB memory per executor.

Figure 2. Run-times for segmenting 1 to 10 GB text materials using 1 to 32
executors and 16 GB memory per executor.

These tests were carried out using a cluster provided by
the Leipzig University Computing Center [17]. The cluster
consists of 90 nodes each with 6 cores and 128 GB RAM.
The cluster provides more than 2 PB storage in total and is
connected via 10 Gbit per second Ethernet [18].

IV. RESULTS

As Figures 1 and 2 illustrate, run-times vary for different
job configurations. As expected, using only a single executor
– therefore executing the job without any parallelisation on the
cluster – shows the maximum run-time for every data volume.
The outcomes of all conducted tests indicate that execution
times can be improved with extended hardware resources
(i.e. more executors). This improvement complies with the
expected behaviour of parallel processing: a sharp decrease in
execution time by increasing the assigned resources, followed
by a smoother reduction and finally no significant improvement
when adding more resources to the job does not improve the
speedup anymore. The results show this consistent behaviour
for different data volumes using various cluster configurations.
Figure 3 gives an overview of run-times for data sets from 1 to
10 GB using 1 to 32 executors and 16 GB RAM per executor.

Figure 4 shows the results for sentence segmentation of
10 GB text material which requires 2860 seconds using 8 GB
RAM and 2795 seconds using 16 GB RAM on a single node,
where adding a second executor decreases the run-time to 2115
respectively 1480 seconds.

Figure 3. Run-times for different number of executors and data volumes
using 16 GB memory per executor

Figure 4. Run-times for different numbers of executors, illustrating different
”speedup areas”

The typical trend can be seen again where run-times
decrease significantly up to (around) 7 assigned executors, and
with no improvements when allocating 14 executors or more.

V. DISCUSSION

Execution times are valuable information that can be
utilised for the estimation of times of arrival for annotation
jobs in NLP toolchains. Measured execution times give the
opportunity to configure the cluster dynamically based on
expected response times, available resources and the current
load by a varying number of parallel users or jobs. For
instance, if there are x free resources available on the cluster
and a processing job requires x+y resources, the new job may
be scheduled to be executed after finishing the first running
job which has allocated at least y resources.

Furthermore, they are also relevant for estimating an ”opti-
mal” resource allocation for each individual tool. In the context
of this contribution, these resources include the number of
executors and the amount of memory which can be assigned to
each task. Obviously, the term ”optimal” is a very ambiguous
one: it depends on the context of which value should be
actually optimised. In this context, this may be the overall
run-time of a job (i.e. a user-oriented view), the amount of
allocated resources (i.e. a cost-oriented view) or a combination
of both (by finding some balance between both).

By allocating more executors, execution times can be
decreased. At a certain point (which may depend on a variety
of parameters), assigning more resources will have no positive
effect on execution times anymore. This point can be seen
as the optimal configuration for the particular task in respect
of optimised run-times, and contains the amount of resources
which are required to generate a result in the shortest possible
execution time. In this situation, it is also feasible to generate

105Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

results by assigning fewer resources – with the drawback of
extended processing times – but it is obviously not reasonable
to assign more resources to the job. As an example, in Figure
4 the fastest configuration for sentence segmentation of 10 GB
text data consists of 14 executors with 16 GB RAM per
executor where assigning more resources generates more costs
without providing faster execution.

The extracted information helps to provide different re-
source configurations in accordance with the available hard-
ware resources and desired response times for the user’s
requested service and input material. For instance, if a user
wants to segment 10 GB text material in less than 25 minutes,
3 executors with 16 GB RAM or 4 executors with 8GB
RAM would be both suitable configurations. In contrast, for a
response time of up to 5 minutes, a configuration consisting
of at least 14 executors with 8 or 16 GB RAM would suffice.
In an environment where accounting of actual expenses is
included, the balance between technical or financial costs and
acceptable run-times can also be delegated to the user. In such
an environment, a user can choose the desired configuration
considering estimated run-times and incurred expenses.

The presented diagrams also show that for particular con-
figuration changes resulting improvements of run-time are only
marginal. Especially in case of limited available resources or
unexpected usage peaks, these configurations do not have to
be available anymore as their effect from the user’s perspective
are small. For instance, in Figure 4 assigning 7 executors with
16 GB RAM generates the expected result in 467 seconds
whereas doubling the number of executors leads only to an
execution time of 286 seconds (i.e. a 39% run-time reduction).

VI. CONCLUSION
In this contribution, we described some prerequisites for

providing JIT delivery in service-oriented research infrastruc-
tures using a typical NLP task as an example. We have utilised
Apache Spark as execution engine on an Apache Hadoop
cluster to allow parallel processing of large text collections
and to increase the reliability and predictability of the services.
An evaluation of required resources for processing different
amounts of text offers information about possible hardware
configurations that is useful for estimating delivery times and
potential expenses for each individual task.

Naturally, providing and maintaining such resources and
tools lead to actual financial costs. In commercial platforms,
like Amazon Comprehend [19] or Google Cloud NLP [20]
these costs are covered by contracts with costumers based on
defined parameters (kind of service, required availability, costs
of data storage, CPU cycles, etc.). The selected configuration
and execution time can be used as a basis for an accounting
system which relies on well-founded expenses for each indi-
vidual NLP job.

The presented run-times in this abstract can only be a part
of a qualified assessment of NLP tasks. Performance profiles
require a variety of training cycles to be meaningful and to
cover all kinds of input material and their effects on the
assessed tool. Furthermore, measuring actual response times
for larger toolchains in text-oriented research infrastructures is
more complex and needs to take more parameters into account.
This is especially relevant for toolchains where multiple ser-
vice providers are used. Other relevant parameters, like data
transfer times between user and service provider or between

different services, required format conversions, or similar tasks
were not considered here.

ACKNOWLEDGEMENT

Computations for this work were done with resources of
Leipzig University Computing Center.

REFERENCES
[1] F. W. McFarlane, Information technology changes the way you compete.

Harvard Business Review, Reprint Service, 1984.
[2] E. Hinrichs and S. Krauwer, “The CLARIN Research Infrastructure:

Resources and Tools for e-Humanities Scholars,” Proceedings of
the Ninth International Conference on Language Resources and
Evaluation (LREC-2014), May 2014, pp. 1525–1531. [Online].
Available: http://dspace.library.uu.nl/handle/1874/307981

[3] J. Edmond, F. Fischer, M. Mertens, and L. Romary, “The DARIAH
ERIC: Redefining Research Infrastructure for the Arts and Humanities
in the Digital Age,” ERCIM News, no. 111, Oct. 2017. [Online].
Available: https://hal.inria.fr/hal-01588665

[4] EOSC, “EOSC European Open Science Cloud,” Online, 2019, Date
Accessed: 3 Apr 2019. URL https://www.eosc-portal.eu.

[5] C. Kuras, T. Eckart, U. Quasthoff, and D. Goldhahn, “Automation,
management and improvement of text corpus production,” in 6th
Workshop on the Challenges in the Management of Large Corpora at
the 11th Language Resources and Evaluation Conference (LREC 2018),
Miyazaki (Japan), 2018.

[6] H. Wildemann, Das Just-in-time-Konzept: Produktion und Zulieferung
auf Abruf, 3rd ed. gfmt, 1992.

[7] P. Blais, “How the information revolution is shaping our communities,”
Planning Commissioners Journal, vol. 24, 1996, pp. 16–20.

[8] T. Ohno, Toyota Production System: Beyond Large-Scale Production.
Taylor & Francis, 1988.

[9] P. Heck and A. Zaidman, “Quality criteria for just-in-time requirements:
just enough, just-in-time?” in 2015 IEEE Workshop on Just-In-Time
Requirements Engineering (JITRE). Los Alamitos, CA, USA:
IEEE Computer Society, aug 2015, pp. 1–4. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/JITRE.2015.7330170

[10] IBM, “Web services architecture overview,” On-
line, 2019, Date Accessed: 3 Apr 2019. URL
https://www.ibm.com/developerworks/web/library/w-ovr/.

[11] E. W. Hinrichs, M. Hinrichs, and T. Zastrow, “WebLicht: Web-Based
LRT Services for German,” in Proceedings of the ACL 2010 System
Demonstrations, 2010, pp. 25–29, Date Accessed: 3 Apr 2019. URL
http://www.aclweb.org/anthology/P10-4005.

[12] ApacheHadoop, “Apache Hadoop Documentation,” Online, 2019, Date
Accessed: 3 Apr 2019. URL http://hadoop.apache.org.

[13] H. S. Bhosale and D. P. Gadekar, “A review paper on Big Data and
Hadoop,” International Journal of Scientific and Research Publications,
vol. 4, no. 10, 2014, pp. 1–7.

[14] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin et al., “Apache
spark: a unified engine for big data processing,” Communications of
the ACM, vol. 59, no. 11, 2016, pp. 56–65.

[15] M. Hamstra and M. Zaharia, Learning Spark: lightning-fast big data
analytics. O’Reilly & Associates, 2013.

[16] S. Sahami and T. Eckart, “Spark WebLicht Webservices,” Online, 2019,
Date Accessed: 4 Apr 2019. URL http://hdl.handle.net/11022/0000-
0007-CA50-B.

[17] L.-P. Meyer, J. Frenzel, E. Peukert, R. Jäkel, and S. Kühne, “Big Data
Services,” in Service Engineering. Springer, 2018, pp. 63–77.

[18] “the galaxy cluster.”
[19] Amazon, “Amazon Comprehend - Pricing,” Online, 2019, Date Ac-

cessed: 4 Apr 2019. URL https://aws.amazon.com/comprehend/pricing/.
[20] Google, “Pricing - Natural Language API - Google

Cloud,” Online, 2019, Date Accessed: 4 Apr 2019. URL
https://cloud.google.com/natural-language/pricing.

106Copyright (c) IARIA, 2019. ISBN: 978-1-61208-706-1

ADAPTIVE 2019 : The Eleventh International Conference on Adaptive and Self-Adaptive Systems and Applications

