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Abstract—This work-in-progress paper presents a project that
deals with real-time recognition of people’s activities by utilizing
commercial smartphones. One important and crucial aspect is
that the phone can be placed on various on-body positions
(with different orientation and rotation), thus the system has
to adapt autonomously to the current phone-location. There are
many possibilities to purse the smartphone - for example, facing
downwards to your body, facing up away from your body, left or
right pocket or even back pocket. The application has to adapt
to these variations of the on-body positions to fulfill the activity
recognition task in real-time. The activities that are considered
in this paper are five common modes of locomotion: (i) standing,
(ii) walking, (iii) running, (iv) stairs-up and (v) stairs-down. The
paper presents the problem definition, reflects related work on
this topic, showing the relevance of the project, and discusses
the intended approach, expected results and already conducted
work.

Keywords–Activity recognition; Mobile sensing; Self-adaptation;
Adaptive application; Adaptive real-time strategies.

I. INTRODUCTION

Nowadays mobile phones are manufactured with strong
processors, good cameras, sharp displays and precise sensors
(e.g., accelerometer, gyroscope, magnetometer, GPS, etc.). The
composition of these elements gives mobile platforms a vast
playground for mobile developers to create applications in
areas such as social media, entertainment and personal usage.
More and more people tend to use their mobile phone on
a daily basis, which transforms the device into a constant
companion. Therefore, applications running on mobile phones
could gather a huge amount of information about the user.
For example, this might include the usage of the smartphone,
current context or even the correct recognition of the activity
the user is performing [1][2].

This paper presents a work-in-progress project dealing
with the real-time recognition of people’s activities utilizing
a commercial smartphone. This idea is not new and has been
subject to research in numerous previous publications (e.g.,
[3][4][5][6][7][8][9][10], see Section II - Related Work - for
further details). The challenging and novel aspect is that the
recognition of activities shall be rotation-, orientation- and
position-independent - thus the system has to autonomously
adapt to changes in the phone’s position and orientation
regarding the on-body placement. The five considered on-
body positions for the smartphone are illustrated in Figure 1
(i.e., left-, right- front pocket, left-, right-, back-pocket, shirt-
pocket). We have identified those five body positions since
they are realistically used by users to carry the phone when

not actively used. Furthermore, the phone could be rotated and
oriented differently - thus the placement of the phone on the
body of the user is very important. Common machine learning
technologies are usually trained under laboratory conditions,
presuming constant conditions (like position, location, etc.).
This is the challenging aspect, since we also do not want
to force the user to conduct a preliminary calibration - the
system shall be able to self-adapt to the phone’s position
and orientation autonomously upon the recognition task. The
relevant activities that are currently of interest are - for the
sake of simplicity - reduced to five modes of locomotion: (i)
standing, (ii) walking, (iii) running, (iv) stairs-up and (v) stairs-
down. Possible real-world use cases and scenarios for such
applications could be (i) personal logging (sports monitoring -
e.g., answering questions whether the user has been physically
active enough during a period of time), (ii) health-care, (iii)
recommender systems, etc.

Figure 1. Possible on-body phone positions (i.e., left-, right- front pocket,
left-, right-, back-pocket, shirt-pocket).

The research challenge can be summarized as follows:

How can highly accurate real-time activity recog-
nition be realized utilizing a dynamically (i.e.,
rotation, position and orientation independent)
on-body placed commercial smartphone?

This paper provides a work-in-progress summary tackling
this research challenge discussing related work (Section II),
the methodological approach (Section III), an overview of the
current status and preliminary results (Section IV). The paper
closes with a conclusion and an outlook to future work in
Section V.
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II. RELATED WORK

Prior investigations have proven that activity recognition
using mobile phones or accelerometers placed on the body
is feasible in a decent way [3][4][5]. However, nowadays
there are countless variations of different implementations
worldwide. In this paper distinction is made between activity
recognition that is position and orientation dependent and ac-
tivity recognition that is position and orientation independent.

Even though Bao and Intille [4] wrote their paper in 2004,
it is still one of the most cited academic sources in the activity
recognition domain. The reason for this is that they developed
the first semi-naturalistic activity recognition system using
five bi-axial acceleration sensors mounted on different body
positions. Semi-naturalistic means that participants were not
supervised executing the activities they were asked to perform.
Therefore, activities were performed in a more natural way and
it is possible that the execution of the activity varied as par-
ticipants did not feel as subjects being observed. Furthermore,
Bao and Intille [4] indicate that only two accelerometers and
low-level features (mean, min, max) are sufficient to recognize
an activity correctly using Decision Tree algorithms. Another
approach worth mentioning is demonstrated by Ravi et al.
[11], who use a single triaxial accelerometer near the pelvic
region for the approach. Instead of decision trees, a meta
level classifier classifies the activities. Other authors such as
Kwapisz et al. [7], Anjum et al. [3] and Derawi and Bours
[6] use mobile phones with built in tri-axial accelerometers
in their position and orientation dependent activity recognition
approaches. Kwapisz et al. [7], for example, provide only one
position and orientation of the mobile phone. Furthermore,
Anjum et al. [3] also stated that after evaluation of different
classifiers including K-Nearest Neighbors (KNN), Support
Vector Machines (SVM) and Naive Bayes, Decision Trees are
performing best on single tri-axial accelerometers.

Similar approaches, which correspond to the topic of
this paper, were developed by Yang [12], Sung et al. [13],
Henpraserttae et al. [14] and Ustev and Durmaz Incel [15].
However, the solution of each investigation was implemented
in a different unique way. To build a position and orientation
independent system, Sun et al. [13], for example collected sen-
sor data with varying positions and orientations using a mobile
phone. Yang [12] instead extracts the vertical and horizontal
movement of the mobile phone. Therefore, the application is
no longer limited with respect to orientation. Additionally,
Yang [12] used Decision Trees for the classification process.
Henpraserttae et al. [14] have a more computational approach
to achieve a position and orientation independent activity
recognition system. They apply a projection-based method.
The data acquisition transports each new record into the same
coordinate system by applying a matrix multiplication with a
reference matrix gathered with the magnetometer.

However, each of the named projects needs model updates
when it comes to phone positions which have not been
considered yet. The self-adaptiveness towards the orientation,
position and location of the on-body phone placement is the
novel aspect differentiating this research work from related
work.

III. METHODOLOGY

Prior to implementation, machine learning technologies and
suited algorithms are being evaluated with focus on the special

purpose of adapting autonomously to the on-body sensor
position. Furthermore, an Android app has been implemented
for collecting data of subjects in order to analyse the specific
activities and the corresponding algorithms for the different
steps of the recognition process (i.e., signal processing, feature
extraction, classification). This analysis has to be done with
respect to the dynamic aspect of the sensor placement. The
following Sections III-A to III-D summarize the methodology
for the different relevant aspects. In Section IV, an overview
of the current status and preliminary results is given.

A. Data Collection
Sensor data was collected for 15 subjects performing the 5

activities carrying the the smartphone on the five different on-
body locations as illustrated in Figure 1, using 4 different ori-
entations each. Since each recording took around 10 seconds,
the total amount of recorded sensor data is approx. 4,5hrs. For
recording, a simple phone application was implemented that
allows for selecting the recorded activity (i.e., instant labelling
of the sensor data is possible with this approach) and the on-
body position of the phone (see Figure 2).

Figure 2. The application used for recording the data. (a) shows an overview
of recorded data, (b) shows the selection of activity and phone-location prior

to recording, (c) shows the screen to save or discard a recorded session.

The recorded modalities of the sensor data are (i) ac-
celerometer, (ii) gyroscope and (iii) magnetometer at a rate of
100Hz. We did not consider further modalities since these three
are so common that every commercial smartphone is capable
of delivering these modalities. An example of raw recorded
acceleration data for the activity walk is depicted in Figure 3.

B. Feature Extraction
As related work and projects show, low level features

(which are easily computable) are significant enough to clas-
sify the correct activity [4][7][16]. For the feature extraction,
a sliding window approach will be implemented and evaluated
with the length of two seconds and an overlapping of 50%.
Prior investigations show that this is a suitable sliding window
size for activity recognition [4][13]. Usually, within two sec-
onds at least one repetition of an activity should be completed.
Inside of each window, the features as listed below will be
extracted for each acceleration axis:

• Mean: The mean value of each window and each axis.
• Max: The max value of each window and each axis.
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Figure 3. Exemplary data representing the activity walk.

• Min: The min value of each window and each axis.
• Standard deviation, Variance: The variance/standard

deviation of each window and each axis.
• Correlation: The correlation between each pair of

axes.
• Energy: The energy is calculated as the sum of the

squared discrete Fast Fourier Transform (FFT).
• Entropy: The entropy is calculated as the normalized

information entropy of the discrete FFT.

Subsequently, the feature vector will be used to train a machine
learning model using Weka 3.8 [17]. Again, previous investi-
gations regarding this topic show that low level features are
significant enough to classify the correct activity [4][7][16].

C. Classification
The classification of activities combines the data collection

and feature extraction and tries to map the recorded sensor
data into an output class (i.e., the recognized activity). A first
evaluation (related work research and first tryouts with the
recorded dataset) of algorithms for classification shows that
the following seem to be promising methods for our approach:

• K-Nearest Neighbors (KNN)
• Decision Tree (J48)
• Naive Bayes
• Support Vector Machines (SVM)

Since we have two crucial requirements for our applica-
tion, namely (i) real-time recognition of activities, and (ii)
adaptation to the dynamic placement of the smartphone, the
algorithms for feature extraction and classification shall be
robust, easily implementable and performant. Furthermore, the
models that build the base for the classification process need
to be small enough to be processed and calculated on mobile
devices. This is the reason why we consider rather “classical”
approaches (e.g., KNN, SVM, etc.) rather than recent methods
like neural networks [18].

Once the classification models are created, they will be
integrated into the system. As already mentioned, the clas-
sification process shall be executed in real-time. Therefore,
recording and feature extraction will be needed in this process

as well. In order to achieve this, the sliding window was
used again. After the user starts the automatic recognition of
the application, the sliding window algorithm calculates and
extracts all required features of the recorded acceleration data.
Due to the window size of the algorithm, it takes about two
seconds to recognize the activity in real-time.

D. Dynamic Adaptation
The dynamic adaptation of the system tackles the problem

of different positions, locations and orientations of the on-
body placed smartphone. Every person might carry the phone
differently, meaning that the sensor data might look different.
This is obviously a problem for classification algorithms since
supervised learning methods work in a way that they compare
trained models with the real-time (preprocessed) sensor data.
To achieve highly accurate real-time activity recognition with
data coming from dynamically placed phones, the system has
to be capable of adapting to this position-, location-, and
orientation-dynamic. Compared with the previously mentioned
algorithms for feature extraction and classification the follow-
ing approaches seem to be promising for dynamic adaptation:

(i) Magnitude of acceleration data.
(ii) 2D projection of sensor data, respectively horizon-

tal/vertical acceleration.
(iii) Matrix multiplication to normalize the sensor data.
(iv) Quaternions as representation of rotations in 3D space

compared with Euler angles [19].

Again, it is important to achieve the activity recognition
task in real-time (i.e. getting instant feedback within 1-2 sec-
onds) and that the user is not being forced to artificially mount
the smartphone at a previously defined position. Furthermore,
forcing the user to execute a calibration task prior to the
recognition of activities is not desired.

IV. CURRENT STATUS & PRELIMINARY RESULTS

The current status of the project is that the sensor data
from 15 subjects (8 male, 7 female, all between 22 and 30
years old) has been recorded and analysed. Feature extraction
and classification methodologies have been analysed and we
were able to limit the number of suitable algorithms. We have
learnt that for our specific use cases of real-time recognition
and dynamic adaptation, computationally expensive algorithms
like neural networks [18] are not suited.

We have implemented and used a recording app (see Figure
2), which collected sensor data from a smartphone. Subjects
participating in this study were asked to put the phone in
their pockets in different positions and orientations while
performing the five varying activities (modes of locomotion).
To achieve the best approach concerning performance and
recognition, different classifiers such as KNN, Naive Bayes,
SVM and Decision Tree were developed using the machine
learning program Weka 3.8 [17]. The trained models were
compared with each other. After evaluation it became evident
that Decision Tree was the most suitable model applicable
to this project. The reason for this assumption is based on
the model’s overall result of 94% accuracy. Nevertheless,
KNN, SVM and Naive Bayes will be further evaluated and
considered since related work shows that these algorithms are
also performing well. Evaluations of the real-time approach
have shown that this will be realized with the help of the
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sliding window procedure, which has a fixed size of two
seconds and an overlapping of 50%.

The flow of recognizing activities (see Figure 4) is currently
being developed and evaluated in order to achieve the real-
time requirement. As already mentioned, by not considering
the dynamic-aspect of on-body phone placement, the accuracy
of the recognition task utilizing standard features and rather
easy classification algorithms is around 94%. We are currently
in the process of fine-tuning our models, algorithms and
other parameters (like the sliding window approach) to further
increase the accuracy.

Figure 4. The subsequent steps of the real-time activity recognition task [1].

In parallel, work on the dynamic aspect has been started to
achieve the system’s self-adaptiveness regarding the dynamic
placement of the smartphone. As mentioned, some promising
approaches are currently being investigated (i.e., (i) magnitude,
(ii) 2D projection, (iii) normalization of sensor data, and (iv)
quaternions).

V. CONCLUSION AND OUTLOOK

This work-in-progress paper presents a project for recog-
nizing people’s activities at real-time utilizing nothing more
than a commercial smartphone. For the sake of simplicity,
the activities are reduced to the five most common modes of
locomotion, which are (i) standing, (ii) walking, (iii) running,
(iv) stairs-up and (v) stairs-down. Besides the requirement of
recognizing the activities in real-time, another crucial aspect
is the fact that the smartphone does not need to be mounted
on the body of persons at a special location/position with a
specific orientation. The placement of the phone shall be done
in a natural way in whatever pocket the user is comfortable
with. The system shall be capable of autonomously adapting to
the dynamic on-body placement of the smartphone to achieve
highly accurate activity recognition. Preliminary results and
evaluations towards the real-time capability are promising. In
order to evaluate methods and algorithms, a dataset consisting
of 15 subjects performing the activities has been recorded and
analysed. The dynamic placement aspect is currently subject to
research, whereas different methodological approaches seem to
be promising: (i) magnitude of acceleration data, (ii) 2D pro-
jection of sensor data, (iii) normalization of data by applying
matrix manipulations, and (iv) quaternions as representation of
rotations.

Besides future work to investigate the research challenge
it is intended to extend the application further. Particularly,
it is intended to include a higher number of activities, which
can be considered in recording and recognition as well as to
integrate more customer oriented activities. Furthermore, the
current implementation only uses offline trained models. In
the future, users could be able to train their personal model.
In other words, future aims include the modification of the
current implementation, which should allow the user to record
activities, label activities and train personal models on the
mobile phone.
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